1
|
de Man AM, Stoppe C, Koekkoek KW, Briassoulis G, Subasinghe LS, Cobilinschi C, Deane AM, Manzanares W, Grințescu I, Mirea L, Roshdy A, Cotoia A, Bear DE, Boraso S, Fraipont V, Christopher KB, Casaer MP, Gunst J, Pantet O, Elhadi M, Bolondi G, Forceville X, Angstwurm MW, Gurjar M, Biondi R, van Zanten AR, Berger MM. What do we know about micronutrients in critically ill patients? A narrative review. JPEN J Parenter Enteral Nutr 2025; 49:33-58. [PMID: 39555865 PMCID: PMC11717498 DOI: 10.1002/jpen.2700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 09/03/2024] [Accepted: 10/07/2024] [Indexed: 11/19/2024]
Abstract
Micronutrient (MN) status alterations (both depletion and deficiency) are associated with several complications and worse outcomes in critically ill patients. On the other side of the spectrum, improving MN status has been shown to be a potential co-adjuvant therapy. This review aims to collect existing data to better guide research in the critical care setting. This narrative review was conducted by the European Society of Intensive Care Medicine Feeding, Rehabilitation, Endocrinology, and Metabolism MN group. The primary objective was to identify studies focusing on individual MNs in critically ill patients, selecting the MNs that appear to be most relevant and most frequently investigated in the last decade: A, B1, B2, B3, B6, folate, C, D, E, copper, iron, selenium, zinc, and carnitine. Given the limited number of interventional studies for most MNs, observational studies were included. For each selected MN, the review summarizes the main form and functions, special needs and risk factors, optimal treatment strategies, pharmacological dosing, and clinical implications all specific to critically ill patients. A rigorous rebalancing of research strategies and priorities is needed to improve clinical practice. An important finding is that high-dose monotherapy of MNs is not recommended. Basal daily needs must be provided, with higher doses in diseases with known higher needs, and identified deficiencies treated. Finally, the review provides a list of ongoing trials on MNs in critically ill patients and identifies a priority list of future research topics.
Collapse
Affiliation(s)
- Angelique M.E. de Man
- Department of Intensive Care; Amsterdam Cardiovascular Sciences, Amsterdam UMClocation Vrije UniversiteitAmsterdamthe Netherlands
| | - Christian Stoppe
- University Hospital Wuerzburg, Department of Anaesthesiology, Intensive Care, Emergency, and Pain MedicineWuerzburgGermany
| | | | - George Briassoulis
- Postgraduate Program, Emergency and Intensive Care in Children Adolescents and Young Adults, School of MedicineUniversity of CreteHeraklionGreece
| | - Lilanthi S.D.P. Subasinghe
- Head of the Department ‐ Division of Intensive Care, University HospitalGeneral Sir John Kotelawala Defence UniversityColomboSri Lanka
| | - Cristian Cobilinschi
- Department of Anesthesiology and Intensive Care II“Carol Davila” University of Medicine and PharmacyBucharestRomania
- Department of Anesthesiology and Intensive Care I, Clinical Emergency Hospital of BucharestBucharestRomania
| | - Adam M. Deane
- Department of Critical Care, Melbourne Medical SchoolUniversity of MelbourneParkvilleVicAustralia
| | - William Manzanares
- Department of Critical Care, Hospital de Clínicas (University Hospital)Faculty of MedicineUdelaRMontevideoUruguay
| | - Ioana Grințescu
- Department of Anesthesiology and Intensive Care II“Carol Davila” University of Medicine and PharmacyBucharestRomania
- Department of Anesthesiology and Intensive Care I, Clinical Emergency Hospital of BucharestBucharestRomania
| | - Liliana Mirea
- Department of Anesthesiology and Intensive Care II“Carol Davila” University of Medicine and PharmacyBucharestRomania
- Department of Anesthesiology and Intensive Care I, Clinical Emergency Hospital of BucharestBucharestRomania
| | - Ashraf Roshdy
- Critical Care Medicine Department, Faculty of MedicineAlexandria UniversityAlexandriaEgypt
| | - Antonella Cotoia
- Department of Critical CareUniversity Hospital of FoggiaFoggiaItaly
| | - Danielle E. Bear
- Department of Nutritional Sciences, School of Life Course and Population SciencesKing's College LondonLondonUK
- Department of Nutrition and Dietetics and Department of Critical CareGuy's and St Thomas’ NHS Foundation TrustLondonUK
| | - Sabrina Boraso
- General and Neurosurgical Intensive Care Unit, Ospedale dell'AngeloMestre‐VeneziaItaly
| | | | - Kenneth B. Christopher
- Channing Division of Network Medicine, Brigham and Women's HospitalBostonUSA
- Division of Renal Medicine, Brigham and Women's HospitalBostonUSA
| | - Michael P. Casaer
- Department of Cellular and Molecular Medicine, Laboratory of Intensive Care MedicineKU LeuvenLeuvenBelgium
- Intensive Care MedicineUZ LeuvenBelgium
| | - Jan Gunst
- Department of Cellular and Molecular Medicine, Laboratory of Intensive Care MedicineKU LeuvenLeuvenBelgium
- Intensive Care MedicineUZ LeuvenBelgium
| | - Olivier Pantet
- Department of Intensive Care MedicineUniversity Hospital of LausanneLausanneSwitzerland
| | | | - Giuliano Bolondi
- Anesthesia and Intensive Care Unit, Ospedale BufaliniCesena (FC)Italy
| | - Xavier Forceville
- Inserm, CIC 1414 (Centre d′ Investigation Clinique de Rennes)Univ Rennes, CHU RennesRennesF‐35000France
| | | | - Mohan Gurjar
- Department of Critical Care MedicineSanjay Gandhi Post Graduate Institute of Medical SciencesIndia
| | | | - Arthur R.H. van Zanten
- Department of Intensive Care Medicine, Gelderse Vallei Hospital, Ede, the Netherlands; Wageningen University & Research, Division of Human Nutrition and HealthWageningenthe Netherlands
| | - Mette M. Berger
- Faculty of Biology and MedicineLausanne UniversityLausanneSwitzerland
| | | |
Collapse
|
2
|
Altered Serum Acylcarnitines Profile after a Prolonged Stay in Intensive Care. Nutrients 2022; 14:nu14051122. [PMID: 35268097 PMCID: PMC8912811 DOI: 10.3390/nu14051122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/23/2022] [Accepted: 03/04/2022] [Indexed: 11/16/2022] Open
Abstract
A stay in intensive care unit (ICU) exposes patients to a risk of carnitine deficiency. Moreover, acylated derivates of carnitine (acylcarnitines, AC) are biomarkers for metabolic mitochondrial dysfunction that have been linked to post-ICU disorders. This study aimed to describe the AC profile of survivors of a prolonged ICU stay (≥7 days). Survivors enrolled in our post-ICU clinic between September 2020 and July 2021 were included. Blood analysis was routinely performed during the days after ICU discharge, focusing on metabolic markers and including AC profile. Serum AC concentrations were determined by LC-MS/MS and were compared to the reference ranges (RR) established from serum samples of 50 non-hospitalized Belgian adults aged from 18 to 81 years. A total 162 patients (65.4% males, age 67 (58.7−73) years) survived an ICU stay of 9.7 (7.1−19.3) days and were evaluated 5 (3−8) days after discharge. Their AC profile was significantly different compared to RR, mostly in terms of short chain AC: the sum of C3, C4 and C5 derivates reached 1.36 (0.98−1.99) and 0.86 (0.66−0.99) µmol/L respectively (p < 0.001). Free carnitine (C0) concentration of survivors (46.06 (35.04−56.35) µmol/L) was similar to RR (43.64 (36.43−52.96) µmol/L) (p = 0.55). C0 below percentile 2.5 of RR was observed in 6/162 (3.7%) survivors. Their total AC/C0 ratio was 0.33 (0.22−0.42). A ratio above 0.4 was observed in 45/162 (27.8%) patients. In ICU survivors, carnitine deficiency was rare, but AC profile was altered and AC/C0 ratio was abnormal in more than 25%. The value of AC profile as a marker of post-ICU dysmetabolism needs further investigations.
Collapse
|
3
|
Sahebnasagh A, Avan R, Monajati M, Hashemi J, Habtemariam S, Negintaji S, Saghafi F. L-carnitine: Searching for New Therapeutic Strategy for Sepsis Management. Curr Med Chem 2021; 29:3300-3323. [PMID: 34789120 DOI: 10.2174/0929867328666211117092345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/19/2021] [Accepted: 08/21/2021] [Indexed: 11/22/2022]
Abstract
In this review, we discussed the biological targets of carnitine, its effects on immune function, and how L-carnitine supplementation may help critically ill patients. L-carnitine is a potent antioxidant. L-carnitine depletion has been observed in prolonged intensive care unit (ICU) stays, while L-carnitine supplementation has beneficial effects in health promotion and regulation of immunity. It is essential for the uptake of fatty acids into mitochondria. By inhibiting the ubiquitin-proteasome system, down-regulation of apelin receptor in cardiac tissue, and reducing β-oxidation of fatty acid, carnitine may decrease vasopressor requirement in septic shock and improve clinical outcomes of this group of patients. We also have an overview of animal and clinical studies that have been recruited for evaluating the beneficial effects of L-carnitine in the management of sepsis/ septic shock. Additional clinical data are required to evaluate the optimal daily dose and duration of L-carnitine supplementation.
Collapse
Affiliation(s)
- Adeleh Sahebnasagh
- Clinical Research Center, Department of Internal Medicine, North Khorasan University of Medical Sciences, Bojnurd. Iran
| | - Razieh Avan
- Department of Clinical Pharmacy, Medical Toxicology and Drug Abuse Research Center (MTDRC), Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand. Iran
| | - Mahila Monajati
- Department of Internal Medicine, Golestan University of Medical Sciences, Gorgan. Iran
| | - Javad Hashemi
- Department of Pathobiology and Laboratory Sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd. Iran
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories and Herbal Analysis Services, School of Science, University of Greenwich, Central Avenue, Chatham-Maritime, Kent ME4 4TB. United Kingdom
| | - Sina Negintaji
- Student Research Committee, School of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd. Iran
| | - Fatemeh Saghafi
- Department of Clinical Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shahid Sadoughi University of Medical Sciences, Yazd. Iran
| |
Collapse
|
4
|
Wesselink E, Koekkoek WAC, Grefte S, Witkamp RF, van Zanten ARH. Feeding mitochondria: Potential role of nutritional components to improve critical illness convalescence. Clin Nutr 2018; 38:982-995. [PMID: 30201141 DOI: 10.1016/j.clnu.2018.08.032] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 08/03/2018] [Accepted: 08/25/2018] [Indexed: 12/30/2022]
Abstract
Persistent physical impairment is frequently encountered after critical illness. Recent data point towards mitochondrial dysfunction as an important determinant of this phenomenon. This narrative review provides a comprehensive overview of the present knowledge of mitochondrial function during and after critical illness and the role and potential therapeutic applications of specific micronutrients to restore mitochondrial function. Increased lactate levels and decreased mitochondrial ATP-production are common findings during critical illness and considered to be associated with decreased activity of muscle mitochondrial complexes in the electron transfer system. Adequate nutrient levels are essential for mitochondrial function as several specific micronutrients play crucial roles in energy metabolism and ATP-production. We have addressed the role of B vitamins, ascorbic acid, α-tocopherol, selenium, zinc, coenzyme Q10, caffeine, melatonin, carnitine, nitrate, lipoic acid and taurine in mitochondrial function. B vitamins and lipoic acid are essential in the tricarboxylic acid cycle, while selenium, α-tocopherol, Coenzyme Q10, caffeine, and melatonin are suggested to boost the electron transfer system function. Carnitine is essential for fatty acid beta-oxidation. Selenium is involved in mitochondrial biogenesis. Notwithstanding the documented importance of several nutritional components for optimal mitochondrial function, at present, there are no studies providing directions for optimal requirements during or after critical illness although deficiencies of these specific micronutrients involved in mitochondrial metabolism are common. Considering the interplay between these specific micronutrients, future research should pay more attention to their combined supply to provide guidance for use in clinical practise. REVISION NUMBER: YCLNU-D-17-01092R2.
Collapse
Affiliation(s)
- E Wesselink
- Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| | - W A C Koekkoek
- Department of Intensive Care Medicine, Gelderse Vallei Hospital, Willy Brandtlaan 10, 6716, Ede, The Netherlands.
| | - S Grefte
- Human and Animal Physiology, Wageningen University, De Elst 1, 6708 DW, Wageningen, The Netherlands.
| | - R F Witkamp
- Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| | - A R H van Zanten
- Department of Intensive Care Medicine, Gelderse Vallei Hospital, Willy Brandtlaan 10, 6716, Ede, The Netherlands.
| |
Collapse
|
5
|
Oami T, Oshima T, Hattori N, Teratani A, Honda S, Yoshida T, Oda S. l-carnitine in critically ill patients—a case series study. RENAL REPLACEMENT THERAPY 2018. [DOI: 10.1186/s41100-018-0158-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
6
|
Abstract
PURPOSE OF REVIEW New insight in mitochondrial physiology has highlighted the importance of mitochondrial dysfunction in the metabolic and neuroendocrine changes observed in patients presenting with chronic critical illness. This review highlights specifically the importance of carnitine status in this particular patient population and its impact on beta-oxidation and mitochondrial function. RECENT FINDINGS The main function of carnitine is long chain fatty acid esterification and transport through the mitochondrial membrane. Carnitine depletion should be suspected in critically ill patients with risk factors such as prolonged continuous renal replacement therapy or chronic parenteral nutrition, and evidence of beta-oxidation impairments such as inappropriate hypertriglyceridemia or hyperlactatemia. When fatty acid oxidation is impaired, acyl-CoAs accumulate and deplete the CoA intramitochondrial pool, hence causing a generalized mitochondrial dysfunction and multiorgan failure, with clinical consequences such as muscle weakness, rhabdomyolysis, cardiomyopathy, arrhythmia or sudden death. In such situations, carnitine plasma levels should be measured along with a complete assessment of plasma amino acid, plasma acylcarnitines and urinary organic acid analysis. Supplementation should be initiated if below normal levels (20 μmol/l) of carnitine are observed. In the absence of current guidelines, we recommend an initial supplementation of 0.5-1 g/day. SUMMARY Metabolic modifications associated with chronic critical illness are just being explored. Carnitine deficiency in critically ill patients is one aspect of these profound and complex changes associated with prolonged stay in ICU. It is readily measurable in the plasma and can easily be substituted if needed, although guidelines are currently missing.
Collapse
Affiliation(s)
- Luisa Bonafé
- aCenter for Molecular Diseases, Lausanne University Hospital bAdult Intensive Care & Burns, Lausanne University Hospital, Lausanne, Switzerland cDivision of Endocrinology, Diabetes, and Bone Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | | | | |
Collapse
|
7
|
Serum carnitine levels and levocarnitine supplementation in institutionalized Huntington's disease patients. Neurol Sci 2013; 34:93-8. [PMID: 22294053 DOI: 10.1007/s10072-012-0952-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 01/13/2012] [Indexed: 12/17/2022]
Abstract
Along with antioxidant properties, carnitine is an important regulator of lipid metabolism in humans. While beneficial effects of carnitine have been demonstrated in animal models of Huntington's disease (HD), metabolism of carnitine has not been studied in humans with this illness. In this retrospective database review from 23 patients admitted to a HD-specialized nursing home unit, we found a relatively high prevalence of hypocarnitinemia (6 cases, 26%). Our review suggests that catabolism and chronic valproate use predisposed our patients to develop hypocarnitinemia. The patients with low serum carnitine levels who received levocarnitine supplementation, during a mean period of 7.3 months, showed improvement in motor, cognitive and behavioral measures. We hypothesize that observed improvement related to the resolution of reversible metabolic encephalopathy and myopathy associated with secondary carnitine deficiency. In conclusion, notwithstanding its limitations, this is the first study to report measurements of carnitine levels in HD patients, revealing relatively high prevalence of hypocarnitinemia in our population. Our findings suggest that HD patients with hypocarnitinemia may benefit from low-dose levocarnitine supplementation. Further studies of carnitine metabolism and supplementation in HD patients are warranted.
Collapse
|
8
|
Flanagan JL, Simmons PA, Vehige J, Willcox MD, Garrett Q. Role of carnitine in disease. Nutr Metab (Lond) 2010; 7:30. [PMID: 20398344 PMCID: PMC2861661 DOI: 10.1186/1743-7075-7-30] [Citation(s) in RCA: 388] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 04/16/2010] [Indexed: 02/06/2023] Open
Abstract
Carnitine is a conditionally essential nutrient that plays a vital role in energy production and fatty acid metabolism. Vegetarians possess a greater bioavailability than meat eaters. Distinct deficiencies arise either from genetic mutation of carnitine transporters or in association with other disorders such as liver or kidney disease. Carnitine deficiency occurs in aberrations of carnitine regulation in disorders such as diabetes, sepsis, cardiomyopathy, malnutrition, cirrhosis, endocrine disorders and with aging. Nutritional supplementation of L-carnitine, the biologically active form of carnitine, is ameliorative for uremic patients, and can improve nerve conduction, neuropathic pain and immune function in diabetes patients while it is life-saving for patients suffering primary carnitine deficiency. Clinical application of carnitine holds much promise in a range of neural disorders such as Alzheimer's disease, hepatic encephalopathy and other painful neuropathies. Topical application in dry eye offers osmoprotection and modulates immune and inflammatory responses. Carnitine has been recognized as a nutritional supplement in cardiovascular disease and there is increasing evidence that carnitine supplementation may be beneficial in treating obesity, improving glucose intolerance and total energy expenditure.
Collapse
|
9
|
|
10
|
Broderick TL. Hypocarnitinaemia Induced by Sodium Pivalate in the Rat is Associated with Left Ventricular Dysfunction and Impaired Energy Metabolism. Drugs R D 2006; 7:153-61. [PMID: 16752941 DOI: 10.2165/00126839-200607030-00002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Carnitine is a naturally occurring compound that is essential in energy metabolism of the mammalian heart. In addition to its essential role in facilitating beta-oxidation, carnitine eliminates excess toxic acyl residues and regulates the mitochondrial acetyl coenzyme A (CoA)/CoA ratio. Thus, it is not surprising that patients with carnitine deficiency syndromes exhibit defects in energy metabolism and in some cases demonstrate left ventricular dysfunction. Pivalic acid is commonly used to create prodrugs, such as pivampicillin and pivmecillinam, to facilitate enteral absorption and increase oral bioavailability. Pivalic acid released from the drug following absorption readily forms an ester with carnitine, which is then excreted as pivaloylcarnitine. Sustained loss of carnitine in the form of this ester induces a state of carnitine deficiency, exemplified by low plasma and tissue carnitine content. This review examines the effects in the rat of short- and long-term sodium pivalate treatment on: (1) cardiac carnitine content; (2) in vitro mechanical function; (3) markers of glycolytic and fatty acid metabolism; and (4) energy substrate metabolism. Treatment with sodium pivalate induces a gradual loss of cardiac carnitine content for up to 12 weeks. Doubling the duration of treatment is not associated with any further decrease in cardiac carnitine content. While heart function following short-term treatment (2 weeks) is normal under aerobic conditions, impaired recovery of function following ischaemia is seen. In contrast, long-term treatment (11-28 weeks) is associated with impaired heart function, which is dependent on workload and substrate availability. Impaired heart function is also associated with reductions in activity of 3-hydroxyacyl CoA dehydrogenase and rates of fatty acid oxidation. However, to maintain adenosine triphosphate production, glucose metabolism, expressed as hexokinase activity and glucose oxidation, is increased in carnitine-deficient hearts. Hearts from sodium pivalate-treated animals demonstrate a cardiomyopathy that is dependent on duration of treatment, workload and substrate supply. This model of hypocarnitinaemia may thus be useful to study the metabolic and cardiac consequences of carnitine-deficiency syndromes.
Collapse
Affiliation(s)
- Tom L Broderick
- Department of Physiology, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, Arizona 85308, USA.
| |
Collapse
|
11
|
Baker H, DeAngelis B, Orlando J, Correia J. Cardiac carnitine leakage is promoted by cardiomyopathy. Nutrition 2005; 21:348-50. [PMID: 15797677 DOI: 10.1016/j.nut.2004.07.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2004] [Accepted: 07/10/2004] [Indexed: 11/19/2022]
Abstract
OBJECTIVE We investigated whether a damaged heart with cardiomyopathy (CM) influences cardiac-stored carnitines. METHODS A sensitive, specific, carnitine-requiring yeast was used to determine blood carnitine concentration in 116 healthy subjects. For comparison with blood carnitine concentrations from patients with CM, we selected 33 male patients, ages 29 to 67 y, with evidence of CM and 24 male patients, ages 31 to 66 y, with no CM as categorized by cardiac catheterization. RESULTS During catheterization, significantly higher concentrations of arterial blood levels of carnitines leaked from hearts of patients specifically with CM; no arterial blood carnitines leaked from hearts of patients without CM. Venous blood carnitine concentration for all patients was within the normal range. Carnitine did not accumulate in venous blood and was not a source of large amounts of leaked blood carnitines in patients with CM. CONCLUSION CM causes leakage of carnitines from heart stores, possibly making cardiac tissue vulnerable to damage. We do not know whether cardiac carnitine leakage leads to CM or if established CM promotes cardiac carnitine leakage.
Collapse
Affiliation(s)
- Herman Baker
- Department of Preventive Medicine and Community Health and Medicine, New Jersey Medical School, Newark, New Jersey, USA.
| | | | | | | |
Collapse
|
12
|
Selimoglu MA, Aydogdu S, Yagci RV, Huseyinov A. Plasma and liver carnitine status of children with chronic liver disease and cirrhosis. Pediatr Int 2001; 43:391-5. [PMID: 11472585 DOI: 10.1046/j.1442-200x.2001.01423.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Carnitine is an essential cofactor in the transfer of long-chain fatty acids across the inner mitochondrial membrane for oxidation. As its synthesis is performed in the liver, alterations in carnitine metabolism is expected in liver diseases, especially in cirrhosis. METHODS In this study, we investigated plasma and liver carnitine concentrations of 68 children with chronic liver disease, 36 of whom had cirrhosis as well. Carnitine level was determined by enzymatic method. RESULTS Plasma and liver carnitine concentrations were not correlated. Mean plasma carnitine level of cirrhotic children was significantly lower than that of the control group (P<0. 0001). While there was no difference between liver carnitine concentrations of children with chronic liver disease and cirrhosis (P>0.05), mean plasma level of cirrhotics were lower (P<0.05). Plasma carnitine was correlated with albumin, triglyceride and gamma glutamyl transpeptidase (GGT) in patients with chronic liver disease (P<0.05). Liver carnitine was correlated with GGT in cirrhotic patients (P<0.005). Children with malnutrition had higher plasma and liver carnitine levels (P<0.05). The highest plasma and liver carnitine levels were detected in children with biliary atresia and criptogenic cirrhosis, respectively. Both the lowest plasma and liver carnitine levels were detected in Wilson's disease. CONCLUSION Children with cirrhosis have low plasma carnitine concentrations. This finding is prominent in children with Wilson's disease. As carnitine is an essential factor in lipid metabolism, the carnitine supplementation for patients with cirrhosis in childhood, especially with Wilson's disease, seems to be mandatory.
Collapse
Affiliation(s)
- M A Selimoglu
- Ege University, Department of Pediatric Gastroenterology and Nutrition, Izmir, Turkey.
| | | | | | | |
Collapse
|
13
|
Abstract
Hepatobiliary dysfunction associated with the use of total parenteral nutrition is a commonly recognized phenomenon occurring in up to 90% of patients on long-term therapy. Reasons for these abnormalities, both supported by research as well as theoretical possibilities are explored. Practical guidelines considered useful in documenting, preventing and treating serious hepatic consequences of total parenteral nutrition are discussed. The role of combined liver and small bowel transplantation as treatment for select patients is also reviewed.
Collapse
Affiliation(s)
- M K Porayko
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, Minnesota 55905, USA
| |
Collapse
|
14
|
Abstract
The liver is a central organ for carnitine metabolism and for the distribution of carnitine to the body. It is therefore not surprising that carnitine metabolism is impaired in patients and experimental animals with certain types of chronic liver disease. In this review, the changes in carnitine metabolism associated with chronic liver disease and the role of carnitine as a therapeutic agent in some of these conditions are discussed.
Collapse
Affiliation(s)
- S Krähenbühl
- Department of Internal Medicine, University Hospital, Zurich, Switzerland
| |
Collapse
|
15
|
Hyltander A, Sandström R, Lundholm K. Metabolic effects of structured triglycerides in humans. Nutr Clin Pract 1995; 10:91-7. [PMID: 7616934 DOI: 10.1177/011542659501000391] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
This review considers the development of structured triglycerides as an IV nutrient source. The replacement of a portion of long-chain fatty acids in the conventional fat emulsion triglycerides confers favorable qualities on these lipids and renders them attractive as an energy source, particularly in critically ill patients. This report considers the features of structured triglycerides that may make them competitive or even more efficient as an energy source compared with conventional fat emulsions.
Collapse
|
16
|
Briones ER, Iber FL. Liver and biliary tract changes and injury associated with total parenteral nutrition: pathogenesis and prevention. J Am Coll Nutr 1995; 14:219-28. [PMID: 8586769 DOI: 10.1080/07315724.1995.10718499] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Total parenteral nutrition (TPN), now widely used, is successful in preventing and reversing malnutrition in individuals with various diseases and conditions. However, hepatic and biliary complications of TPN are encountered in both adult and pediatric patients. Certain complications, such as sepsis and TPN-associated cholestasis, occur more frequently in very young infants. Continuing problems commonly seen in adults are steatosis and steatonecrosis. Reasons for the development of these complications are multifactorial. Etiologies of hepatic complications, especially the role of deficiency/excess of nutrients in the pathogenesis of hepatobiliary disorders, are summarized. Complications caused by the duration of TPN are discussed with emphasis on prevention and management. Evidence now suggests that prompt enteral feeding, even in minimal amounts, may prevent many of the metabolic complications associated with TPN. TPN should be used only in amounts meeting needs and for a duration essential to survival.
Collapse
Affiliation(s)
- E R Briones
- Edward Hines Jr. Hospital, Department of Veterans Affairs, Hines, Illinois 60141, USA
| | | |
Collapse
|