1
|
Heller RC, Marians KJ. Replisome assembly and the direct restart of stalled replication forks. Nat Rev Mol Cell Biol 2006; 7:932-43. [PMID: 17139333 DOI: 10.1038/nrm2058] [Citation(s) in RCA: 228] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Failure to reactivate either stalled or collapsed replication forks is a source of genomic instability in both prokaryotes and eukaryotes. In prokaryotes, dedicated fork repair systems that involve both recombination and replication proteins have been identified genetically and characterized biochemically. Replication conflicts are solved through several pathways, some of which require recombination and some of which operate directly at the stalled fork. Some recent biochemical observations support models of direct fork repair in which the removal of the blocking template lesion is not always required for replication restart.
Collapse
Affiliation(s)
- Ryan C Heller
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | |
Collapse
|
2
|
Chow KH, Courcelle J. RecO Acts with RecF and RecR to Protect and Maintain Replication Forks Blocked by UV-induced DNA Damage in Escherichia coli. J Biol Chem 2004; 279:3492-6. [PMID: 14625283 DOI: 10.1074/jbc.m311012200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Escherichia coli, recF and recR are required to stabilize and maintain replication forks arrested by UV-induced DNA damage. In the absence of RecF, replication fails to recover, and the nascent lagging strand of the arrested replication fork is extensively degraded by the RecQ helicase and RecJ nuclease. recO mutants are epistatic with recF and recR with respect to recombination and survival assays after DNA damage. In this study, we show that RecO functions with RecF and RecR to protect the nascent lagging strand of arrested replication forks after UV-irradiation. In the absence of RecO, the nascent DNA at arrested replication forks is extensively degraded and replication fails to recover. The extent of nascent DNA degradation is equivalent in single, double, or triple mutants of recF, recO, or recR, and the degradation is dependent upon RecJ and RecQ functions. Because RecF has been shown to protect the nascent lagging strand from degradation, these observations indicate that RecR and RecO function with RecF to protect the same nascent strand of the arrested replication fork and are likely to act at a common point during the recovery process. We discuss these results in relation to the biochemical and cellular properties of RecF, RecO, and RecR and their potential role in loading RecA filaments to maintain the replication fork structure after the arrest of replication by UV-induced DNA damage.
Collapse
Affiliation(s)
- Kin-Hoe Chow
- Department of Biological Science, Mississippi State University, Mississippi State, Mississippi 39762, USA.
| | | |
Collapse
|
3
|
Abstract
The recent finding of a role for the recA gene in DNA replication restart does not negate previous data showing the existence of recA-dependent recombinational DNA repair, which occurs when there are two DNA duplexes present, as in the case for recA-dependent excision repair, for postreplication repair (i.e., the repair of DNA daughter-strand gaps), and for the repair of DNA double-strand breaks. Recombinational DNA repair is critical for the survival of damaged cells.
Collapse
Affiliation(s)
- Kendric C Smith
- Emeritus Professor of Radiation Oncology (Radiation Biology), Stanford University School of Medicine, 927 Mears Ct., Stanford, CA 94305-1041, USA.
| |
Collapse
|
4
|
Kuzminov A. Recombinational repair of DNA damage in Escherichia coli and bacteriophage lambda. Microbiol Mol Biol Rev 1999; 63:751-813, table of contents. [PMID: 10585965 PMCID: PMC98976 DOI: 10.1128/mmbr.63.4.751-813.1999] [Citation(s) in RCA: 719] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although homologous recombination and DNA repair phenomena in bacteria were initially extensively studied without regard to any relationship between the two, it is now appreciated that DNA repair and homologous recombination are related through DNA replication. In Escherichia coli, two-strand DNA damage, generated mostly during replication on a template DNA containing one-strand damage, is repaired by recombination with a homologous intact duplex, usually the sister chromosome. The two major types of two-strand DNA lesions are channeled into two distinct pathways of recombinational repair: daughter-strand gaps are closed by the RecF pathway, while disintegrated replication forks are reestablished by the RecBCD pathway. The phage lambda recombination system is simpler in that its major reaction is to link two double-stranded DNA ends by using overlapping homologous sequences. The remarkable progress in understanding the mechanisms of recombinational repair in E. coli over the last decade is due to the in vitro characterization of the activities of individual recombination proteins. Putting our knowledge about recombinational repair in the broader context of DNA replication will guide future experimentation.
Collapse
Affiliation(s)
- A Kuzminov
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, USA.
| |
Collapse
|
5
|
Abstract
The concept of regulatory 'checkpoints' in the eukaryotic cycle has proved to be a fruitful one. Here, its applicability to the bacterial cell cycle is examined. A primitive DNA damage checkpoint operates in E. coli such that, after exposure to ultraviolet light, while excision repair occurs, chromosome replication continues very slowly with the production of discontinuous daughter strands. The slower the rate of excision of photoproducts, the greater the delay before the normal rate of DNA replication is restored, the additional time for repair ensuring that normal survival is maintained. A model is proposed in which replication rate is controlled by the ratio of RecA-coated to uncoated single stranded regions of DNA in the replication fork. There are also two cell division inhibitors SulA (= SfiA) and SfiC under the control of the SOS system and sensitive to DNA damage, but they are irrelevant to the survival of wild-type bacteria under normal conditions. In strains where SulA and SfiC do not operate, inhibition is not influenced by the rate of excision repair and so fails one of the criteria for a DNA damage checkpoint, namely the monitoring of the DNA for the level of residual damage.
Collapse
Affiliation(s)
- B A Bridges
- MRC Cell Mutation Unit, University of Sussex, Falmer, Brighton, UK
| |
Collapse
|
6
|
Abstract
Following exposure to UV light DNA replication stops and then resumes. The SOS response is required for the restoration of replication. Replication recovery occurs in lexA(Ind) cells carrying a high constitutive level of RecA protein. Replication is also affected by UmuCD proteins, photoreactivation, and excision repair. In addition, there is a constitutive and recA independent way to replicate over UV photoproducts associated with the production of gaps in daughter DNA strands. There are two ways to account for the replication in UV-irradiated cells. A stalled replication fork can be reactivated. Alternatively, a replication fork could be destroyed irreparably, with no available way to complete the round of replication. In that case, postirradiation replication could be due exclusively to replication forks assembled de novo at the origin(s). Changes in replication initiation are observed following UV irradiation. Initiations are first inhibited and then stimulated. They become independent of de novo protein synthesis and sometimes do not stop in dnaA(ts) mutants shifted to 42 degrees C. Although the inducible functions are involved in the recovery of replication at different levels of UV damage, some modifications of the replication initiation mechanism appear to be specific to severely damaged cells. Such modifications seem to include the dnaA(ts) independence for initiations and the transient initiation inhibition. RecA protein can be directly involved both in the modification of initiation and in reactivation of the stalled replication forks. Although the restoration of replication depends on the SOS response a synthesis of some protein(s) that do not belong to the LexA regulon seems to be required as well. These proteins can be under RecA control and one of their functions may be to inhibit the rnhA gene. Certain recA mutations may selectively affect different mechanisms of the replication recovery (namely, recA430, recA727, recA718, recA1730). Overproduction of the photoreactivating enzyme in the dark could influence UmuCD activity in replication. The UmuCD function appears to be blocked in strains carrying the dnaE1026 mutation or overproducing the dnaQ protein. For some unknown reason the UmuCD-associated replication mechanism is the only one available for phage with damaged DNA.
Collapse
|
7
|
Livneh Z, Cohen-Fix O, Skaliter R, Elizur T. Replication of damaged DNA and the molecular mechanism of ultraviolet light mutagenesis. Crit Rev Biochem Mol Biol 1993; 28:465-513. [PMID: 8299359 DOI: 10.3109/10409239309085136] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
On UV irradiation of Escherichia coli cells, DNA replication is transiently arrested to allow removal of DNA damage by DNA repair mechanisms. This is followed by a resumption of DNA replication, a major recovery function whose mechanism is poorly understood. During the post-UV irradiation period the SOS stress response is induced, giving rise to a multiplicity of phenomena, including UV mutagenesis. The prevailing model is that UV mutagenesis occurs by the filling in of single-stranded DNA gaps present opposite UV lesions in the irradiated chromosome. These gaps can be formed by the activity of DNA replication or repair on the damaged DNA. The gap filling involves polymerization through UV lesions (also termed bypass synthesis or error-prone repair) by DNA polymerase III. The primary source of mutations is the incorporation of incorrect nucleotides opposite lesions. UV mutagenesis is a genetically regulated process, and it requires the SOS-inducible proteins RecA, UmuD, and UmuC. It may represent a minor repair pathway or a genetic program to accelerate evolution of cells under environmental stress conditions.
Collapse
Affiliation(s)
- Z Livneh
- Department of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | |
Collapse
|
8
|
DNA-replication recovery inhibition and subsequent reinitiation in UV-radiation-damaged E. coli: a strategy for survival. Mutat Res 1990; 243:179-86. [PMID: 2407951 DOI: 10.1016/0165-7992(90)90088-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Using the incorporation of [14C]thymine to measure DNA accumulation, it was shown that exposure of the B/r strain of Escherichia coli to 10 J/m2 of ultraviolet radiation (UV) inhibits replication for about 20 min, but then resumption of replication occurs. Pulse-labelling with [3H]thymidine after exposure of the WT strain to this fluence confirmed the transient inhibition and recovery of DNA replication. After recovery, the rate of accumulation of DNA in the culture increases, to exceed that of the exponentially growing culture, so that eventually the amount of DNA almost equals that of the unirradiated culture. After a higher fluence (20 J/m2), an inhibition of replication recovery was revealed. This fluence delays the reinitiation of DNA accumulation in the culture, measured by [14C]thymine incorporation, for 25 min more, in addition to the 20-min recovery period. This finding was confirmed with pulse-labelling studies, which revealed that the higher exposure represses the rates of replication for 45 min before replication at the normal rate reinitiates in the culture. It was proposed that the inhibition of recovery revealed by these investigations is effected by the UV-induction of an active DNA-replication recovery-inhibition process. With the uvrA strain, rate studies revealed that 1.5 J/m2 of UV (a reduced fluence necessary because of the greater sensitivity of the strain) induces a transient inhibition of DNA replication, with considerable recovery following. Exposure to 3.0 J/m2 induces the transient inhibition of replication, followed by massive recovery inhibition after 20 min of incubation. With uvrA recA, both the lower and the higher fluence resulted in an immediate block of replication with no recovery, confirming the recA gene dependency of the recovery process. The decrease in rate of replication comparable to that seen in the uvrA strain after 20 min, and taken as evidence of the function of the recovery-inhibition process, was not seen. The evidence supports the concept that a process somehow triggered by higher UV fluences functions to repress replication temporarily, presumably allowing time for repair processes to take place before replication overruns closely linked pyrimidine dimers on opposite strands to create lethal lesions.
Collapse
|
9
|
Verma M, Moffat KG, Egan JB. UV irradiation inhibits initiation of DNA replication from oriC in Escherichia coli. MOLECULAR & GENERAL GENETICS : MGG 1989; 216:446-54. [PMID: 2526290 DOI: 10.1007/bf00334389] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Irradiation of Escherichia coli with UV light causes a transient inhibition of DNA replication. This effect is generally thought to be accounted for by blockage of the elongation of DNA replication by UV-induced lesions in the DNA (a cis effect). However, by introducing an unirradiated E. coli origin (oriC)-dependent replicon into UV-irradiated cells, we have been able to show that the environment of a UV-irradiated cell inhibits initiation of replication from oriC on a dimer-free replicon. We therefore conclude that UV-irradiation of E. coli leads to a trans-acting inhibition of initiation of replication. The inhibition is transient and does not appear to be an SOS function.
Collapse
Affiliation(s)
- M Verma
- Department of Biochemistry, University of Adelaide, S.A., Australia
| | | | | |
Collapse
|
10
|
Woods DR, Jones DT. Physiological responses of Bacteroides and Clostridium strains to environmental stress factors. Adv Microb Physiol 1987; 28:1-64. [PMID: 3544734 DOI: 10.1016/s0065-2911(08)60236-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
11
|
Sharma RC, Smith KC. A mechanism for rich-medium inhibition of the repair of daughter-strand gaps in the deoxyribonucleic acid of UV-irradiated Escherichia coli K12 uvrA. Mutat Res 1985; 146:177-83. [PMID: 3897844 DOI: 10.1016/0167-8817(85)90008-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Ultraviolet-irradiated Escherichia coli K12 uvrA(B,C) cells show higher survival if plated on minimal growth medium (MM) rather than on rich growth medium (RM). This phenomenon has been referred to as 'minimal medium recovery' (MMR). UV-irradiated (4 J/m2) uvrA cells showed a similar rate of protein synthesis, whether incubated in MM or RM, however, they showed a severe depression in DNA synthesis when incubated in MM that lasted for about 30 min, and the normal rate of DNA synthesis was not reestablished until about 60 min after irradiation. When a sample of these same cells was switched to RM immediately after UV-irradiation, there was only a slight slowing of DNA synthesis, and the normal rate of synthesis was reestablished by 60 min. An additional mmrA mutation or growth retardation by valine blocked both this extra DNA synthesis in RM, and the inhibitory effect of RM on survival. These findings suggest that the absence of a marked delay in DNA synthesis observed in RM may be responsible for the inhibitory effect of RM on the survival of UV-irradiated excision-deficient cells. Two hypotheses, which are not mutually exclusive, are proposed and supported by data to explain why a fast rate of DNA synthesis after UV-irradiation partially inhibits postreplication repair and enhances cell lethality.
Collapse
|
12
|
Abstract
A radiation-sensitive mutant of the hypertoxinogenic strain 569B of Vibrio cholerae was isolated and characterized. The mutant, designated V. cholerae 569Bs, lacks both excision- and medium-dependent dark-repair mechanisms of UV-induced DNA damage while retaining the wild-type photoreactivating capability. Analysis of the UV-irradiated cell DNA by velocity sedimentation in alkaline sucrose gradient suggests that UV-induced pyrimidine dimers may not be incised in these cells. In contrast to the wild-type cells, the mutant cell DNA was degraded after treatment with nalidixic acid. The mutant cells failed to produce any detectable amount of cholera toxin as measured by ileal-loop assay.
Collapse
|
13
|
Kucerová H, Vĕchet B. DNA synthesis in Escherichia coli B/r after UV-irradiation. Folia Microbiol (Praha) 1982; 27:370-6. [PMID: 6757070 DOI: 10.1007/bf02876446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
When studying the kinetics of DNA synthesis, growth and cell division in Escherichia coli B/r after irradiation with different doses of UV-radiation (254 nm) we could demonstrate, by means of pulse incorporation of 3H-thymidine, a lag in DNA synthesis after the irradiation. The relative rate of the restored DNA synthesis (related to the number of viable cells) was higher than in the non-irradiated culture. After 3 h the rate of DNA synthesis settled at a constant value, which was identical with the control rate up to the "critical dose" of 20 J/m2. The irradiated cell population is heterogenous and contains basically two categories of cells--surviving and non-surviving. Cells of both types contribute to DNA synthesis restored after the lag period to a different extent. During the first hour after the irradiation even the nonviable portion of the population, i.e. cells that do not form colonies but are still penicillin-sensitive, is involved in the DNA synthesis.
Collapse
|
14
|
Wang TC, Smith KC. Effects of the ssb-1 and ssb-113 mutations on survival and DNA repair in UV-irradiated delta uvrB strains of Escherichia coli K-12. J Bacteriol 1982; 151:186-92. [PMID: 7045074 PMCID: PMC220225 DOI: 10.1128/jb.151.1.186-192.1982] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The molecular defect in DNA repair caused by ssb mutations (single-strand binding protein) was studied by analyzing DNA synthesis and DNA double-strand break production in UV-irradiated Escherichia coli delta uvrB strains. The presence of the ssb-113 mutation produced a large inhibition of DNA synthesis and led to the formation of double-strand breaks, whereas the ssb-1 mutation produced much less inhibition of DNA synthesis and fewer double-strand breaks. We suggest that the single-strand binding protein plays an important role in the replication of damaged DNA, and that it functions by protecting single-stranded parental DNa opposite daughter-strand gaps from nuclease attack.
Collapse
|
15
|
Das G, Sil K, Das J. Repair of ultraviolet-light-induced DNA damage in vibrio cholerae. BIOCHIMICA ET BIOPHYSICA ACTA 1981; 655:413-20. [PMID: 7284396 DOI: 10.1016/0005-2787(81)90053-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Repair of ultraviolet-light-induced DNA damage in a highly pathogenic Gram-negative bacterium, Vibrio cholerae, has been examined. All three strains of V. cholerae belonging to two serotypes, Inaba and Ogawa, are very sensitive to ultraviolet irradiation, having inactivation cross-sections ranging from 0.18 to 0.24 m2/J. Although these cells are proficient in repairing the DNA damage by a photoreactivation mechanism, they do not possess efficient dark repair systems. The mild toxinogenic strain 154 of classical Vibrios presumably lacks any excision repair mechanism and studies of irradiated cell DNA indicate that the ultraviolet-induced pyrimidine dimers may not be excised. Ultraviolet-irradiated cells after saturation of dark repair can be further photoreactivated.
Collapse
|
16
|
|
17
|
Darby V, Holland IB. A kinetic analysis of cell division, and induction and stability of recA protein in U.V. Irradiated ion+ and ion-strains of Escherichia coli K12. MOLECULAR & GENERAL GENETICS : MGG 1979; 176:121-8. [PMID: 232229 DOI: 10.1007/bf00334303] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Kinetic analysis of induction of recA protein synthesis after U.V. irradiation does not show correspondence with the kinetics of division inhibition in ion+ and ion- strains. When the induction of recA protein after U.V. is drastically reduced by rifampicin treatment, no effect on the kinetics of division inhibition is observed.
Collapse
|
18
|
Kogoma T, Torrey TA, Connaughton MJ. Induction of UV-resistant DNA replication in Escherichia coli: induced stable DNA replication as an SOS function. MOLECULAR & GENERAL GENETICS : MGG 1979; 176:1-9. [PMID: 396443 DOI: 10.1007/bf00334288] [Citation(s) in RCA: 77] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The striking similarity between the treatments that induce SOS functions and those that result in stable DNA replication (continuous DNA replication in the absence of protein synthesis) prompted us to examine the possibility of stable DNA replication being a recA+ lexA+-dependent SOS function. In addition to the treatments previously reported, ultraviolet (UV) irradiation or treatment with mitomycin C was also found to induce stable DNA replication. The thermal treatment of tif-1 strains did not result in detectable levels of stable DNA replication, but nalidixic acid readily induced the activity in these strains. The induction of stable DNA replication with malidixic acid was severely suppressed in tif-1 lexA mutant strains. The inhibitory activity of lexA3 was negated by the presence of the spr-51 mutation, an intragenic suppressor of lexA3. Induced stable DNA replication was found to be considerably more resistant to UV irradiation than normal replication both in a uvrA6 strain and a uvr+ strain. The UV-resistant replication occurred mostly in the semiconservative manner. The possible roles of stable DNA replication in repair of damaged DNA are discussed.
Collapse
|
19
|
|
20
|
Smith KC, Hamelin C. DNA synthesis kinetics, cell division delay, and post-replication repair after UV irradiation of frozen cells of E. coli B/r. Photochem Photobiol 1977; 25:27-9. [PMID: 322163 DOI: 10.1111/j.1751-1097.1977.tb07420.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
21
|
Smith KC. Ultraviolet radiation-induced mutability of uvrD3 strains of Escherichia coli B/r and K-12: a problem in analyzing mutagenesis data. Photochem Photobiol 1976; 24:433-7. [PMID: 790420 DOI: 10.1111/j.1751-1097.1976.tb06850.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
22
|
Bridges BA, Mottershead RP. Mutagenic DNA repair in Escherichia coli. III. Requirement for a function of DNA polymerase III in ultraviolet-light mutagenesis. MOLECULAR & GENERAL GENETICS : MGG 1976; 144:53-8. [PMID: 772414 DOI: 10.1007/bf00277304] [Citation(s) in RCA: 113] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The polC (= dnaE) temperature-sensitive DNA polymerase III mutation from Escherichia coli BT1026 has been transduced into E. coli WP2 (to give CM731) and WP2 uvr A (to give CM741). In excision-deficient CM741 UV-induced Trp+ mutations progressively lost their photoreversibility during post-irradiation incubation at 34 degrees. Immediately after transfer to 43 degrees, however, there was no further loss of reversibility although post-replication strand joining still occurred and uptake of 3H-thymidine into DNA continued for 20 to 30 min. In excision-proficient CM731, UV lesions capable of leading to Strr mutations disappeared during post-irradiation incubation at restrictive temperature and there was no increase in the number remaining after exposure to photoreversing light. In contrast, at permissive temperature, premutational lesions were not lost and became progressively converted into non-photoreverisble mutations. It is concluded that a function of the polC gene is necessary for error-prone repair to occur and that this function is defective at 43 degrees in the enzyme specified by the polC allele from BT1026. This function seems not to be essential for most post-replication or excision repair or for normal DNA replication and may be particularly involved in the insertion of incorrect bases during error-prone repair.
Collapse
|
23
|
George DL, Witkin EM. Slow excision repair in an mfd mutant of Escherichia coli B/r. MOLECULAR & GENERAL GENETICS : MGG 1974; 133:283-91. [PMID: 4612337 DOI: 10.1007/bf00332704] [Citation(s) in RCA: 39] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
24
|
Cramp WA, Petrusek R. The synthesis of DNA by membranes-DNA complexes from E. coli B-r and E. coli Bs-1 after exposure to u.v. light; a comparison with the effects of ionizing radiation. INTERNATIONAL JOURNAL OF RADIATION BIOLOGY AND RELATED STUDIES IN PHYSICS, CHEMISTRY, AND MEDICINE 1974; 26:277-84. [PMID: 4609939 DOI: 10.1080/09553007414551241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
25
|
|
26
|
Davies R, Sinskey AJ, Botstein D. Deoxyribonucleic acid repair in a highly radiation-resistant strain of Salmonella typhimurium. J Bacteriol 1973; 114:357-66. [PMID: 4572719 PMCID: PMC251774 DOI: 10.1128/jb.114.1.357-366.1973] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Deoxyribonucleic acid repair was studied in gamma-irradiated wild-type Salmonella typhimurium and in a radiation-resistant derivative 20 times more resistant than wild type. After exposure to 20 or 50 krad, the wild-type strain (DB21) degraded 30 to 50% of its prelabeled DNA into acid-soluble fragments, whereas the radioresistant strain degraded less than 15% after 4 h of incubation. Post-irradiation synthesis of DNA in the wild-type strain DB21 was reduced after a dose of 20 krad and totally inhibited after exposure to 200 krad. With radiation-resistant strain, D21R6008, on the other hand, DNA synthesis was delayed after a dose of 200 krad but not inhibited. Doses of 20 and 200 krad produced a similar number of single-strand breaks in the DNA of both strains as determined by zone sedimentation analysis in alkaline sucrose gradients. The radiation-resistant strain D21R6008, on the other hand, DNA synthesis was strand breaks in its DNA and repairs these damages more rapidly than wild-type Salmonella.
Collapse
|
27
|
Rudé JM, Doudney CO. Relation between survival and deoxyribonucleic acid replication in ultraviolet-irradiated resistant and sensitive strains of Escherichia coli B-r. J Bacteriol 1973; 113:1161-9. [PMID: 4570772 PMCID: PMC251677 DOI: 10.1128/jb.113.3.1161-1169.1973] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
When arabinose-grown Escherichia coli B/r is ultraviolet (UV) irradiated in the logarithmic phase of growth, the dose inactivation curve for both colony formation and deoxyribonucleic acid (DNA) synthesis (based on the relative rates of synthesis) is exponential in nature. When protein synthesis is inhibited before UV-irradiation, both inactivation curves have a large shoulder. Pre-irradiation inhibition of protein synthesis increases considerably the colony-forming ability of a UV-irradiated Hcr(-) and Rec(-) strain of E. coli B/r. However, with the repair-deficient strains, both the shoulder and slope of the survival curve are affected. We investigated the effect of UV irradiation on DNA synthesis in Hcr(-) bacteria and found that pre-irradiation inhibition of protein synthesis increases UV resistance of DNA replication in this strain also. The results suggest that inhibition of protein synthesis before irradiation increases UV resistance in E. coli B/r by a mechanism which is independent of both the excision and recombination repair systems.
Collapse
|
28
|
|
29
|
Bridges BA. Evidence for a further dark repair process in bacteria. NATURE: NEW BIOLOGY 1972; 240:52-3. [PMID: 4564501 DOI: 10.1038/newbio240052a0] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
30
|
The duration of recovery and DNA repair in excision deficient derivatives of Escherichia coli K-12 after ultraviolet irradiation. MOLECULAR & GENERAL GENETICS : MGG 1971; 113:285-96. [PMID: 4947369 DOI: 10.1007/bf00272328] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
31
|
Hewitt R, Gaskins P. Influence of ultraviolet irradiation on chromosome replication in ultraviolet-sensitive bacteria. J Mol Biol 1971; 62:215-21. [PMID: 4945530 DOI: 10.1016/0022-2836(71)90140-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
32
|
|
33
|
Haupt I, Strohbach G. [Effect of the bifunctionally alkylating cytostastic agent IMET 3106 on growth, cell division, DNA-, RNA- and protein synthesis of Escherichia coli]. ZEITSCHRIFT FUR ALLGEMEINE MIKROBIOLOGIE 1971; 11:571-84. [PMID: 4949081 DOI: 10.1002/jobm.3630110702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
34
|
Doudney CO. Increased resistance of DNA replication to ultraviolet light damage in amino acid-starved bacteria. BIOCHIMICA ET BIOPHYSICA ACTA 1971; 228:57-66. [PMID: 4926032 DOI: 10.1016/0005-2787(71)90546-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
35
|
Smith KC, Meun DH. Repair of radiation-induced damage in Escherichia coli. I. Effect of rec mutations on post-replication repair of damage due to ultraviolet radiation. J Mol Biol 1970; 51:459-72. [PMID: 4923857 DOI: 10.1016/0022-2836(70)90001-x] [Citation(s) in RCA: 152] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
36
|
|