1
|
Hoefig CS, Harder L, Oelkrug R, Meusel M, Vennström B, Brabant G, Mittag J. Thermoregulatory and Cardiovascular Consequences of a Transient Thyrotoxicosis and Recovery in Male Mice. Endocrinology 2016; 157:2957-67. [PMID: 27145010 DOI: 10.1210/en.2016-1095] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Thyroid hormones play a major role in body homeostasis, regulating energy expenditure and cardiovascular function. Given that obese people or athletes might consider rapid weight loss as beneficial, voluntary intoxication with T4 preparations is a growing cause for thyrotoxicosis. However, the long-lasting effects of transient thyrotoxicosis are poorly understood. Here we examined metabolic, thermoregulatory, and cardiovascular function upon induction and recovery from a 2-week thyrotoxicosis in male C57BL/6J mice. Our results showed that T4 treatment caused tachycardia, decreased hepatic glycogen stores, and higher body temperature as expected; however, we did not observe an increase in brown fat thermogenesis or decreased tail heat loss, suggesting that these tissues do not contribute to the hyperthermia induced by thyroid hormone. Most interestingly, when the T4 treatment was ended, a pronounced bradycardia was observed in the animals, which was likely caused by a rapid decline of T3 even below baseline levels. On the molecular level, this was accompanied by an overexpression of cardiac phospholamban and Serca2a mRNA, supporting the hypothesis that the heart depends more on T3 than T4. Our findings therefore demonstrate that a transient thyrotoxicosis can have pathological effects that even persist beyond the recovery of serum T4 levels, and in particular the observed bradycardia could be of clinical relevance when treating hyperthyroid patients.
Collapse
Affiliation(s)
- Carolin S Hoefig
- Department of Cell and Molecular Biology (C.S.H., L.H., M.M., B.V., J.M.), Karolinska Institutet, Stockholm, Sweden 17177; Institute of Experimental Endocrinology (C.S.H.), Charité-University Hospital Berlin, Berlin, Germany 13353; Center of Brain, Behavior and Metabolism CBBM/Medizinische Klinik I (L.H., R.O., G.B., J.M.), University of Lübeck, Lübeck, Germany 23562; and Medizinische Klinik II (M.M.), University of Lübeck, Lübeck, Germany 23562
| | - Lisbeth Harder
- Department of Cell and Molecular Biology (C.S.H., L.H., M.M., B.V., J.M.), Karolinska Institutet, Stockholm, Sweden 17177; Institute of Experimental Endocrinology (C.S.H.), Charité-University Hospital Berlin, Berlin, Germany 13353; Center of Brain, Behavior and Metabolism CBBM/Medizinische Klinik I (L.H., R.O., G.B., J.M.), University of Lübeck, Lübeck, Germany 23562; and Medizinische Klinik II (M.M.), University of Lübeck, Lübeck, Germany 23562
| | - Rebecca Oelkrug
- Department of Cell and Molecular Biology (C.S.H., L.H., M.M., B.V., J.M.), Karolinska Institutet, Stockholm, Sweden 17177; Institute of Experimental Endocrinology (C.S.H.), Charité-University Hospital Berlin, Berlin, Germany 13353; Center of Brain, Behavior and Metabolism CBBM/Medizinische Klinik I (L.H., R.O., G.B., J.M.), University of Lübeck, Lübeck, Germany 23562; and Medizinische Klinik II (M.M.), University of Lübeck, Lübeck, Germany 23562
| | - Moritz Meusel
- Department of Cell and Molecular Biology (C.S.H., L.H., M.M., B.V., J.M.), Karolinska Institutet, Stockholm, Sweden 17177; Institute of Experimental Endocrinology (C.S.H.), Charité-University Hospital Berlin, Berlin, Germany 13353; Center of Brain, Behavior and Metabolism CBBM/Medizinische Klinik I (L.H., R.O., G.B., J.M.), University of Lübeck, Lübeck, Germany 23562; and Medizinische Klinik II (M.M.), University of Lübeck, Lübeck, Germany 23562
| | - Björn Vennström
- Department of Cell and Molecular Biology (C.S.H., L.H., M.M., B.V., J.M.), Karolinska Institutet, Stockholm, Sweden 17177; Institute of Experimental Endocrinology (C.S.H.), Charité-University Hospital Berlin, Berlin, Germany 13353; Center of Brain, Behavior and Metabolism CBBM/Medizinische Klinik I (L.H., R.O., G.B., J.M.), University of Lübeck, Lübeck, Germany 23562; and Medizinische Klinik II (M.M.), University of Lübeck, Lübeck, Germany 23562
| | - Georg Brabant
- Department of Cell and Molecular Biology (C.S.H., L.H., M.M., B.V., J.M.), Karolinska Institutet, Stockholm, Sweden 17177; Institute of Experimental Endocrinology (C.S.H.), Charité-University Hospital Berlin, Berlin, Germany 13353; Center of Brain, Behavior and Metabolism CBBM/Medizinische Klinik I (L.H., R.O., G.B., J.M.), University of Lübeck, Lübeck, Germany 23562; and Medizinische Klinik II (M.M.), University of Lübeck, Lübeck, Germany 23562
| | - Jens Mittag
- Department of Cell and Molecular Biology (C.S.H., L.H., M.M., B.V., J.M.), Karolinska Institutet, Stockholm, Sweden 17177; Institute of Experimental Endocrinology (C.S.H.), Charité-University Hospital Berlin, Berlin, Germany 13353; Center of Brain, Behavior and Metabolism CBBM/Medizinische Klinik I (L.H., R.O., G.B., J.M.), University of Lübeck, Lübeck, Germany 23562; and Medizinische Klinik II (M.M.), University of Lübeck, Lübeck, Germany 23562
| |
Collapse
|
2
|
New insights into the trophic and cytoprotective effects of creatine in in vitro and in vivo models of cell maturation. Amino Acids 2016; 48:1897-911. [DOI: 10.1007/s00726-015-2161-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 12/17/2015] [Indexed: 12/19/2022]
|
3
|
Silveira ALBD, de Souza Miranda MF, Mecawi AS, Melo RL, Marassi MP, Matos da Silva AC, Antunes-Rodrigues J, Olivares EL. Sexual dimorphism in autonomic changes and in the renin-angiotensin system in the hearts of mice subjected to thyroid hormone-induced cardiac hypertrophy. Exp Physiol 2014; 99:868-80. [PMID: 24659612 DOI: 10.1113/expphysiol.2013.076976] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Based on the relevance of the renin-angiotensin system and the ongoing controversy regarding the role of the sympathetic nervous system in thyroid hormone-induced cardiac hypertrophy, the aim of the present study was to establish whether the putative difference in the degree of cardiac hypertrophy exhibited by males and females might be related to differences in the sympathetic-vagal balance and/or in the cardiac renin-angiotensin system in mice of different genders. Male and female mice (n = 117) were given 0.1 mg kg(-1) of triiodothyronine or normal saline each day for 10 days consecutively. At the end of that period, study of the heart rate variability, spectral analysis and histopathological examination were performed to assess the sympathetic-vagal balance and the diameter of cardiomyocytes. The cardiac levels of angiotensin I and II were also measured. Treatment with triiodothyronine induced a greater degree of cardiac hypertrophy in male (~73%) than in female mice (~42%). This difference was attributed to greater modulation of the sympathetic nervous system and higher levels of angiotensin I and II in male than in female mice. Our data indicate that thyroid hormone-induced cardiac hypertrophy was more intense in male mice due to the synergic effect of the sympathetic nervous system and the cardiac renin-angiotensin system.
Collapse
Affiliation(s)
- Anderson Luiz Bezerra da Silveira
- Multicenter Graduate Program in Physiological Sciences, Department of Physiological Sciences, Institute of Biology, Federal Rural University of Rio de Janeiro, Seropedica, Brazil
| | - Manuela França de Souza Miranda
- Graduate Program in Veterinary Medicine, Department of Physiological Sciences, Institute of Biology, Federal Rural University of Rio de Janeiro, Seropedica, Brazil
| | - André Souza Mecawi
- Department of Physiology, School of Medicine, Ribeirao Preto USP - São Paulo, Brazil
| | - Roberto Laureano Melo
- Multicenter Graduate Program in Physiological Sciences, Department of Physiological Sciences, Institute of Biology, Federal Rural University of Rio de Janeiro, Seropedica, Brazil
| | - Michelle Porto Marassi
- Multicenter Graduate Program in Physiological Sciences, Department of Physiological Sciences, Institute of Biology, Federal Rural University of Rio de Janeiro, Seropedica, Brazil
| | - Alba Cenélia Matos da Silva
- Multicenter Graduate Program in Physiological Sciences, Department of Physiological Sciences, Institute of Biology, Federal Rural University of Rio de Janeiro, Seropedica, Brazil
| | | | - Emerson Lopes Olivares
- Multicenter Graduate Program in Physiological Sciences, Department of Physiological Sciences, Institute of Biology, Federal Rural University of Rio de Janeiro, Seropedica, Brazil Graduate Program in Veterinary Medicine, Department of Physiological Sciences, Institute of Biology, Federal Rural University of Rio de Janeiro, Seropedica, Brazil
| |
Collapse
|
4
|
Oudman I, Clark JF, Brewster LM. The effect of the creatine analogue beta-guanidinopropionic acid on energy metabolism: a systematic review. PLoS One 2013; 8:e52879. [PMID: 23326362 PMCID: PMC3541392 DOI: 10.1371/journal.pone.0052879] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 11/23/2012] [Indexed: 11/19/2022] Open
Abstract
Background Creatine kinase plays a key role in cellular energy transport. The enzyme transfers high-energy phosphoryl groups from mitochondria to subcellular sites of ATP hydrolysis, where it buffers ADP concentration by catalyzing the reversible transfer of the high-energy phosphate moiety (P) between creatine and ADP. Cellular creatine uptake is competitively inhibited by beta-guanidinopropionic acid. This substance is marked as safe for human use, but the effects are unclear. Therefore, we systematically reviewed the effect of beta-guanidinopropionic acid on energy metabolism and function of tissues with high energy demands. Methods We performed a systematic review and searched the electronic databases Pubmed, EMBASE, the Cochrane Library, and LILACS from their inception through March 2011. Furthermore, we searched the internet and explored references from textbooks and reviews. Results After applying the inclusion criteria, we retrieved 131 publications, mainly considering the effect of chronic oral administration of beta-guanidinopropionic acid (0.5 to 3.5%) on skeletal muscle, the cardiovascular system, and brain tissue in animals. Beta-guanidinopropionic acid decreased intracellular creatine and phosphocreatine in all tissues studied. In skeletal muscle, this effect induced a shift from glycolytic to oxidative metabolism, increased cellular glucose uptake and increased fatigue tolerance. In heart tissue this shift to mitochondrial metabolism was less pronounced. Myocardial contractility was modestly reduced, including a decreased ventricular developed pressure, albeit with unchanged cardiac output. In brain tissue adaptations in energy metabolism resulted in enhanced ATP stability and survival during hypoxia. Conclusion Chronic beta-guanidinopropionic acid increases fatigue tolerance of skeletal muscle and survival during ischaemia in animal studies, with modestly reduced myocardial contractility. Because it is marked as safe for human use, there is a need for human data.
Collapse
Affiliation(s)
- Inge Oudman
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
5
|
|
6
|
Sestili P, Martinelli C, Bravi G, Piccoli G, Curci R, Battistelli M, Falcieri E, Agostini D, Gioacchini AM, Stocchi V. Creatine supplementation affords cytoprotection in oxidatively injured cultured mammalian cells via direct antioxidant activity. Free Radic Biol Med 2006; 40:837-49. [PMID: 16520236 DOI: 10.1016/j.freeradbiomed.2005.10.035] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2005] [Revised: 10/04/2005] [Accepted: 10/09/2005] [Indexed: 11/22/2022]
Abstract
A growing body of evidence suggests that creatine (Cr) might exert protective effects in a variety of pathologies where oxidative stress plays a concausal etiologic role; furthermore, it has been recently reported that Cr displays direct antioxidant activity in a cell-free setting. However, at present, no research has been specifically aimed to directly test the antioxidant potential of Cr on oxidatively injured cultured cells. Here, the effects of Cr were studied using cultured human promonocytic (U937) and endothelial (HUVEC) cells, and murine myoblasts (C2C12) exposed to H(2)O(2), tert-butylhydroperoxide (tB-OOH) and, in the case of U937 cells, peroxynitrite. Cr (0.1-10 mM) attenuated the cytotoxic effects caused by the oxidants in all the cell lines; under our conditions, cytoprotection was invariably associated with elevation of the intracellular fraction of Cr but it seemed to be unrelated to the levels of Cr phosphate (CrP); Cr did not affect the activity of catalase (CAT) and glutathione peroxidase (GpX), but it prevented H(2)O(2)- or tB-OOH-induced consumption of the nonprotein sulfhydryl (NPSH) pool in U937 and HUVEC cells; mass spectrometry experiments showed that a 136 MW molecule, which is likely to represent an oxidation by-product of Cr, formed in reaction buffers containing Cr and H(2)O(2) as well as in cellular extracts from H(2)O(2)- or tB-OOH- treated Cr-preloaded U937 cells; finally, Cr cytoprotection appeared to be unrelated to chelation of Fe(2+). In conclusion, it is suggested that Cr exerts a mild, although significant, antioxidant activity in living cells, via a mechanism depending on direct scavenging of reactive oxygen (in particular hydroxyl radical) and nitrogen species.
Collapse
Affiliation(s)
- Piero Sestili
- Istituto di Ricerca sull'Attività Motoria, Università degli Studi di Urbino Carlo Bo, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Queiroz MS, Shao Y, Berkich DA, Lanoue KF, Ismail-Beigi F. Thyroid hormone regulation of cardiac bioenergetics: role of intracellular creatine. Am J Physiol Heart Circ Physiol 2002; 283:H2527-33. [PMID: 12427598 DOI: 10.1152/ajpheart.00426.2002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effect of thyroid hormone (T(3)) on the content of myocardial creatine (Cr), Cr phosphate (CrP), and high-energy adenine nucleotides and on cardiac function was examined. In the hearts of control and T(3)-treated rats perfused in vitro, while "low" and "high" contractile work was performed, T(3) treatment resulted in a approximately 50% reduction in CrP, Cr, total Cr content (Cr + CrP), and in the CrP-to-Cr ratio. In addition, there was a slight fall in myocardial content of ATP and a large rise in calculated free ADP (fADP), resulting in a significant decrease in the ATP-to-fADP ratio in the hearts of hyperthyroid compared with euthyroid rats. Moreover, there was a substantial decrease in the level of ATP in hearts of T(3)-treated rats under high work conditions. Importantly, the ratio of cardiac work to oxygen consumption was not altered by thyroid status. Treatment with T(3) also resulted in an almost threefold reduction in the content of Na(+)/Cr transporter mRNA in the ventricular myocardium and skeletal muscle but not in the brain. We conclude with the following: 1) changes in the expression of the Na(+)/Cr transporter mRNA correlate with Cr + CrP in the myocardium; 2) hearts of hyperthyroid rats contain lower levels of ATP and higher levels of fADP under both low and high work conditions but no reduction in efficiency of work output; and 3) the reduction in Cr and ATP in hearts of hyperthyroid rats may be the basis for the reduced maximal work capacity of the hyperthyroid heart.
Collapse
Affiliation(s)
- Marcia Silva Queiroz
- Department of Medicine and Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106-4951, USA
| | | | | | | | | |
Collapse
|
8
|
Abstract
The goal of this review is to present a comprehensive survey of the many intriguing facets of creatine (Cr) and creatinine metabolism, encompassing the pathways and regulation of Cr biosynthesis and degradation, species and tissue distribution of the enzymes and metabolites involved, and of the inherent implications for physiology and human pathology. Very recently, a series of new discoveries have been made that are bound to have distinguished implications for bioenergetics, physiology, human pathology, and clinical diagnosis and that suggest that deregulation of the creatine kinase (CK) system is associated with a variety of diseases. Disturbances of the CK system have been observed in muscle, brain, cardiac, and renal diseases as well as in cancer. On the other hand, Cr and Cr analogs such as cyclocreatine were found to have antitumor, antiviral, and antidiabetic effects and to protect tissues from hypoxic, ischemic, neurodegenerative, or muscle damage. Oral Cr ingestion is used in sports as an ergogenic aid, and some data suggest that Cr and creatinine may be precursors of food mutagens and uremic toxins. These findings are discussed in depth, the interrelationships are outlined, and all is put into a broader context to provide a more detailed understanding of the biological functions of Cr and of the CK system.
Collapse
Affiliation(s)
- M Wyss
- F. Hoffmann-La Roche, Vitamins and Fine Chemicals Division, Basel, Switzerland.
| | | |
Collapse
|
9
|
Wyss M, Felber S, Skladal D, Koller A, Kremser C, Sperl W. The therapeutic potential of oral creatine supplementation in muscle disease. Med Hypotheses 1998; 51:333-6. [PMID: 9824841 DOI: 10.1016/s0306-9877(98)90058-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The decrease in intracellular creatine concentration observed in a number of muscle diseases may deplete energy homeostasis and may, therefore, be one of the factors determining and/or aggravating muscle weakness and degeneration. Two hypotheses are put forward in the present communication to explain: (i) the mechanisms leading to the disturbances in creatine metabolism found in various muscle diseases; and (ii) the potential of oral creatine supplementation in alleviating the clinical symptoms.
Collapse
Affiliation(s)
- M Wyss
- Department of Transplant Surgery, University of Innsbruck, Austria.
| | | | | | | | | | | |
Collapse
|
10
|
Hiel H, Happe HK, Warr WB, Morley BJ. Regional distribution of a creatine transporter in rat auditory brainstem: an in-situ hybridization study. Hear Res 1996; 98:29-37. [PMID: 8880179 DOI: 10.1016/0378-5955(96)00046-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The expression of an mRNA encoding a creatine transporter (CRT1) was investigated in the rat auditory system under ambient sound conditions, using radiolabeled and non-radiolabeled oligonucleotide in-situ hybridization. The results indicated that CRT1 mRNA is widely distributed in auditory nuclei, including the fusiform and deep layers of the dorsal cochlear nucleus, the ventral cochlear nucleus, the superior olivary complex, the nuclei of the lateral lemniscus and the inferior colliculus. The molecular layer of the dorsal cochlear nucleus and the medial geniculate have low levels of label. Creatine provides cells with a reservoir of high-energy phosphate. Neurons do not synthesize creatine but accumulate it by a transport mechanism, which is probably the limiting step in the regulation of intracellular creatine. Therefore, the quantity of transporter expressed may reflect the utilization of creatine and could serve as an in-vitro indicator of endogenous high-energy metabolism in some cells. Although most auditory nuclei express CRT1 mRNA, the quantity of CRT1 mRNA varies among auditory nuclei, indicating that many auditory nuclei have high and fluctuating energy requirements. The level of CRT1 transcript or protein may be regulated by chronic metabolic changes in the auditory system that may occur, for example, with damage to the acoustic organ or the aging process.
Collapse
Affiliation(s)
- H Hiel
- Neurochemistry Laboratory, Boys Town National Research Hospital, Omaha, NE 68131, USA
| | | | | | | |
Collapse
|
11
|
Odoom JE, Kemp GJ, Radda GK. The regulation of total creatine content in a myoblast cell line. Mol Cell Biochem 1996; 158:179-88. [PMID: 8817480 DOI: 10.1007/bf00225844] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Total cellular creatine content is an important bioenergetic parameter in skeletal muscle. To understand its regulation we investigated creatine transport and accumulation in the G8 cultured skeletal myoblast line. Like other cell types, these contain a creatine transporter, whose activity, measured using a radiolabelling technique, was saturable (Km = 110 +/- 25 microM) and largely dependent on extracellular [Na+]. To study sustained influences on steady state creatine concentration we measured total cellular creatine content using a fluorimetric method in 48 h incubations. We found that the total cellular creatine content was relatively independent of extracellular creatine concentration, consistent with high affinity sodium-dependent uptake balanced by slow passive efflux. Accordingly, in creatine-free incubations net creatine efflux was slow (5 +/- 1% of basal creatine content per day over 6 days), while creatine content in 48 h incubations was reduced by 28 +/- 13% of control by the Na+, K(+)-ATPase inhibitor ouabain. Creatine accumulation after 48 h was stimulated by treatment with the mixed alpha- and beta-adrenergic agonist noradrenaline, the beta-adrenergic agonist isoproterenol, the beta 2-agonist clenbuterol and the cAMP analogue N6,2'-O-dibutyryladenosine 3',5'-cyclic monophosphate, but was unaffected by the alpha 1 adrenergic agonist methoxamine. The noradrenaline enhancement of creatine accumulation at 48 h was inhibited by the mixed alpha- and beta-antagonist labetalol and by the beta-antagonist propranolol, but was unaffected by the alpha 2 antagonist phentolamine; greater inhibition was caused by the beta 2 antagonist butoxamine than the beta 1 antagonist atenolol. Creatine accumulation at 48 h was increased to 230 +/- 6% of control by insulin and by 140 +/- 13% by IGF-I (both at 3 nM). Creatine accumulation at 48 h was also increased to 280 +/- 40% of control by 3,3',5-triiodothyronine (at 70 microM) and to 220 +/- 35% of control by amylin (60 nM). As 3,3', 5-triiodothyronine, amylin and isoproterenol all stimulate the Na+, K(+)-ATPase, we suggest that they stimulate Na(+)-creatine cotransport indirectly by increasing the transmembrane [Na+] concentration gradient and membrane potential.
Collapse
Affiliation(s)
- J E Odoom
- Department of Biochemistry, University of Oxford, U.K
| | | | | |
Collapse
|
12
|
Wyss M, Wallimann T. Creatine metabolism and the consequences of creatine depletion in muscle. Mol Cell Biochem 1994; 133-134:51-66. [PMID: 7808465 DOI: 10.1007/bf01267947] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Currently, considerable research activities are focussing on biochemical, physiological and pathological aspects of the creatine kinase (CK)-phosphorylcreatine (PCr)-creatine (Cr) system (for reviews see [1,2]), but only little effort is directed towards a thorough investigation of Cr metabolism as a whole. However, a detailed knowledge of Cr metabolism is essential for a deeper understanding of bioenergetics in general and, for example, of the effects of muscular dystrophies, atrophies, CK deficiencies (e.g. in transgenic animals) or Cr analogues on the energy metabolism of the tissues involved. Therefore, the present article provides a short overview on the reactions and enzymes involved in Cr biosynthesis and degradation, on the organization and regulation of Cr metabolism within the body, as well as on the metabolic consequences of 3-guanidinopropionate (GPA) feeding which is known to induce a Cr deficiency in muscle. In addition, the phenotype of muscles depleted of Cr and PCr by GPA feeding is put into context with recent investigations on the muscle phenotype of 'gene knockout' mice deficient in the cytosolic muscle-type M-CK.
Collapse
Affiliation(s)
- M Wyss
- Swiss Federal Institute of Technology, ETH Hönggerberg, Zürich
| | | |
Collapse
|