1
|
Panteleev MA, Sveshnikova AN, Shakhidzhanov SS, Zamaraev AV, Ataullakhanov FI, Rumyantsev AG. The Ways of the Virus: Interactions of Platelets and Red Blood Cells with SARS-CoV-2, and Their Potential Pathophysiological Significance in COVID-19. Int J Mol Sci 2023; 24:17291. [PMID: 38139118 PMCID: PMC10743882 DOI: 10.3390/ijms242417291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
The hematological effects of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are important in COVID-19 pathophysiology. However, the interactions of SARS-CoV-2 with platelets and red blood cells are still poorly understood. There are conflicting data regarding the mechanisms and significance of these interactions. The aim of this review is to put together available data and discuss hypotheses, the known and suspected effects of the virus on these blood cells, their pathophysiological and diagnostic significance, and the potential role of platelets and red blood cells in the virus's transport, propagation, and clearance by the immune system. We pay particular attention to the mutual activation of platelets, the immune system, the endothelium, and blood coagulation and how this changes with the evolution of SARS-CoV-2. There is now convincing evidence that platelets, along with platelet and erythroid precursors (but not mature erythrocytes), are frequently infected by SARS-CoV-2 and functionally changed. The mechanisms of infection of these cells and their role are not yet entirely clear. Still, the changes in platelets and red blood cells in COVID-19 are significantly associated with disease severity and are likely to have prognostic and pathophysiological significance in the development of thrombotic and pulmonary complications.
Collapse
Affiliation(s)
- Mikhail A. Panteleev
- Department of Medical Physics, Physics Faculty, Lomonosov Moscow State University, 1 Leninskie Gory, 119991 Moscow, Russia
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Ministry of Healthcare of Russian Federation, 1 Samory Mashela, 117198 Moscow, Russia
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, 30 Srednyaya Kalitnikovskaya Str., 109029 Moscow, Russia
| | - Anastasia N. Sveshnikova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Ministry of Healthcare of Russian Federation, 1 Samory Mashela, 117198 Moscow, Russia
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, 30 Srednyaya Kalitnikovskaya Str., 109029 Moscow, Russia
- Faculty of Fundamental Physics and Chemical Engineering, Lomonosov Moscow State University, 1 Leninskie Gory, 119991 Moscow, Russia
| | - Soslan S. Shakhidzhanov
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Ministry of Healthcare of Russian Federation, 1 Samory Mashela, 117198 Moscow, Russia
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, 30 Srednyaya Kalitnikovskaya Str., 109029 Moscow, Russia
| | - Alexey V. Zamaraev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Ulitsa Vavilova, 119991 Moscow, Russia
- Faculty of Medicine, Lomonosov Moscow State University, 1 Leninskie Gory, 119991 Moscow, Russia
| | - Fazoil I. Ataullakhanov
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Ministry of Healthcare of Russian Federation, 1 Samory Mashela, 117198 Moscow, Russia
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, 30 Srednyaya Kalitnikovskaya Str., 109029 Moscow, Russia
- Moscow Institute of Physics and Technology, National Research University, 9 Institutskiy Per., 141701 Dolgoprudny, Russia
- Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd., Philadelphia, PA 19104, USA
| | - Aleksandr G. Rumyantsev
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Ministry of Healthcare of Russian Federation, 1 Samory Mashela, 117198 Moscow, Russia
| |
Collapse
|
2
|
Parra-Izquierdo I, Lakshmanan HHS, Melrose AR, Pang J, Zheng TJ, Jordan KR, Reitsma SE, McCarty OJT, Aslan JE. The Toll-Like Receptor 2 Ligand Pam2CSK4 Activates Platelet Nuclear Factor-κB and Bruton's Tyrosine Kinase Signaling to Promote Platelet-Endothelial Cell Interactions. Front Immunol 2021; 12:729951. [PMID: 34527000 PMCID: PMC8435771 DOI: 10.3389/fimmu.2021.729951] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/12/2021] [Indexed: 12/24/2022] Open
Abstract
Circulating platelets establish a variety of immunological programs and orchestrate inflammatory responses at the endothelium. Platelets express the innate immunity family of Toll-like receptors (TLRs). While TLR2/TLR1 ligands are known to activate platelets, the effects of TLR2/TLR6 ligands on platelet function remain unclear. Here, we aim to determine whether the TLR2/TLR6 agonists Pam2CSK4 and FSL-1 activate human platelets. In addition, human umbilical vein endothelial cells (HUVECs) and platelets were co-cultured to analyze the role of platelet TLR2/TLR6 on inflammation and adhesion to endothelial cells. Pam2CSK4, but not FSL-1, induced platelet granule secretion and integrin αIIbβ3 activation in a concentration-dependent manner. Moreover, Pam2CSK4 promoted platelet aggregation and increased platelet adhesion to collagen-coated surfaces. Mechanistic studies with blocking antibodies and pharmacologic inhibitors demonstrated that the TLR2/Nuclear factor-κB axis, Bruton’s-tyrosine kinase, and a secondary ADP feedback loop are involved in Pam2CSK4-induced platelet functional responses. Interestingly, Pam2CSK4 showed cooperation with immunoreceptor tyrosine-based activation motif (ITAM)-mediated signaling to enhance platelet activation. Finally, the presence of platelets increased inflammatory responses in HUVECs treated with Pam2CSK4, and platelets challenged with Pam2CSK4 showed increased adhesion to HUVECs under static and physiologically relevant flow conditions. Herein, we define a functional role for platelet TLR2-mediated signaling, which may represent a druggable target to dampen excessive platelet activation in thrombo-inflammatory diseases.
Collapse
Affiliation(s)
- Iván Parra-Izquierdo
- Knight Cardiovascular Institute and Division of Cardiology, School of Medicine, Oregon Health & Science University, Portland, OR, United States.,Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Hari Hara Sudhan Lakshmanan
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Alexander R Melrose
- Knight Cardiovascular Institute and Division of Cardiology, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Jiaqing Pang
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Tony J Zheng
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Kelley R Jordan
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Stéphanie E Reitsma
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Owen J T McCarty
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, United States.,Division of Hematology and Medical Oncology, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Joseph E Aslan
- Knight Cardiovascular Institute and Division of Cardiology, School of Medicine, Oregon Health & Science University, Portland, OR, United States.,Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, United States.,Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
3
|
Juffermans NP, van den Brom CE, Kleinveld DJB. Targeting Endothelial Dysfunction in Acute Critical Illness to Reduce Organ Failure. Anesth Analg 2020; 131:1708-1720. [PMID: 33186159 DOI: 10.1213/ane.0000000000005023] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
During hyperinflammatory conditions that can occur in acute critical illness, such as shock or hypoperfusion, inflammatory mediators activate the endothelium, fueling a proinflammatory host-response as well as procoagulant processes. These changes result in shedding of the glycocalyx, endothelial hyperpermeability, edema formation, and lead to disturbed microcirculatory perfusion and organ failure. Different fluid strategies that are used in shock may have differential effects on endothelial integrity. Collectively, low protein content fluids seem to have negative effects on the endothelial glycocalyx, aggravating endothelial hyperpermeability, whereas fluids containing albumin or plasma proteins may be superior to normal saline in protecting the glycocalyx and endothelial barrier function. Targeting the endothelium may be a therapeutic strategy to limit organ failure, which hitherto has not received much attention. Treatment targets aimed at restoring the endothelium should focus on maintaining glycocalyx function and/or targeting coagulation pathways or specific endothelial receptors. Potential treatments could be supplementing glycocalyx constituents or inhibiting glycocalyx breakdown. In this review, we summarize mechanisms of endothelial dysfunction during acute critical illness, such as the systemic inflammatory response, shedding of the glycocalyx, endothelial activation, and activation of coagulation. In addition, this review focuses on the effects of different fluid strategies on endothelial permeability. Also, potential mechanisms for treatment options to reduce endothelial hyperpermeability with ensuing organ failure are evaluated. Future research is needed to elucidate these pathways and to translate these data to the first human safety and feasibility trials.
Collapse
Affiliation(s)
- Nicole P Juffermans
- From the Department of Intensive Care, Onze Lieve Vrouwe Gasthuis, Amsterdam, the Netherlands.,Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Charissa E van den Brom
- Department of Anesthesiology, Amsterdam UMC, VU Amsterdam, Amsterdam, the Netherlands.,Experimental Laboratory for Vital Signs, Amsterdam UMC, VU Amsterdam, Amsterdam, the Netherlands
| | - Derek J B Kleinveld
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.,Department of Intensive Care Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
4
|
Nagao RJ, Marcu R, Wang Y, Wang L, Arakawa C, DeForest C, Chen J, López JA, Zheng Y. Transforming Endothelium with Platelet-Rich Plasma in Engineered Microvessels. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1901725. [PMID: 31871858 PMCID: PMC6918119 DOI: 10.1002/advs.201901725] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/23/2019] [Indexed: 05/09/2023]
Abstract
Vascularization remains an obstacle when engineering complex tissues for regeneration and disease modeling. Although progress has been made in recreating 3D vascular structures, challenges exist in generating a mature, functional endothelium. It is demonstrated that perfusing engineered microvessels with platelet-rich plasma, a critical homeostatic component in vivo that is often overlooked in vitro, substantially transforms the endothelium, both maturing endothelial cells and improving functionality in 24 h. Platelets readily adhered to the exposed collagen-I substrate through small gaps within engineered vessels without forming thrombi. The adherent platelets improve barrier function, enhance endothelial glycolysis, reduce thrombogenicity, and enrich smooth muscle cell growth surrounding the endothelium. These findings demonstrate that platelets are essential to the function of endothelium during vascular maturation and remodeling. This study sheds light on a potential strategy to engineer stable, implantable vascular networks.
Collapse
Affiliation(s)
- Ryan J. Nagao
- Department of BioengineeringUniversity of WashingtonSeattleWA98195USA
| | - Raluca Marcu
- Department of BioengineeringUniversity of WashingtonSeattleWA98195USA
| | - Yuliang Wang
- Department of Computer Science and EngineeringUniversity of WashingtonSeattleWA98195USA
- Institute for Stem Cell and Regenerative MedicineUniversity of WashingtonSeattleWA98195USA
| | - Lu Wang
- Department of Environmental and Occupational Health SciencesUniversity of WashingtonSeattleWA98105‐6099USA
| | - Chris Arakawa
- Department of BioengineeringUniversity of WashingtonSeattleWA98195USA
| | - Cole DeForest
- Department of BioengineeringUniversity of WashingtonSeattleWA98195USA
- Institute for Stem Cell and Regenerative MedicineUniversity of WashingtonSeattleWA98195USA
- Department of Chemical EngineeringUniversity of WashingtonSeattleWA98195USA
| | - Junmei Chen
- Bloodworks Northwest Research InstituteSeattleWA98102USA
| | - José A. López
- Department of Chemical EngineeringUniversity of WashingtonSeattleWA98195USA
- Department of MedicineUniversity of WashingtonSeattleWA98109USA
| | - Ying Zheng
- Department of BioengineeringUniversity of WashingtonSeattleWA98195USA
- Institute for Stem Cell and Regenerative MedicineUniversity of WashingtonSeattleWA98195USA
| |
Collapse
|
5
|
Abstract
This overview article for the Comprehensive Physiology collection is focused on detailing platelets, how platelets respond to various stimuli, how platelets interact with their external biochemical environment, and the role of platelets in physiological and pathological processes. Specifically, we will discuss the four major functions of platelets: activation, adhesion, aggregation, and inflammation. We will extend this discussion to include various mechanisms that can induce these functional changes and a discussion of some of the salient receptors that are responsible for platelets interacting with their external environment. We will finish with a discussion of how platelets interact with their vascular environment, with a special focus on interactions with the extracellular matrix and endothelial cells, and finally how platelets can aid and possibly initiate the progression of various vascular diseases. Throughout this overview, we will highlight both the historical investigations into the role of platelets in health and disease as well as some of the more current work. Overall, the authors aim for the readers to gain an appreciation for the complexity of platelet functions and the multifaceted role of platelets in the vascular system. © 2017 American Physiological Society. Compr Physiol 8:1117-1156, 2018.
Collapse
Affiliation(s)
- David A Rubenstein
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, USA
| | - Wei Yin
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
6
|
Middleton EA, Weyrich AS, Zimmerman GA. Platelets in Pulmonary Immune Responses and Inflammatory Lung Diseases. Physiol Rev 2016; 96:1211-59. [PMID: 27489307 PMCID: PMC6345245 DOI: 10.1152/physrev.00038.2015] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Platelets are essential for physiological hemostasis and are central in pathological thrombosis. These are their traditional and best known activities in health and disease. In addition, however, platelets have specializations that broaden their functional repertoire considerably. These functional capabilities, some of which are recently discovered, include the ability to sense and respond to infectious and immune signals and to act as inflammatory effector cells. Human platelets and platelets from mice and other experimental animals can link the innate and adaptive limbs of the immune system and act across the immune continuum, often also linking immune and hemostatic functions. Traditional and newly recognized facets of the biology of platelets are relevant to defensive, physiological immune responses of the lungs and to inflammatory lung diseases. The emerging view of platelets as blood cells that are much more diverse and versatile than previously thought further predicts that additional features of the biology of platelets and of megakaryocytes, the precursors of platelets, will be discovered and that some of these will also influence pulmonary immune defenses and inflammatory injury.
Collapse
Affiliation(s)
- Elizabeth A Middleton
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and the Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Andrew S Weyrich
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and the Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Guy A Zimmerman
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and the Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
7
|
Rodrigues SF, Granger DN. Blood cells and endothelial barrier function. Tissue Barriers 2015; 3:e978720. [PMID: 25838983 DOI: 10.4161/21688370.2014.978720] [Citation(s) in RCA: 201] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 10/15/2014] [Indexed: 12/18/2022] Open
Abstract
The barrier properties of endothelial cells are critical for the maintenance of water and protein balance between the intravascular and extravascular compartments. An impairment of endothelial barrier function has been implicated in the genesis and/or progression of a variety of pathological conditions, including pulmonary edema, ischemic stroke, neurodegenerative disorders, angioedema, sepsis and cancer. The altered barrier function in these conditions is often linked to the release of soluble mediators from resident cells (e.g., mast cells, macrophages) and/or recruited blood cells. The interaction of the mediators with receptors expressed on the surface of endothelial cells diminishes barrier function either by altering the expression of adhesive proteins in the inter-endothelial junctions, by altering the organization of the cytoskeleton, or both. Reactive oxygen species (ROS), proteolytic enzymes (e.g., matrix metalloproteinase, elastase), oncostatin M, and VEGF are part of a long list of mediators that have been implicated in endothelial barrier failure. In this review, we address the role of blood borne cells, including, neutrophils, lymphocytes, monocytes, and platelets, in the regulation of endothelial barrier function in health and disease. Attention is also devoted to new targets for therapeutic intervention in disease states with morbidity and mortality related to endothelial barrier dysfunction.
Collapse
Key Words
- AJ, Adherens junctions
- ANG-1, Angiopoietin 1
- AQP, Aquaporins
- BBB, blood brain barrier
- CNS, Central nervous system
- COPD, Chronic obstructive pulmonary disease
- EAE, Experimental autoimmune encephalomyelitis
- EPAC1, Exchange protein activated by cyclic AMP
- ERK1/2, Extracellular signal-regulated kinases 1 and 2
- Endothelial barrier
- FA, Focal adhesions
- FAK, focal adhesion tyrosine kinase
- FoxO1, Forkhead box O1
- GAG, Glycosaminoglycans
- GDNF, Glial cell-derived neurotrophic factor
- GJ, Gap junctions
- GPCR, G-protein coupled receptors
- GTPase, Guanosine 5'-triphosphatase
- HMGB-1, High mobility group box 1
- HRAS, Harvey rat sarcoma viral oncogene homolog
- ICAM-1, Intercellular adhesion molecule 1
- IL-1β, Interleukin 1 beta
- IP3, Inositol 1,4,5-triphosphate
- JAM, Junctional adhesion molecules
- MEK, Mitogen-activated protein kinase kinase
- MLC, Myosin light chain
- MLCK, Myosin light-chain kinase
- MMP, Matrix metalloproteinases
- NO, Nitric oxide
- OSM, Oncostatin M
- PAF, Platelet activating factor
- PDE, Phosphodiesterase
- PKA, Protein kinase A
- PNA, Platelet-neutrophil aggregates
- ROS, Reactive oxygen species
- Rac1, Ras-related C3 botulinum toxin substrate 1
- Rap1, Ras-related protein 1
- RhoA, Ras homolog gene family, member A
- S1P, Sphingosine-1-phosphate
- SCID, Severe combined immunodeficient
- SOCS-3, Suppressors of cytokine signaling 3
- Shp-2, Src homology 2 domain-containing phosphatase 2
- Src, Sarcoma family of protein kinases
- TEER, Transendothelial electrical resistance
- TGF-beta1, Transforming growth factor-beta1
- TJ, Tight junctions
- TNF-, Tumor necrosis factor alpha
- VCAM-1, Vascular cell adhesion molecule 1
- VE, Vascular endothelial
- VE-PTP, Vascular endothelial receptor protein tyrosine phosphatase
- VEGF, Vascular endothelial growth factor
- VVO, Vesiculo-vacuolar organelle
- ZO, Zonula occludens
- cAMP, 3'-5'-cyclic adenosine monophosphate
- erythrocytes
- leukocytes
- pSrc, Phosphorylated Src
- platelets
- vascular permeability
Collapse
Affiliation(s)
- Stephen F Rodrigues
- Department of Clinical and Toxicological Analyses; School of Pharmaceutical Sciences; University of Sao Paulo ; Sao Paulo, Brazil
| | - D Neil Granger
- Department of Molecular and Cellular Physiology; Louisiana State University Health Sciences Center ; Shreveport, LA USA
| |
Collapse
|
8
|
Keyes JT, Lockwood DR, Simon BR, Vande Geest JP. Deformationally dependent fluid transport properties of porcine coronary arteries based on location in the coronary vasculature. J Mech Behav Biomed Mater 2012; 17:296-306. [PMID: 23127633 DOI: 10.1016/j.jmbbm.2012.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 09/17/2012] [Accepted: 10/01/2012] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Understanding coronary artery mass transport allows researchers to better comprehend how drugs or proteins move through, and deposit into, the arterial wall. Characterizing how the convective component of transport changes based on arterial location could be useful to better understand how molecules distribute in different locations in the coronary vasculature. METHODS AND RESULTS We measured the mechanical properties and wall fluid flux transport properties of de-endothelialized (similar to post-stenting or angioplasty) left anterior descending (LADC) and right (RC) porcine coronary arteries along their arterial lengths. Multiphoton microscopy was used to determine microstructural differences. Proximal LADC regions had a higher circumferential stiffness than all other regions. Permeability decreased by 198% in the LADC distal region compared to other LADC regions. The RC artery showed a decrease of 46.9% from the proximal to middle region, and 51.7% from the middle to distal regions. The porosity increased in the intima between pressure states, without differences through the remainder of the arterial thickness. CONCLUSIONS We showed that the permeabilities and mechanical properties do vary in the coronary vasculature. With variations in mechanical properties, overexpansion of stents can occur more easily while variations in permeability may lead to altered transport based on location.
Collapse
Affiliation(s)
- Joseph T Keyes
- Graduate Interdisciplinary Program in Biomedical Engineering 1657 E Helen St, The University of Arizona, Tucson, AZ 85721, USA.
| | | | | | | |
Collapse
|
9
|
Stokes KY, Granger DN. Platelets: a critical link between inflammation and microvascular dysfunction. J Physiol 2011; 590:1023-34. [PMID: 22183721 DOI: 10.1113/jphysiol.2011.225417] [Citation(s) in RCA: 162] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Inflammation is an underlying feature of a variety of human diseases. An important manifestation of this pathophysiological response is microvascular dysfunction, which includes the activation of vascular endothelial cells, and circulating leucocytes and platelets. While endothelial cells and leucocytes are widely accepted as critical players in the microvascular alterations induced by inflammation, recent attention has focused on the modulatory role of platelets, which act both as effector and target cells in inflamed microvessels. Evidence is presented to demonstrate the capacity for 'cross-talk' between platelets and other cells (endothelial cells, leucocytes) that contribute to an inflammatory response, and to illustrate the pathophysiological consequences of these interactions of platelets with other cells within the microvasculature.
Collapse
Affiliation(s)
- Karen Y Stokes
- Department of Molecular & Cellular Physiology, LSU Health Sciences Centre-Shreveport, 1501 Kings Highway Shreveport, LA 71130-3932, USA.
| | | |
Collapse
|
10
|
Abstract
The haemostatic role of platelets was established in the 1880s by Bizzozero who observed their ability to adhere and aggregate at sites of vascular injury. It was only some 80 years later that the function of platelets in maintaining the structural integrity of intact blood vessels was reported by Danielli. Danielli noted that platelets help preserve the barrier function of endothelium during organ perfusion. Subsequent studies have demonstrated further that platelets are continuously needed to support intact mature blood vessels. More recently, platelets were shown to safeguard developing vessels, lymphatics, as well as the microvasculature at sites of leukocyte infiltration, including inflamed organs and tumours. Interestingly, from a mechanistic point of view, the supporting role of platelets in these various vessels does not necessarily involve the well-understood process of platelet plug formation but, rather, may rely on secretion of the various platelet granules and their many active components. The present review focuses on these nonconventional aspects of platelet biology and function by presenting situations in which platelets intervene to maintain vascular integrity and discusses possible mechanisms of their actions. We propose that modulating these newly described platelet functions may help treat haemorrhage as well as treat cancer by increasing the efficacy of drug delivery to tumours.
Collapse
|
11
|
Sacks RS, Remillard CV, Agange N, Auger WR, Thistlethwaite PA, Yuan JXJ. Molecular Biology of Chronic Thromboembolic Pulmonary Hypertension. Semin Thorac Cardiovasc Surg 2006; 18:265-76. [PMID: 17185190 DOI: 10.1053/j.semtcvs.2006.09.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2006] [Indexed: 01/17/2023]
Abstract
Recent efforts have seen major advances in elucidating the mechanisms underlying pulmonary arterial hypertension. However, chronic thromboembolic pulmonary hypertension (CTEPH) often has been excluded from these studies. Consequently, whereas the clinical, radiographic, and hemodynamic characteristics of CTEPH have been well described, there remains a deficit in our understanding of the cellular, molecular, and genetic mechanisms underlying CTEPH. Furthermore, although prior venous thromboembolism may act as the inciting event, it is still unclear what predisposes some patients to develop CTEPH. CTEPH has two major pathogenic components. The first is the primary obstruction of central pulmonary arteries by accumulation of thrombotic material. The second is characterized by severe pulmonary vascular remodeling, similar to that seen in idiopathic pulmonary arterial hypertension. Other articles in this series describe the pathological, surgical, and therapeutic aspects of CTEPH. Here, we review the potential molecular and cellular mechanisms that may contribute to the pathogenesis of CTEPH.
Collapse
Affiliation(s)
- Richard S Sacks
- Department of Medicine, University of California, San Diego, La Jolla 92093-0725, USA
| | | | | | | | | | | |
Collapse
|
12
|
Affiliation(s)
- Greg Stratmann
- *Department of Anesthesia and Perioperative Care and †Pediatrics, University of California at San Francisco
| | | |
Collapse
|
13
|
Schaphorst KL, Chiang E, Jacobs KN, Zaiman A, Natarajan V, Wigley F, Garcia JGN. Role of sphingosine-1 phosphate in the enhancement of endothelial barrier integrity by platelet-released products. Am J Physiol Lung Cell Mol Physiol 2003; 285:L258-67. [PMID: 12626332 DOI: 10.1152/ajplung.00311.2002] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In vitro and in vivo evidence indicates that circulating platelets affect both vascular integrity and hemostasis. How platelets enhance the permeability barrier of the vascular endothelium is not well understood. We measured the effect of isolated human platelets on human pulmonary artery endothelial cell (EC) barrier integrity by monitoring transmonolayer electrical resistance. EC barrier function was significantly increased by the addition of platelets ( approximately 40% maximum, 2.5 x 106 platelets/ml). Platelet supernatants, derived from 2.5 x 106 platelets/ml, reproduced the barrier enhancement and reversed the barrier dysfunction produced by the edemagenic agonist thrombin, which implicates a soluble barrier-promoting factor. The barrier-enhancing effect of platelet supernatants was heat stable but was attenuated by either charcoal delipidation (suggesting a vasoactive lipid mediator) or pertussis toxin, implying involvement of a Gialpha-coupled receptor signal transduction pathway. Sphingosine-1-phosphate (S1P), a sphingolipid that is released from activated platelets, is known to ligate G protein-coupled EC differentiation gene (EDG) receptors, increase EC electrical resistance, and reorganize the actin cytoskeleton (Garcia JG, Liu F, Verin AD, Birukova A, Dechert MA, Gerthoffer WT, Bamberg JR, and English D. J Clin Invest 108: 689-701, 2001). Infection of EC with an adenoviral vector expressing an antisense oligonucleotide directed against EDG-1 but not infection with control vector attenuated the barrier-enhancing effect of both platelet supernatants and S1P. These results indicate that a major physiologically relevant vascular barrier-protective mediator produced by human platelets is S1P.
Collapse
Affiliation(s)
- Kane L Schaphorst
- Division of Pulmonary and Critical Care Medicine and Center for Translational Respiratory Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21224-6801, USA.
| | | | | | | | | | | | | |
Collapse
|
14
|
Minnear FL, Patil S, Bell D, Gainor JP, Morton CA. Platelet lipid(s) bound to albumin increases endothelial electrical resistance: mimicked by LPA. Am J Physiol Lung Cell Mol Physiol 2001; 281:L1337-44. [PMID: 11704528 DOI: 10.1152/ajplung.2001.281.6.l1337] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The objectives were to determine whether the permeability-decreasing activity of platelet-conditioned medium (PCM) is associated with a lipid bound to albumin and whether lysophosphatidic acid (LPA) is present in the PCM. A decrease in permeability was assessed by an increase in electrical resistance across endothelial cell monolayers derived from bovine pulmonary arteries and microvessels. The Sephacryl S-200 fraction of PCM that contained albumin, the albumin immunoprecipitate from the PCM, and the methanol extract from the albumin immunoprecipitate all increased endothelial electrical resistance. Increased electrical resistance induced by PCM was not abolished by boiling and was mimicked by 1-oleoyl-LPA and 1-palmitoyl-LPA. Analysis of a methanol-chloroform extract of one sample of PCM by electrospray mass spectrometry revealed many fatty acids, ceramide, diacylglycerol, phosphatidic acid, and palmitoyl-LPA, but analysis of a second sample of PCM and the methanol extract of its albumin immunoprecipitate revealed no LPA, only lipids. These findings indicate that a bioactive lipid(s), possibly LPA, released from platelets and subsequently bound to albumin forms an active complex that decreases endothelial permeability.
Collapse
MESH Headings
- Albumins/analysis
- Albumins/metabolism
- Animals
- Blood Platelets/metabolism
- Capillaries/chemistry
- Capillaries/cytology
- Capillaries/metabolism
- Cattle
- Cell Membrane Permeability/drug effects
- Cell Membrane Permeability/physiology
- Cells, Cultured
- Chromatography, Gel
- Coloring Agents
- Culture Media, Conditioned/chemistry
- Culture Media, Conditioned/pharmacology
- Electric Impedance
- Electrophoresis, Polyacrylamide Gel
- Endothelium, Vascular/chemistry
- Endothelium, Vascular/cytology
- Endothelium, Vascular/metabolism
- Fatty Acids/analysis
- Fatty Acids/metabolism
- Humans
- Lysophospholipids/analysis
- Lysophospholipids/pharmacokinetics
- Methanol
- Precipitin Tests
- Pulmonary Artery/chemistry
- Pulmonary Artery/cytology
- Pulmonary Artery/metabolism
- Sepharose/analogs & derivatives
- Spectrometry, Mass, Electrospray Ionization
Collapse
Affiliation(s)
- F L Minnear
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208-3479, USA.
| | | | | | | | | |
Collapse
|
15
|
Gainor JP, Morton CA, Roberts JT, Vincent PA, Minnear FL. Platelet-conditioned medium increases endothelial electrical resistance independently of cAMP/PKA and cGMP/PKG. Am J Physiol Heart Circ Physiol 2001; 281:H1992-2001. [PMID: 11668060 DOI: 10.1152/ajpheart.2001.281.5.h1992] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Platelets release a soluble factor into blood and conditioned medium (PCM) that decreases vascular endothelial permeability. The objective of this study was to determine the signal-transduction pathway that elicits this decrease in permeability. Permeability-decreasing activity of PCM was assessed by the real-time measurement of electrical resistance across cell monolayers derived from bovine pulmonary arteries and microvessels. Using a desensitization protocol with cAMP/protein kinase A (PKA)-enhancing agents and pharmacological inhibitors, we determined that the activity of PCM is independent of PKA and PKG. Genistein, an inhibitor of tyrosine kinases, prevented the increase in endothelial electrical resistance. Because lysophosphatidic acid (LPA) has been proposed to be responsible for this activity of PCM and is known to activate the G(i) protein, inhibitors of the G protein pertussis toxin and of the associated phosphatidylinositol 3-kinase (PI3K) wortmannin were used. Pertussis toxin and wortmannin caused a 10- to 15-min delay in the characteristic rise in electrical resistance induced by PCM. Inhibition of phosphorylation of extracellular signal-regulated kinase with the mitogen-activated kinase kinase inhibitors PD-98059 and U-0126 did not prevent the activity of PCM. Similar findings with regard to the cAMP protocols and inhibition of G(i) and PI3K were obtained for 1-oleoyl-LPA. These results demonstrate that PCM increases endothelial electrical resistance in vitro via a novel, signal transduction pathway independent of cAMP/PKA and cGMP/PKG. Furthermore, PCM rapidly activates a signaling pathway involving tyrosine phosphorylation, the G(i) protein, and PI3K.
Collapse
Affiliation(s)
- J P Gainor
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208-3479, USA
| | | | | | | | | |
Collapse
|
16
|
Heller R, Glusa E. Wechselwirkungen zwischen Thrombozyten und Endothelzellen. Hamostaseologie 1999. [DOI: 10.1007/978-3-662-07673-6_60] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
17
|
Comparison of platelet number, mean platelet volume and platelet mass in five mammalian species. ACTA ACUST UNITED AC 1998. [DOI: 10.1007/bf02628099] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
18
|
Alexander JS, Patton WF, Christman BW, Cuiper LL, Haselton FR. Platelet-derived lysophosphatidic acid decreases endothelial permeability in vitro. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:H115-22. [PMID: 9458859 DOI: 10.1152/ajpheart.1998.274.1.h115] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We previously reported that platelets release a soluble factor that decreases the solute permeability of cultured bovine aortic endothelial monolayers. This factor was characterized as heat stable, tryspsin sensitive, and not serotonin, adenosine, ADP, or ATP [F. R. Haselton and J. S. Alexander. Am. J. Physiol. 263 (Lung Cell Mol. Physiol. 7): L670-L678, 1992]. We now report its identity as lysophosphatidic acid (LPA). Endothelial permeability decreases rapidly, reversibly, and repeatedly when exposed to platelet supernatants. Continuous exposure produces a sustained decrease in permeability. Methanol extracts of platelet supernatants also decrease endothelial permeability. Treatment of methanol extracts of platelet supernatants with phospholipase B or alkaline phosphatase, which modify the structure of LPA, abolishes the permeability-decreasing activity. However, activity is unaffected by treatment with phospholipase A2. This pattern of enzyme inactivation is consistent with the structure of LPA. Furthermore, synthetic 1-oleoyl-LPA rapidly and significantly decreases endothelial permeability in a concentration-dependent manner. Platelet activation does not appear to be required to produce activity in supernatants from platelet isolations, since P-selectin expression is not increased and thromboxane B2 is < 14 pg/6,000 platelets. Our data show that platelets release a methanol-extractable compound with an enzyme degradation profile consistent with LPA, which decreases the permeability of endothelial monolayers in vitro. In vivo, LPA derived from platelets may be an important mediator of the transport barrier formed by the vascular endothelium.
Collapse
Affiliation(s)
- J S Alexander
- Vanderbilt University, Nashville, Tennessee 37235, USA
| | | | | | | | | |
Collapse
|
19
|
Kempson SA, Hoshaw MJ, Hinesley RS, McAteer JA. Hyperosmotic stress up-regulates amino acid transport in vascular endothelial cells. Kidney Int 1997; 52:1332-9. [PMID: 9350656 DOI: 10.1038/ki.1997.458] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cultured vascular endothelial cells take up L-proline by sodium-dependent transport. Cells incubated in medium made hyperosmotic by addition of sucrose showed a dose-dependent increase in Na+/proline cotransport. Studies with alpha-(methylamino)isobutyric acid revealed that the up-regulation was specific for amino acid transport system A. Up-regulation was blocked by actinomycin D and cycloheximide, indicating roles for gene transcription and protein synthesis. Up-regulation was maximum after five to six hours of hyperosmotic treatment, but returned to control levels when osmotic stress was maintained for 24 hours. The decline at 24 hours was accompanied by a significant increase in Na+/gamma-aminobutyric acid cotransport. The activity of this system, which also transports betaine, remained unchanged after just five hours of hyperosmotic stress. Inclusion of betaine in the hyperosmotic medium reduced up-regulation of system A. Na/Pi cotransport also was up-regulated by five hours of hyperosmotic stress. Up-regulation of system A, but not Na/Pi cotransport, was detected in isolated membrane fractions indicating that increased activity of this membrane transport system may be one mechanism by which vascular endothelial cells accumulate amino acids. The amino acids may act as organic osmolytes to help maintain normal cell volume during the early phase of hyperosmotic stress.
Collapse
Affiliation(s)
- S A Kempson
- Department of Physiology & Biophysics, Indiana University School of Medicine, Indianapolis, USA.
| | | | | | | |
Collapse
|
20
|
Patil S, Kaplan JE, Minnear FL. Protein, not adenosine or adenine nucleotides, mediates platelet decrease in endothelial permeability. THE AMERICAN JOURNAL OF PHYSIOLOGY 1997; 273:H2304-11. [PMID: 9374767 DOI: 10.1152/ajpheart.1997.273.5.h2304] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Platelets and platelet-conditioned medium (PCM) decrease endothelial protein permeability in vitro. Adenosine and a > 100-kDa protein have previously been implicated as the soluble factors released from platelets that decrease endothelial permeability. The objective of this study was to further investigate the role of adenosine in this platelet response. Measurements of adenosine and its precursor adenine nucleotides by high-performance liquid chromatography were correlated with the assessment of permeability by 125I-labeled albumin clearance and electrical resistance across endothelial cell monolayers derived from the bovine pulmonary artery. PCM contained micromolar concentrations of AMP, ADP, and ATP, but adenosine was below detectable levels (< or = 0.1 microM). Adenosine deaminase, an enzyme that converts adenosine to inactive inosine, or an adenosine-receptor antagonist did not block the platelet- or PCM-mediated decrease in endothelial permeability. A < 3-kDa fraction of PCM that contained micromolar concentrations of AMP and ADP did not affect endothelial permeability, whereas a > 3-kDa fraction that contained much reduced levels of AMP and ADP significantly decreased permeability. This activity of PCM was sensitive to insoluble trypsin. This study rules out adenosine and adenine nucleotides as primary factors in the platelet-induced decrease in endothelial permeability and suggests that the active factor is a protein.
Collapse
Affiliation(s)
- S Patil
- Department of Physiology and Cell Biology, Albany Medical College, Union University, New York 12208, USA
| | | | | |
Collapse
|
21
|
Strange C, Gottehrer A, Birmingham K, Heffner JE. Platelets attenuate oxidant-induced permeability in endothelial monolayers: glutathione-dependent mechanisms. J Appl Physiol (1985) 1996; 81:1701-6. [PMID: 8904589 DOI: 10.1152/jappl.1996.81.4.1701] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We studied the effects of adding washed human platelets or platelets with nonintact glutathione redox cycles to endothelial cell monolayers treated with glucose oxidase to initiate oxidant stress and increase permeability. Changes in 125I-labeled albumin transmonolayer movement were used as the index of monolayer permeability. Washed human platelets attenuated oxidant-induced increases in albumin flux. Platelets treated with 1,3-bis(2-chloroethyl)-1-nitrosurea, 1-chloro-2,4-dinitrobenzene, or buthionine sulfoximine to inhibit selective enzymatic steps in the glutathione redox cycle decreased permeability to a lesser degree. We conclude that 1) washed human platelets attenuate monolayer permeability defects in aortic endothelial monolayers exposed to glucose oxidase and 2) the protective effects of platelets are partially dependent on an intact platelet glutathione redox cycle.
Collapse
Affiliation(s)
- C Strange
- Division of Pulmonary and Critical Care Medicine, Medical University of South Carolina, Charleston 29425, USA
| | | | | | | |
Collapse
|
22
|
Angelis ED, Moss SH, Pouton CW. Endothelial cell biology and culture methods for drug transport studies. Adv Drug Deliv Rev 1996. [DOI: 10.1016/0169-409x(95)00094-n] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
23
|
Nakano T, Miyamoto K, Aida A, Saito S, Nishimura M, Kawakami Y. Effects of platelet depletion on PMA-induced acute lung injury in awake sheep. RESPIRATION PHYSIOLOGY 1995; 101:207-17. [PMID: 8570923 DOI: 10.1016/0034-5687(95)00021-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Little is known about the role of circulating platelets in PMA-induced lung injury in vivo. We investigated the effects of platelet depletion (PD) on the injury using seven unanesthetized sheep with lung lymph fistulas and eight other sheep for morphological study. PD diminished a decrease in the lymph to plasma concentration ratio (L/P) after 1 microgram/kg PMA treatment (n = 4) and caused more increases in lung lymph flow, L/P and lung lymph clearance after 5 micrograms/kg PMA treatment (n = 3) than in control sheep. The high dose was lethal to platelet-depleted sheep. However, PD had no effects on pulmonary hemodynamics. Morphologically, alveolar hemorrhages and exudate, and bleb formation of type I epithelial cells were more prominent in the platelet-depleted sheep than in the control sheep. We conclude that circulating platelets have protective effects against PMA-induced lung injury but have little involvement in PMA-induced pulmonary hypertension.
Collapse
Affiliation(s)
- T Nakano
- First Department of Medicine, Hokkaido University School of Medicine, Sapporo, Japan
| | | | | | | | | | | |
Collapse
|
24
|
Wu NZ, Baldwin AL. Possible mechanism(s) for permeability recovery of venules during histamine application. Microvasc Res 1992; 44:334-52. [PMID: 1282652 DOI: 10.1016/0026-2862(92)90092-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Histamine is known to cause a substantial increase in the permeability of venules to both water and proteins. However, this increase is transient, i.e., the initially elevated permeability returns toward control levels, or "recovers," even during continuous histamine stimulation. In this investigation, we attempted to identify the possible chemical signal(s) initiating the permeability recovery process in single venules of rat mesentery. Specifically, we tested whether histamine's binding to H2 receptors and/or the production of prostacyclin by endothelial cells was involved in this process. To achieve this aim, the time course of endothelial cells was involved in this process. To achieve this aim, the time course of histamine-induced changes in permeability to alpha-lactalbumin was measured in the presence of H2 receptor antagonist (cimetidine) or of prostacyclin synthetase inhibitor (tranylcypromine), respectively. Permeability of individually perfused microvessels was measured using fluorescence microscopy. The results demonstrated that permeability recovery was not affected by the H2 receptor antagonist but was suppressed or even abolished by the prostacyclin synthesis inhibitor. Therefore, these results suggest that the production of prostacyclin by endothelial cells might serve as one chemical signal to initiate the permeability recovery process, whereas histamine's binding to H2 receptors is not involved in this phenomenon.
Collapse
Affiliation(s)
- N Z Wu
- Department of Physiology, College of Medicine, University of Arizona, Tucson 85724
| | | |
Collapse
|
25
|
Ghitescu L, Bendayan M. Hapten-tagged plasma proteins as immunocytochemical probes for the study of vascular permeability. Microsc Res Tech 1992; 22:392-401. [PMID: 1392067 DOI: 10.1002/jemt.1070220407] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Bovine serum albumin and transferrin were covalently coupled with fluorescein isothiocyanate and digoxigenin, respectively, and intravenously co-injected in equal amounts in mouse. The derivation of the two proteins induces minor alterations of their physicochemical properties as well as of their physiological functions. The two tracers were revealed within vascular and extravascular compartments of diaphragm by quantitative postembedding immunocytochemistry, using antibodies against each of the haptens in conjunction with the protein AG-gold complexes. The influence of different fixatives and embedding protocols on the immunodetectability of the hapten-tagged proteins was assessed. Both resist reasonably well to osmication and embedding in Epon. None of the haptens reacted with the heterologous antibody. At 30 minutes after injection, the tracers were detected in blood plasma, interstitium, and endothelial plasmalemmal vesicles. The presence of both proteins within the interendothelial clefts was inconspicuous. The ratios between the labeling densities found over endothelium, interstitial space, and vascular lumen were similar for both tracers. This suggests that the endothelium of mouse diaphragm capillaries might exhibit comparable permeabilities towards serum albumin and transferrin which are similar in size and charge. The study shows that hapten-tagged polypeptides are close to the corresponding native macromolecules, and represent interesting tools for the morphological study of dynamic processes such as transcytosis.
Collapse
Affiliation(s)
- L Ghitescu
- Department of Anatomy, Université de Montréal, Québec, Canada
| | | |
Collapse
|
26
|
Ghitescu L, Bendayan M. Transendothelial transport of serum albumin: a quantitative immunocytochemical study. J Cell Biol 1992; 117:745-55. [PMID: 1577854 PMCID: PMC2289456 DOI: 10.1083/jcb.117.4.745] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The steady-state distribution of endogenous albumin in mouse diaphragm was determined by quantitative postembedding protein A-gold immunocytochemistry using a specific anti-mouse albumin antibody. Labeling density was recorded over vascular lumen, endothelium, junctions, and subendothelial space. At equilibrium, the volume density of interstitial albumin was 18% of that in circulation. Despite this large difference in albumin concentration between capillary lumen and interstitium, plasmalemmal vesicles labeling was uniformly distributed across the endothelial profile. 68% of the junctions displayed labeling for albumin, which was however low and confined to the luminal and abluminal sides. The scarce labeling of the endothelial cell surface did not confirm the fiber matrix theory. The kinetics of albumin transcytosis was evaluated by injecting radioiodinated and DNP-tagged BSA. At 3, 10, 30, and 60 min, and 3, 5, and 24 h circulation time, blood radioactivity was measured and diaphragms were fixed and embedded. Anti-DNP antibodies were used to map the tracer in aforementioned compartments. A linear relationship between blood radioactivity and vascular labeling density was found, with a detection sensitivity approaching 1 gold particle per DNP-BSA molecule. Tracer presence over endothelial vesicles reached rapidly (10 min) a saturation value; initially localized near the luminal front, it evolved towards a uniform distribution across endothelium during the first hour. An hour was also needed to reach the saturation limit within the subendothelial space. Labeling of the junctions increased slowly, out of phase with the inferred transendothelial albumin fluxes. This suggests that they play little, if any, role in albumin transcytosis, which rather seems to proceed through the vesicular way.
Collapse
Affiliation(s)
- L Ghitescu
- Département d'Anatomie, Université de Montréal, Québec, Canada
| | | |
Collapse
|