1
|
Kranendonk M, Laires A, Rueff J, Estabrook WR, Vermeulen NP. Heterologous expression of xenobiotic mammalian-metabolizing enzymes in mutagenicity tester bacteria: an update and practical considerations. Crit Rev Toxicol 2000; 30:287-306. [PMID: 10852498 DOI: 10.1080/10408440091159211] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
There is an increasing need for metabolic competent cell systems for the mechanistic studies of biotransformation of xenobiotics in toxicology in general and in genotoxicology in particular. These cell systems combine the heterologous expression of a particular mammalian biotransformation enzyme with a specific target/ end point by which a functional analysis of the expressed gene product in the (geno)toxicity of chemicals can be performed. cDNAs of an increasing number of mammalian biotransformation enzymes is being cloned. The construction of specific expression vectors permits their heterologous expression in laboratory bacteria, such as Escherichia coli strains. This development does not only allow biochemical and enzymatic studies of (pure) enzyme preparations but also facilitates the engineering of metabolically competent mutagenicity tester bacteria, thereby providing new tools for genotoxicity testing and for studying of the roles of biotransformation in chemical carcinogenesis. In this review, we describe an update as well as an evaluation of enzymes expressed in mutagenicity tester bacteria. Four types of biotransformation enzymes are now expressed in these bacteria, namely, GSTs, CYPs, NATs, and STs. The expression of these enzymes in the tester bacteria and their subsequent application in mutagenicity assays demonstrates that heterologous expression in this type of bacteria has a number implications for the functionality of the biotransformation enzymes as well as for the functioning of the tester bacteria in mutagenicity detection. We also describe here a number of practical considerations in this regard.
Collapse
Affiliation(s)
- M Kranendonk
- Department of Genetics, Faculty of Medical Sciences, Universidade Nova de Lisboa, Lisbon, Portugal.
| | | | | | | | | |
Collapse
|
2
|
Wijker CA, Lafleur MV. Influence of the UV-activated SOS response on the gamma-radiation-induced mutation spectrum in the lacI gene. Mutat Res 1998; 408:195-201. [PMID: 9806418 DOI: 10.1016/s0921-8777(98)00034-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Previous studies of our group have shown that intracellular or extracellular gamma-irradiation of the lacI gene results in different mutational spectra. One cause for these differences might be the error-prone SOS response, which is activated in the intracellular situation by gamma-irradiation but not in the extracellular situation. Since UV-radiation is a well-established strong inducer of the SOS response, we used bacterial host cells, pretreated with UV-light to study the influence of the SOS response on the gamma-radiation-induced mutation spectrum in the lacI gene in the extracellular situation. If the SOS response was activated, mutations on A:T base pairs and frameshift mutations accounted for 16% and 12% of all mutations, respectively, but they were hardly detected in the absence of an induced SOS response. G:C to T:A transversions increased from 14% to 24% in the presence of an activated SOS response. We can therefore conclude from this study, that SOS-induction of host cells by UV-light influences the extracellular mutation spectrum in the lacI gene, with respect to mutations on A:T base pairs, G:C to T:A transversions and frameshift mutations. This conclusion is supported by the fact that the previously obtained intracellular gamma-radiation-induced mutation spectrum in the lacI gene, in which the SOS response is also involved, shows great similarities with the extracellular mutation spectrum in the presence of an activated SOS response in this study.
Collapse
Affiliation(s)
- C A Wijker
- Department of Radiotherapy, Faculty of Medicine, Vrije Universiteit, Amsterdam, Netherlands.
| | | |
Collapse
|
3
|
Wijker CA, Wientjes NM, Lafleur VM. Mutation spectrum in the lacI gene, induced by gamma-radiation in aqueous solution under oxic conditions. Mutat Res 1998; 403:137-47. [PMID: 9726014 DOI: 10.1016/s0027-5107(98)00072-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Irradiation of DNA in a cellular environment leads to many types of DNA damage, resulting from various effects of gamma-radiation. One of these effects is the formation of water-derived radicals (e.g., .OH radicals), which are formed in the vicinity of DNA (indirect effect). To study the influence of the indirect effect on gamma-radiation-induced mutations, a newly constructed plasmid, containing the lacI gene as a target gene, was irradiated with 60Co gamma-radiation in aqueous solution, in the presence of oxygen. Under these circumstances, only .OH radicals will be responsible for the induced mutations. Sequence analysis of the gamma-radiation-induced mutations showed that 96% of all mutations were base pair substitutions, 87% of which occurred in the lacI gene, the others are formed in the lac operator part. All gamma-radiation-induced mutations in the lacI gene occurred exclusively on G:C base pairs, and no mutations at A:T base pairs could be detected. In the spontaneous mutation spectrum, 83% of all mutations were base pair substitutions, 35% of which occurred in the lacI gene and 48% in the lac operator part. Base pair substitutions on G:C base pairs were very similar in the gamma-radiation-induced and in the spontaneous mutation spectrum, implying a high contribution of .OH radicals to spontaneous mutagenesis. A:T to G:C transitions accounted for 10% of all spontaneous base pair substitutions in the lacI gene and are probably the result of effects, other than just .OH radicals. It can be concluded that .OH radicals are an important source for mutations at G:C base pairs. In this paper, the extracellular gamma-radiation-induced mutation spectrum is also compared to the previously obtained, intracellular gamma-radiation-induced mutation spectrum of the lacI gene. Comparison shows some differences, such as relative high amounts of mutations at A:T base pairs, G:C to T:A transversions and frameshift mutations in the intracellular gamma-radiation-induced mutation spectrum, as compared to the extracellular gamma-radiation-induced mutation spectrum. Since the extracellular gamma-radiation-induced mutation spectrum shows that .OH radicals are mainly responsible for base pair substitutions on G:C base pairs, mutations at A:T base pairs in the intracellular gamma-radiation-induced mutation spectrum are apparently the result of additional or other factors.
Collapse
Affiliation(s)
- C A Wijker
- Department of Medical Oncology, Faculty of Medicine, Vrije Universiteit, Amsterdam, Netherlands.
| | | | | |
Collapse
|
4
|
Goeptar AR, Koeman JH, van Boekel MA, Alink GM. Impact of digestion on the antimutagenic activity of the milk protein casein. Nutr Res 1997. [DOI: 10.1016/s0271-5317(97)00120-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
5
|
van Boekel MA, Goeptar AR, Alink GM. Antimutagenic activity of casein against MNNG in the E. coli DNA repair host-mediated assay. Cancer Lett 1997; 114:85-7. [PMID: 9103259 DOI: 10.1016/s0304-3835(97)04630-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The effect of caseinate and soy protein in the diet on the mutagenicity induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) was assessed in-vivo and ex-vivo in the DNA-repair host-mediated assay and liquid suspension assay, respectively. Of the two proteins only casein showed a strong antimutagenic activity over the whole digestive tract, except in the stomach. It is suggested that the molecular structure of a protein determines its protective effect against mutagens: casein lacks secondary and tertiary structure so that amino acids are more readily available for interaction with the mutagen than with the amino acids in soy protein which is a globular protein.
Collapse
Affiliation(s)
- M A van Boekel
- Department of Food Science, Wageningen Agricultural University, The Netherlands
| | | | | |
Collapse
|
6
|
van Zeeland AA. Molecular dosimetry of chemical mutagens. Relationship between DNA adduct formation and genetic changes analyzed at the molecular level. Mutat Res 1996; 353:123-50. [PMID: 8692189 DOI: 10.1016/0027-5107(95)00245-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
This is a review of the work carried out by 16 collaborating institutes within a project which was part of the European Programme: Science and Technology for Environmental Protection (STEP). The purpose of the project was to investigate the relationship between the exposure to genotoxic chemicals and the induction of DNA damage and genetic effects as determined in in vitro and in vivo assays under laboratory conditions. Two types of investigation were performed: (i) determination of the relationship between the extent of exposure to a genotoxic chemical and the frequency of DNA adducts formed in the test organism and (ii) identification of those DNA adducts which are responsible for the biological effects of genotoxic chemicals. The research was carried out with a series of alkylating agents which all induce similar types of DNA damage but for which the proportions of the different types of adducts vary. The frequency of this type of DNA damage was also modulated by base excision repair processes. In addition, a number of genotoxic agents which cause DNA damage recognized by nucleotide excision repair were investigated. The consequences of DNA adduct formation, i.e., the induction of gene mutations, were analyzed at the DNA sequence level, generating mutational spectra. These investigations of the mutational specificities of carcinogens contributed to our understanding of the molecular mechanisms which are involved in cancer induction by genotoxins.
Collapse
Affiliation(s)
- A A van Zeeland
- MGC-Department of Radiation Genetics and Chemical Mutagenesis, State University of Leiden, The Netherlands
| |
Collapse
|
7
|
Wijker CA, Lafleur MV, van Steeg H, Mohn GR, Retèl J. Gamma-radiation-induced mutation spectrum in the episomal lacI gene of Escherichia coli under oxic conditions. Mutat Res 1996; 349:229-39. [PMID: 8600354 DOI: 10.1016/0027-5107(95)00187-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In this study we have determined the mutation spectrum in the complete episomal lacI gene of Escherichia coli induced by gamma-radiation under oxic conditions. Mutants were generated by 60Co gamma-irradiation of an E. coli culture of stationary cells in LB medium, under continuous flushing with oxygen. Oligonucleotide probe analysis showed that 14% of the gamma-ray-induced mutations were located at the lacI gene hot spot at position 620-632, which is characterized by a triple repeat of the 5'-TGGC-3' sequence. Previously it was shown that about 70% of the spontaneous mutations were located at this site due to the loss or the addition of a TGGC sequence. The non-hot spot mutations were further characterized by automated sequence analysis. The results show that base pair (bp) substitutions were the main type of gamma-ray-induced mutations. Although all types of bp substitutions were observed, 74% of the bp substitutions involved C/G base pairs. C/G --> T/A and C/G --> A/T substitutions were predominant, both accounting for 35% of all bp substitutions, whereas A/T --> C/G substitutions were only seldomly observed (3%). A relatively large amount of -1 bp deletions (15% of all mutations) was detected in the gamma-ray-induced mutation spectrum, mainly affecting C/G base pairs, and 10% were deletions, ranging in size from 11 to 532 bp. It can be concluded that under oxic conditions gamma-radiation induces in E. coli mainly bp substitutions of all types but preferentially at C/G base pairs, and that the mutations tend to be randomly distributed within the lacI gene sequence.
Collapse
Affiliation(s)
- C A Wijker
- Department of Medical Oncology, Vrije Universiteit, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
8
|
Abril N, Luque-Romero FL, Prieto-Alamo MJ, Margison GP, Pueyo C. ogt alkyltransferase enhances dibromoalkane mutagenicity in excision repair-deficient Escherichia coli K-12. Mol Carcinog 1995; 12:110-7. [PMID: 7662116 DOI: 10.1002/mc.2940120208] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We examined the role of the O6-alkylguanine-DNA alkyltransferase encoded by ogt gene in the sensitivity of Escherichia coli to the mutagenic effects of the dibromoalkanes, dibromoethane and dibromomethane, by comparing responses in ogt- bacteria to those in their isogenic ogt+ parental counterparts. The effects of the uvrABC excision-repair system, the adaptive response, mucAB and umuDC mutagenic processing, and glutathione bioactivation on the differential responses of ogt- and ogt+ bacteria were also studied. Mutation induction was monitored by measuring the frequency of forward mutations to L-arabinose resistance. Induced mutations occurred only in excision repair-defective strains and were totally (with dibromomethane) or substantially (with dibromoethane) dependent on the alkyltransferase (ATase) encoded by the ogt gene. An increased mutagenic response to both dibromoalkanes was also seen in ogt- bacteria that overexpressed the ogt protein from a multicopy plasmid, indicating that the differences in mutability between ogt+ and ogt- bacteria were not dependent on the ogt- null allele carried by the defective strain. The ATase encoded by the constitutive ogt gene was more effective in promoting dibromoalkane mutagenicity than the ada ATase induced by exposure to low doses of a methylating agent. The mutagenicity promoted by the ogt ATase was dependent on both glutathione bioactivation and SOS mutagenic processing. To our knowledge, this paper presents for the first time evidence that DNA ATases, in particular the ATase encoded by the ogt gene, can increase the mutagenic effects of a DNA-damaging agent. The mechanism of this effect has yet to be established.
Collapse
Affiliation(s)
- N Abril
- Departamento de Genética, Facultad de Ciencias, Universidad de Córdoba, Espana
| | | | | | | | | |
Collapse
|
9
|
Maliepaard M, Sitters KA, de Mol NJ, Janssen LH, Stratford IJ, Stephens M, Verboom W, Reinhoudt DN. Potential antitumour mitosenes: relationship between in vitro DNA interstrand cross-link formation and DNA damage in Escherichia coli K-12 strains. Biochem Pharmacol 1994; 48:1371-7. [PMID: 7945435 DOI: 10.1016/0006-2952(94)90559-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This investigation was aimed at determining the possible relationship between DNA interstrand cross-linking and the cytotoxic activity of potential antitumour mitosene compounds. Mitosenes, possessing two good leaving groups at C-1 and C-10, were found to be able to cross-link calf thymus DNA under hypoxic conditions following sodium dithionite (Na2S2O4) reduction at pH 7.0 and pH 5.5. DNA interstrand cross-linking was pH dependent for most of the mitosenes used, with a higher amount of cross-links formed at pH 5.5 compared to pH 7.0. Without reduction or under aerobic conditions no cross-link formation was detected. The importance of DNA damage for the toxic effect of these mitosenes was assayed by comparing the survival in a DNA repair deficient and a DNA repair proficient E. coli K-12 strain. A correlation between the number of cross-links formed in calf thymus DNA in vitro and the IC50 values in the DNA repair deficient E. coli strain was found. The effect of hypoxia on toxicity of mitosenes was studied in Chinese hamster V79 cells. In these cells, mitosenes appeared to be very active. Under severe hypoxic conditions toxicity of these mitosenes increased, most likely due to the increased lifetime of the activated mitosene species as compared to aerobic conditions. The results suggest that DNA cross-linking following reductive activation is important for the eventual activity of mitosenes in a bacterial system. Increased activity of mitosenes under hypoxic conditions in the V79 cells indicates that these mitosenes may be more active in hypoxic parts of tumours.
Collapse
Affiliation(s)
- M Maliepaard
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Utrecht University, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Heflich RH, Neft RE. Genetic toxicity of 2-acetylaminofluorene, 2-aminofluorene and some of their metabolites and model metabolites. Mutat Res 1994; 318:73-114. [PMID: 7521935 DOI: 10.1016/0165-1110(94)90025-6] [Citation(s) in RCA: 174] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
2-Acetylaminofluorene and 2-aminofluorene are among the most intensively studied of all chemical mutagens and carcinogens. Fundamental research findings concerning the metabolism of 2-acetylaminofluorene to electrophilic derivatives, the interaction of these derivatives with DNA, and the carcinogenic and mutagenic responses that are associated with the resulting DNA damage have formed the foundation upon which much of genetic toxicity testing is based. The parent compounds and their proximate and ultimate mutagenic and carcinogenic derivatives have been evaluated in a variety of prokaryotic and eukaryotic assays for mutagenesis and DNA damage. The reactive derivatives are active in virtually all systems, while 2-acetylaminofluorene and 2-aminofluorene are active in most systems that provide adequate metabolic activation. Knowledge of the structures of the DNA adducts formed by 2-acetylaminofluorene and 2-aminofluorene, the effects of the adducts on DNA conformation and synthesis, adduct distribution in tissues, cells and DNA, and adduct repair have been used to develop hypotheses to understand the genotoxic and carcinogenic effects of these compounds. Molecular analysis of mutations produced in cell-free, bacterial, in vitro mammalian, and intact animal systems have recently been used to extend these hypotheses.
Collapse
Affiliation(s)
- R H Heflich
- Division of Genetic Toxicology, National Center for Toxicological Research, Jefferson, AR 72079
| | | |
Collapse
|
11
|
Kranendonk M, Ruas M, Laires A, Rueff J. Isolation and prevalidation of an Escherichia coli tester strain for the use in mechanistic and metabolic studies of genotoxins. Mutat Res 1994; 312:99-109. [PMID: 7510836 DOI: 10.1016/0165-1161(94)90014-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We have isolated an Escherichia coli tester strain for the use in mechanistic and metabolic studies of genotoxins. We started with one of the more used and better characterized E. coli K-12 laboratory strains, AB1157. We isolated a lipopolysaccharide defective mutant of strain AB1886 which is an excision repair deficient derivative of AB1157 and introduced a newly constructed plasmid pKR11, encoding mucAB, resulting in strain MR2101/pKR11. A genotoxicity assay was designed, monitoring the reversion to arginine prototrophy and a preliminary validation was carried out against Ames tester strain TA100 with a set of diagnostic compounds. The results seem to indicate that strain MR2101/pKR11 is an adequate tester strain which can be a useful tool in mechanistic studies. Moreover, this strain can serve as mother strain to isolate improved and more specialized tester strains.
Collapse
Affiliation(s)
- M Kranendonk
- Department of Genetics, Faculty of Medical Sciences, UNL, Lisbon, Portugal
| | | | | | | |
Collapse
|
12
|
Abril N, Hera C, Alejandre E, Rafferty JA, Margison GP, Pueyo C. Effect of ogt expression on mutation induction by methyl-, ethyl- and propylmethanesulphonate in Escherichia coli K12 strains. MOLECULAR & GENERAL GENETICS : MGG 1994; 242:744-8. [PMID: 8152424 DOI: 10.1007/bf00283431] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We have previously reported the isolation of an Escherichia coli K12 mutant that is extremely sensitive to mutagenesis by low doses of ethylating agents. We now show by Southern analysis that the mutation involves a gross deletion covering at least the ogt and fnr genes and that no O6-alkylguanine-DNA-alkyltransferase activity is present in cell-free extracts of an ada::Tn10 derivative of these bacteria. Confirmation that sensitisation to ethylation-induced mutagenesis was attributable to ogt and not to any other loci covered by the deletion was obtained by constructing derivatives. Thus an ogt::kanr disruption mutation was introduced into the parental ogt+ bacteria, and the ogt::kanr mutation was then eliminated by cotransduction of ogt+ with the closely linked Tetr marker (zcj::Tn10). The delta(ogt-fnr) deletion or ogt::kanr disruption mutants were highly sensitive to ethyl methanesulphonate-induced mutagenesis, as measured by the induction of forward mutations to L-arabinose resistance (Arar). Furthermore, the number of Arar mutants increased linearly with dose, unlike the case in ogt+ bacteria, which had a threshold dose below which no mutants accumulated. Differences in mutability were even greater with propyl methanesulphonate. Overproduction of the ogt alkyltransferase from a multicopy plasmid reduced ethylmethanesulphonate-induced mutagenesis in the ogt- mutant strains and also methylmethanesulphonate mutagenesis in ada- bacteria. A sample of AB1157 obtained from the E. coli K12 genetic stock centre also had a deletion covering the ogt and fnr genes. Since such deletions greatly influence the mutagenic responses to alkylating agents, a survey of the presence of the ogt gene in the E. coli K12 strain being used is advisable.
Collapse
Affiliation(s)
- N Abril
- Departamento de Genética, Facultad de Ciencias, Universidad de Córdoba, España
| | | | | | | | | | | |
Collapse
|
13
|
Graves RJ, Callander RD, Green T. The role of formaldehyde and S-chloromethylglutathione in the bacterial mutagenicity of methylene chloride. Mutat Res 1994; 320:235-43. [PMID: 7508089 DOI: 10.1016/0165-1218(94)90050-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Methylene chloride was less mutagenic in Salmonella typhimurium TA100/NG-11 (glutathione-deficient) compared to TA100, indicating that glutathione is involved in the activation of methylene chloride to a mutagen in bacteria. In rodents, the pathway of methylene chloride metabolism utilizing glutathione produces formaldehyde via a postulated S-chloromethylglutathione conjugate (GSCH2Cl). Formaldehyde is known to cause DNA-protein cross-links, and GSCH2Cl may act as a monofunctional DNA alkylator by analogy with the glutathione conjugates of 1,2-dihaloalkanes. The lack of sensitivity of Salmonella TA100 towards formaldehyde (Schmid et al., Mutagenesis, 1 (1986) No. 6, 427-431) suggests that GSCH2Cl is responsible for methylene chloride mutagenicity in Salmonella. In Escherichia coli K12 (AB1157), formaldehyde was mutagenic only in the wild-type, a characteristic shared with cross-linking agents, whereas 1,2-dibromoethane (1,2-DBE) was more mutagenic in uvrA cells (AB1886). Methylene chloride, activated by S9 from mouse liver, was mutagenic only in wild-type cells, suggesting a mutagenic role for metabolically derived formaldehyde in E. coli. Mouse-liver S9 also enhanced the cell-killing effect of methylene chloride in the uvrA, and a recA/uvrA double mutant (AB2480) which is very sensitive to DNA damage. This pattern was consistent with formaldehyde damage. However, a mutagenic role in bacteria for the glutathione conjugate of methylene chloride cannot be ruled out by these E. coli experiments because S9 fractions did not increase 1,2-DBE mutagenicity, suggesting lack of cell wall penetration by this reactive species. Rat-liver S9 did not activate methylene chloride to a bacterial mutagen or enhance methylene chloride-induced cell-killing, which is consistent with the carcinogenicity difference between the species.
Collapse
Affiliation(s)
- R J Graves
- Zeneca Central Toxicology Laboratory, Alderley Park, Macclesfield, Ches, UK
| | | | | |
Collapse
|
14
|
Sankaranarayanan K. International Commission for Protection Against Environmental Mutagens and Carcinogens. Working paper no. 6. Estimation of genetic risks of exposure to chemical mutagens: relevance of data on spontaneous mutations and of experience with ionizing radiation. Mutat Res 1994; 304:139-58. [PMID: 7506354 DOI: 10.1016/0027-5107(94)90323-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
This paper examines the impact of advances in knowledge on the molecular biology of human Mendelian diseases on the estimation of genetic risks of exposure to ionizing radiation and to chemical mutagens. More specifically, it addresses the question of whether and to what extent naturally occurring Mendelian diseases can be used as a baseline for efforts in this area. Data on the molecular nature and mechanisms of origin of spontaneous mutations underlying naturally occurring Mendelian diseases and on radiation-induced mutations in experimental systems suggest that for ionizing radiation, naturally occurring Mendelian diseases may not constitute an entirely adequate frame of reference and that current risk estimates for this class of diseases are conservative; these estimates however provide a margin of safety in formulating radiation protection guidelines. Currently available data on mechanisms and specificities of action of chemical mutagens, molecular dosimetry, repair of chemically induced adducts in the DNA, adduct-mutation relationships etc., permit the tentative conclusion that naturally occurring Mendelian diseases may provide a better baseline for genetic risk estimation for chemical mutagens than for ionizing radiation. With both ionizing radiation and chemical mutagens, the question of which Mendelian diseases are potentially inducible will become answerable in the near future when more molecular data on human genetic diseases become available. It is therefore essential that risk estimators keep abreast of advances in human genetics and integrate these into their conceptual framework. However, induced Mendelian diseases (especially the dominant ones which are of more immediate concern) are likely to represent a very small fraction of the adverse genetic effects of induced mutations. More attention therefore needs to be devoted to studies on the heterozygous effects of induced mutations.
Collapse
Affiliation(s)
- K Sankaranarayanan
- MGC Department of Radiation Genetics and Chemical Mutagenesis, Sylvius Laboratories, State University of Leiden, The Netherlands
| |
Collapse
|
15
|
Herrera G, Urios A, Aleixandre V, Blanco M. Mutability by polycyclic hydrocarbons is improved in derivatives of Escherichia coli WP2 uvrA with increased permeability. Mutat Res 1993; 301:1-5. [PMID: 7677937 DOI: 10.1016/0165-7992(93)90048-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Escherichia coli B, unlike both E. coli K12 and Salmonella typhimurium, is sensitive to the rough-specific phage C21. This sensitivity is probably due to the incomplete lipopolysaccharide core of the E. coli B cells, which confers on them a partial permeability to large molecules. Derivatives of WP2 uvrA, a tryptophan-requiring E. coli B strain, were rendered still more permeable by selecting for C21-resistant clones. The new permeable strains, when tested for mutagenesis induced by polycyclic hydrocarbons, showed a mutagenic response higher than that of the parental strains.
Collapse
Affiliation(s)
- G Herrera
- Instituto de Investigaciones Citológicas, Fundación Valenciana de Investigaciones Biomédicas, Spain
| | | | | | | |
Collapse
|
16
|
Hellmér L, Bolcsfoldi G. An evaluation of the E. coli K-12 uvrB/recA DNA repair host-mediated assay. I. In vitro sensitivity of the bacteria to 61 compounds. Mutat Res 1992; 272:145-60. [PMID: 1383747 DOI: 10.1016/0165-1161(92)90043-l] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A differential DNA repair test was evaluated in vitro, using derivatives of E. coli K-12 343/113 with the genotype uvrB-/recA- and uvrB+/recA+. The aim of this study was to characterize the sensitivity of the assay to different compounds in vitro and thereby provide information on the usefulness of this end-point as an indicator of genotoxicity in a host-mediated assay. Sixty-one compounds from diverse chemical groups were tested and of these 32 gave a positive result. The results obtained were compared with results from the Ames test and were in agreement for 49 out of the 61 compounds tested. Chemicals that were detected in this test but negative in the Ames test were 4-aminophenol, catechol, diethylstilbestrol, thioacetamide and thiourea. Seven of the compounds tested gave a negative result in E. coli but were positive in Salmonella. These were 4-aminobiphenyl, benzo[a]pyrene, cyclophosphamide, 1-naphthylamine, N-nitrosobutylpropylamine, quinoline and 2-toluidine. The performance of the in vitro test and reasons for the discrepant results with the Ames test are discussed. The overall concordance between the two tests was about 80%. On the basis of these results we consider these bacterial strains, and differential DNA repair as an end-point, to be sufficiently accurate as an indicator of genotoxicity in vitro and thereby also in vivo.
Collapse
Affiliation(s)
- L Hellmér
- AB Astra, Safety Assessment, Södertälje, Sweden
| | | |
Collapse
|
17
|
Hellmér L, Bolcsfoldi G. An evaluation of the E. coli K-12 uvrB/recA DNA repair host-mediated assay. II. In vivo results for 36 compounds tested in the mouse. Mutat Res 1992; 272:161-73. [PMID: 1383748 DOI: 10.1016/0165-1161(92)90044-m] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The aim of this study was to further evaluate the E. coli K-12 DNA repair host-mediated assay, as a short-term in vivo genotoxicity test, to be used as a complement to the micronucleus test in the routine testing of chemicals and drugs. The assay involves the administration of the test substance to mice by the route of choice, followed by the intravenous administration of a mixture of DNA repair deficient and proficient derivatives of E. coli K-12. After an incubation period the relative survival of the two strains was determined in blood, liver, lungs, kidneys and testes of the host. A significant preferential reduction of the DNA repair deficient strain in any organ indicates that the test substance possesses genotoxic properties. A total of 36 substances, 26 carcinogens, 4 weak or non-carcinogens and 6 unclassified substances, were tested in this assay. Positive results were obtained for 23 compounds. Of the carcinogens 18 were positive and of the non-carcinogens 3 were negative. The overall concordance between the assay and carcinogenicity was 72%. In general, alkylating agents and direct-acting nitroso compounds showed genotoxic activity in all organs tested, while the other substances were positive in a limited number of organs. With oral administration, which was the most commonly used administration route in the study, the organ showing a positive response most often was the blood. The results from the present study were compared with results from the micronucleus test, which were available for 26 of the substances. Results were in agreement for 15 of the substances, while 8 substances were positive in the present assay and negative in the micronucleus test: 4-aminobiphenyl, 2-anisidine, epichlorohydrin, formaldehyde, 1- and 2-naphthylamine, 2-nitrophenylenediamine and 4-nitroquinoline-N-oxide. The substances negative in the E. coli DNA repair host-mediated assay, but positive in the micronucleus test were: benzene, catechol and cyclophosphamide. It is concluded from this evaluation that the E. coli K-12 DNA repair host-mediated assay detects a number of carcinogens that are negative in the micronucleus test, while detecting most of the compounds that are positive in the latter. The advantages of this test are that differential DNA repair measures a broad spectrum of genetic damage, an in vitro/in vivo comparison is possible with the same test organisms, results can be obtained from various organs and the test is rapid.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- L Hellmér
- AB Astra, Safety Assessment, Södertälje, Sweden
| | | |
Collapse
|
18
|
Kramers PG, Gentile JM, Gryseels BJ, Jordan P, Katz N, Mott KE, Mulvihill JJ, Seed JL, Frohberg H. International Commission for Protection Against Environmental Mutagens and Carcinogens. ICPEMC publication No. 18. Review of the genotoxicity and carcinogenicity of antischistosomal drugs; is there a case for a study of mutation epidemiology? Report of a task group on mutagenic antischistosomals. Mutat Res 1991; 257:49-89. [PMID: 1987457 DOI: 10.1016/0165-1110(91)90019-r] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
One of the interests of ICPEMC is to identify situations in which the possible induction of inherited defects in man by mutagen exposure could actually be studied. The large-scale use of mutagenic drugs in field programmes against schistosomiasis, mainly during the 1970's, was considered a possible case. An ICPEMC task group approached the problem by (1) updating the genetic toxicology data base for antischistosomal drugs, and (2) reviewing possible study areas. Expertise was combined from genetic toxicology, mutation epidemiology and tropical medicine. It was considered that: (a) if any, hycanthone would be the most appropriate candidate drug for study; (b) it would be virtually impossible to meet the basic requirements of an appropriate mutation epidemiology study, in endemic countries; (c) as more defined genetic endpoints would be selected (e.g. sentinel phenotypes) the required large sample sizes would seem prohibitive, since documentation on past programmes is limited and local demography would render the reliable tracking of substantial numbers of offspring of treated persons an almost impossible task; (d) in most endemic countries proper diagnosis and registration of inherited defects is largely lacking; (e) the problems encountered in demonstrating inherited effects in humans after heavy or chronic exposure to established animal mutagens such as ionizing radiation and cancer chemotherapy, in combination with the ambiguous nature of the animal germ cell data with hycanthone, do not particularly warrant large expectations; (f) since non-mutagenic antischistosomal drugs are now in use, the problem is academic and of low priority in the endemic countries whose medical and research resources are often limited. Thus, studying offspring of hycanthone-treated people to demonstrate the mutagenic potential of the drug in man is not a viable enterprise.
Collapse
Affiliation(s)
- P G Kramers
- National Institute of Public Health and Environmental Protection, Bilthoven, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
van Zeeland AA, de Groot A, Neuhäuser-Klaus A. DNA adduct formation in mouse testis by ethylating agents: a comparison with germ-cell mutagenesis. Mutat Res 1990; 231:55-62. [PMID: 2366776 DOI: 10.1016/0027-5107(90)90176-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
DNA adduct formation in various organs of mice was determined after i.p. injection with the ethylating agents N-ethyl-N-nitrosourea (ENU), ethyl methanesulfonate (EMS), and diethyl sulfate (DES). The potency of the 3 chemicals to react either at the O6 position of guanine or at the N-7 position of guanine was related to their potency to induce mutations in the specific-locus assay of the mouse. ENU, which produces relatively high levels of O-alkylations (O6-ethylguanine), is primarily mutagenic in spermatogonia of the mouse, whereas EMS and DES, which produce relatively high levels of N-alkylations (7-ethylguanine) in DNA, are much more mutagenic in post-meiotic stages of male germ cells. The relationship between exposure to ENU and the dose, determined as O6-ethylguanine per nucleotide in testicular DNA, is non-linear. However, the relationship between dose and mutation induction in spermatogonia by ENU appears to be linear, which is expected if O6-ethylguanine is the major mutagenic lesion. The relatively high mutagenic potency of EMS and DES in the late stages of spermatogenesis is probably due to the accumulation of apurinic sites which generate mutations after fertilization. A comparison of mutation induction by ENU in spermatogonia and mutation induction in cultured mammalian cells indicates that about 10 O6-ethylguanine residues were necessary in the coding region of a gene to generate a mutation.
Collapse
Affiliation(s)
- A A van Zeeland
- Department of Radiation Genetics and Chemical Mutagenesis, Sylvius Laboratories, State University of Leiden, The Netherlands
| | | | | |
Collapse
|
20
|
Knasmuller S, Szakmary A, Kehrer M. Use of differential DNA-repair host mediated assays to investigate the biotransformation of xenobiotics in Drosophila melanogaster. I. Genotoxic effects of nitrosamines. Chem Biol Interact 1990; 75:17-29. [PMID: 2114223 DOI: 10.1016/0009-2797(90)90019-j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A rapid differential DNA-repair assay procedure was developed to investigate the biotransformation of xenobiotics in Drosophila melanogaster in vivo. Indicator of genotoxic activity was a pair of streptomycin-dependent Escherichia coli strains differing vastly in DNA repair capacity (uvr+/rec+ vs. uvrB/recA). Prior to the experiments with test compounds, mixtures of the two strains were injected into the abdomina of untreated animal hosts (male Berlin-K flies) and the time-dependent recovery kinetics determined. Subsequently, different aliphatic and aromatic nitrosamines were tested. Solutions of the compounds were injected simultaneously with the indicator cells. Three hours later, the flies were killed, homogenized and the induction of (repairable) DNA damage determined by comparison of the survival rates of the two strains in single animals. Eight carcinogenic compounds (nitrosodiethylamine, NDEA; nitrosodimethylamine, NDMA; nitrosodi-npropylamine, NDPA; nitrosodiethanolamine, NDELA; nitrosomethylaniline, NMA; 4-methyl-nitrosopiperidine, MNPIP; nitrosopyrrolidine, NPYR; nitrosomorpholine, NMOR) and one whose tumorigenic activities are still controversially discussed (nitrosodiphenylamine, NDPhA) induced dose-dependent differential killing effects in the present system. One agent which has not been found carcinogenic in rodents (2.6-dimethyl-nitrosopiperidiine. NDMPIP) gave negative results. The ranking order of genotoxic activities of the nitrosamines found in Drosophila in vivo is in good agreement with those of carcinogenic potencies established on the basis of experiments with rats. The most pronounced exceptions are the rather weak response towards NMA and the stronger DNA damaging activity of NMPIP compared to NDMA. Phenobarbital (5-ethyl-5-phenyl-2,4,6-trioxohepatahydropyramidine) (PB) feeding of the flies resulted in an increase of the DNA damaging potencies of all nitrosamines tested. Substantial enhancement of the induction of DNA damage was however, restricted to NDEA, NPYR and NMOR, whereas with nitrosodiphenylamine (NDPhA), NDELA and NDMA only a moderate (less than 25%) increase of differential killing effects was found. In the case of the two latter compounds, these results might be due to the fact that enzymes other than the MFO are involved in their activation. Attempts to localize the formation and/or distribution of metabolites in the bodies of fruitflies by separation of the tagmata of chemically treated animals and determination of genotoxic effects in the different segments indicate that the most pronounced effects occur in the abdomina whereas in heads and thoraxes comparatively lower activities are detectable.
Collapse
Affiliation(s)
- S Knasmuller
- Institute for Experimental Cancer Research, University of Innsbruck, Austria
| | | | | |
Collapse
|
21
|
Lusthof KJ, De Mol NJ, Janssen LH, Egberink RJ, Verboom W, Reinhoudt DN. Covalent binding studies on the 14C-labeled antitumor compound 2,5-bis(1-aziridinyl)-1,4-benzoquinone. Involvement of semiquinone radical in binding to DNA, and binding to proteins and bacterial macromolecules in situ. Chem Biol Interact 1990; 76:193-209. [PMID: 1699678 DOI: 10.1016/0009-2797(90)90088-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
2,5-Bis(1-aziridinyl)-1,4-benzoquinone (BABQ) is a compound from which several antitumour drugs are derived, such as Trenimone, Carboquone and Diaziquone (AZQ). The mechanism of DNA binding of BABQ was studied using 14C-labeled BABQ and is in agreement with reduction of the quinone moiety and protonation of the aziridine ring, followed by ring opening and alkylation. The one-electron reduced (semiquinone) form of BABQ alkylates DNA more efficiently than two-electron reduced or non reduced BABQ. Covalent binding to polynucleotides did not unambiguously reveal preference for binding to specific DNA bases. Attempts to elucidate further the molecular structure of DNA adducts by isolation of modified nucleosides from enzymatic digests of reacted DNA failed because of instability of the DNA adducts. The mechanism of covalent binding to protein (bovine serum albumin, BSA) appeared to be completely different from that of covalent binding to DNA. Binding of BABQ to BSA was not enhanced by reduction of the compound and was pH dependent in a way that is opposite to that of DNA alkylation. Glutathione inhibits binding of BABQ to BSA and forms adducts with BABQ in a similar pH dependence as the protein binding. The aziridine group therefore does not seem to be involved in the alkylation of BSA. Incubation of intact E. coli cells, which endogenously reduce BABQ, resulted in binding to both DNA and RNA, but also appreciable protein binding was observed.
Collapse
Affiliation(s)
- K J Lusthof
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Utrecht University, The Netherlands
| | | | | | | | | | | |
Collapse
|
22
|
Bandyopadhyay R, Sengupta A, Das J. A mutation in the dam gene of Vibrio cholerae: 2-aminopurine sensitivity with intact GATC methylase activity. Biochem Biophys Res Commun 1989; 165:561-7. [PMID: 2688642 DOI: 10.1016/s0006-291x(89)80003-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Vibrio cholerae mutants sensitive to 2-aminopurine (2AP) but with DNA adenine methylase activity similar to parental cells have been isolated. The mutant strains were sensitive to ultraviolet light (UV), methyl methane sulphonate (MMS) and 9-aminoacridine. The spontaneous mutation frequency of the mutants were not significantly affected. Attempts to isolate dam V. cholerae cells by screening 2AP sensitive cells have not been successful. All the mutant phenotypes could be suppressed by introducing the plasmid pRB103 carrying the dam gene of Escherichia coli into the mutant cells.
Collapse
Affiliation(s)
- R Bandyopadhyay
- Biophysics Division, Indian Institute of Chemical Biology, Calcutta
| | | | | |
Collapse
|
23
|
Giphart-Gassler M, Groenewegen A, den Dulk H, van de Putte P, Tasseron-de Jong JG. Studying DNA mutations in human cells with the use of an integrated HSV thymidine kinase target gene. Mutat Res 1989; 214:223-32. [PMID: 2552307 DOI: 10.1016/0027-5107(89)90167-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A shuttle vector carrying the origin of SV40 replication, the thymidine kinase (tk) gene of herpes simplex virus and the E. coli xanthine guanine phosphoribosyl transferase (gpt) gene has been introduced into human TK- cells. A transformed cell line containing only one stably integrated copy of the shuttle vector was used to study mutations in the introduced tk gene at the molecular level. Without selection for gpt expression, spontaneous TK- mutants arose at a frequency of approximately 10(-4)/generation, and were caused by deletion of plasmid sequences. However, when selection for expression of the gpt gene was applied, the background level of mutations at the tk gene was below 4.10(-6). From this cell line, TK- mutants were obtained after treatment with N-ethyl-N-nitrosourea (ENU). COS fusion appeared to be an efficient method for rescue and amplification of the integrated shuttle vector from the human chromosome. After further amplification and analysis in E. coli, rescued tk genes were easily identified and were shown to be physically unaltered by the rescue procedure. In contrast to rescued tk genes from TK+ cells, those obtained from the ENU-induced TK- mutants were unable to complement thymidine kinase-negative E. coli cells. Two such tk mutations were mapped in E. coli by marker rescue analysis. A GC----AT transition was the cause of both mutations. We show here that plasmid rescue by COS fusion is a reliable system for studying gene mutations in human cells, since no sequence changes occurred in rescued DNA except for the 2 ENU-induced sequence changes.
Collapse
Affiliation(s)
- M Giphart-Gassler
- Laboratory of Molecular Genetics, Leiden University, The Netherlands
| | | | | | | | | |
Collapse
|
24
|
Knasmüller S, Szakmary A, Wottawa A. Investigations on the use of EDTA-permeabilized E. coli cells in liquid suspension and animal-mediated genotoxicity assays. Mutat Res 1989; 216:189-96. [PMID: 2503719 DOI: 10.1016/0165-1161(89)90004-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The potential use of EDTA-permeabilized E. coli cells for the investigation of genotoxic effects of compounds with a large molecular configuration in vitro and in animal-mediated differential DNA-repair assays was studied. The indicator for the induction of (repairable) DNA damage was a pair of E. coli K-12 strains (343/765 and 343/753) differing vastly in DNA-repair capacity (uvr+/rec+ vs. uvrB/recA). Investigations on the influence of EDTA treatment on the viability of these strains show that during short-term exposure (3 min), the EDTA level should not exceed 0.5 mmole/l in the pretreatment mix, since at higher concentrations a marginal titer reduction of the repair-deficient strain occurs, thus indicating a weak genotoxic activity of this chelating agent. Comparisons of the results gained in vitro with permeabilized and untreated cells demonstrate that EDTA exposure leads to a substantial enhancement of the sensitivity of the indicator bacteria towards DNA damage induced by B(a)P and N-Ac-2AAF which is essential for the detection of genotoxic activities of these polycyclic aromatic compounds. Experiments to elucidate the possibility of employing EDTA-treated cells in vivo show that following intravenous and oral administration the recovery rates of permeabilized indicator strains from various mouse organs are substantially lower than those found under identical conditions (exposure time 150 min) with untreated strains. Nevertheless enough viable cells can be recovered from liver, spleen, kidneys, lungs and stomach to allow the investigation of organ-specific genotoxicity. It is furthermore noteworthy that exposure of permeabilized indicator cells in control animals (for 150 min) resulted in a marginal reduction of the relative survival of the repair-deficient strain in all organs investigated, whereas with non-treated strains such effects are only detectable after extended exposure periods. The observation of a slightly elevated genotoxic background under in vivo conditions does not prevent the assessment of the organ distribution of genotoxic effects induced by mutagens and/or carcinogens: in the case of B(a)P, intraperitoneal administration to mice in the dose range of 10-50 mg/kg body weight resulted in a pronounced dose-dependent inactivation of the uvrB/recA cells in the liver. Also in the lungs differential killing effects occurred at the highest dose tested, whereas no genotoxic activities were detectable in stomach, kidneys and spleen of the host animals.
Collapse
Affiliation(s)
- S Knasmüller
- Institute of Experimental Cancer Research, University of Innsbruck, Austria
| | | | | |
Collapse
|
25
|
Foster PL, Wilkinson WG, Miller JK, Sullivan AD, Barnes WM. An analysis of the mutagenicity of 1,2-dibromoethane to Escherichia coli: influence of DNA repair activities and metabolic pathways. Mutat Res 1988; 194:171-81. [PMID: 3054522 PMCID: PMC2988426 DOI: 10.1016/0167-8817(88)90019-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The mutagenicity of 1,2-dibromoethane (EDB) to Escherichia coli was reduced by the UV light-induced excision repair system but unaffected by the loss of a major apurinic/apyrimidinic site repair function. At high doses, 70-90% of the EDB-induced mutations were independent of SOS-mutagenic processing and approximately 50% were independent of glutathione conjugation. The SOS-independent mutations induced by EDB were unaffected by the enzymes that repair alkylation-induced DNA lesions. EDB-induced base substitutions were dominated by GC to AT and AT to GC transitions. These results suggest that EDB-induced premutagenic lesions have some, but not all, of the characteristics of simple alkyl lesions.
Collapse
Affiliation(s)
- P L Foster
- Division of Environmental Health, Boston University School of Public Health, Boston University School of Medicine, MA 02118
| | | | | | | | | |
Collapse
|
26
|
Ritchie L, Podger DM, Hall RM. A mutation in the DNA adenine methylase gene (dam) of Salmonella typhimurium decreases susceptibility to 9-aminoacridine-induced frameshift mutagenesis. Mutat Res 1988; 194:131-41. [PMID: 2842672 DOI: 10.1016/0167-8817(88)90015-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A mutant of Salmonella typhimurium with a reduced response to mutation induction by 9-aminoacridine (9AA) has been isolated. The mutation (dam-2) is located in the DNA adenine methylase gene. The dam-2 mutant strain exhibits a level of sensitivity to 2-aminopurine (2AP) intermediate between that of the dam+ and the DNA adenine methylation-deficit dam-1 strain, and 2AP sensitivity was reversed by introduction of a mutH mutation or of the plasmid pMQ148 (which carries a functional Escherichia coli dam+ gene). However, the dam-2 strain is not grossly defective in DNA adenine methylase activity. Whole cell DNA appears full methylated at -GATC- sites. The levels of 9AA required to induce equivalent levels of frameshift mutagenesis in the dam-2 strain were approximately 2-fold higher than for the dam+ strain. Introduction of pMQ148 dam+ reduced the level of 9AA required for induction of frameshift mutations 4-fold in the dam-2 strain and 2-fold in the dam+ strain. The dam-2 mutation had no effect on the levels of ICR191 required for induction of frameshift mutations, but introduction of pMQ148 reduced the ICR191-induced mutagenesis 2-fold. The dam+/pMQ148, dam-2/pMQ148 and dam-1/pMQ148 strains showed identical dose-response curves for both 9AA and ICR191. These results are consistent with a slightly reduced (dam-2) or increased (pMQ148) rate of methylation at the replication fork. The 2AP sensitivity of the dam-2 strain cannot be simply explained. Furthermore, addition of methionine to the assay medium reverses the 2AP sensitivity of the dam-2 strain, but has no effect on 9AA mutagenesis.
Collapse
Affiliation(s)
- L Ritchie
- CSIRO Division of Molecular Biology, North Ryde, NSW, Australia
| | | | | |
Collapse
|
27
|
Quillardet P, Hofnung M. The screening, diagnosis and evaluation of genotoxic agents with batteries of bacterial tests. Mutat Res 1988; 205:107-18. [PMID: 3285183 DOI: 10.1016/0165-1218(88)90014-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Bacterial tests can be used for several related purposes: the screening for genotoxic agents, genetic analysis of the mode of action of genotoxins and attempts to predict their effects in mammals. We examine various aspects of the assembly of tests into batteries with emphasis on the genetic properties of target bacterial cells. We discuss the problems of carcinogenicity prediction, the identification of particular types of DNA lesions, the study of mutagenic specificity and the elucidation of metabolic steps towards the ultimate genotoxin.
Collapse
Affiliation(s)
- P Quillardet
- CNRS UA 271, INSERM U163, Unité de Programmation Moléculaire et Toxicologie Génétique, Institut Pasteur, Paris, France
| | | |
Collapse
|
28
|
Knasmüller S, Zeilmaker M, van der Gen A, de Wit P, Mohn GR. Differential DNA repair effects in E. coli cells inoculated in intestinal organs of mice. Possible involvement of feed components and/or fecal mutagens. Mutat Res 1988; 207:89-97. [PMID: 3282164 DOI: 10.1016/0165-7992(88)90070-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- S Knasmüller
- Institute of Biology, Austrian Research Centre Seibersdorf, Austria
| | | | | | | | | |
Collapse
|
29
|
Knasmüller S, Stehlik G, Mohn G. Studies on the metabolic activation of diethanolnitrosamine in animal-mediated and in vitro assays using Escherichia coli K-12 343/113 as an indicator. J Cancer Res Clin Oncol 1986; 112:266-71. [PMID: 3536944 DOI: 10.1007/bf00395921] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The mutagenic activity of diethanolnitrosamine (NDELA), a carcinogenic compound which leads to inconsistent results in standard in vitro procedures was tested in vitro and in animal-mediated assays with the indicator strain Escherichia coli (E. coli) K-12 343/113. This strain allows the simultaneous detection of forward and back mutations arising in several genes of the E. coli chromosome. In animal-mediated assays in which mice were used as hosts for i.v. injected E. coli indicator cells, s.c. application of NDELA induced a dose dependent increase of galactose fermenting mutants in cells recovered from the livers of animals exposed for 3 h to the mutagen. Comparison with results obtained with diethylnitrosamine (DENA) in the same test system revealed that the two compounds apparently cause different types of mutagenic lesions. Induction of arg+ mutations by DENA and several other aliphatic nitrosamines is mainly due to base pair substitutions, whereas NDELA is rather mutagenic in the galRs system. This latter system is, in addition, sensitive to frameshifts and deletions. These differences in mutagenic specificity suggest that NDELA and DENA, although structurally closely related, are activated via different molecular mechanisms. In fact, evidence is accumulating that alcohol dehydrogenase (ADH) could be involved in the activation of NDELA. On the other hand, the effective mutagenesis of NDELA obtained in vitro with E. coli upon addition of rat liver microsomal fraction would not be expected if ADH is involved in the activation since the S-9 Mix used in the present experiments was devoid of cofactors (NAD, NADP), necessary to accomplish oxidation by ADH. Therefore, further in vivo studies were performed, in which pyrazole, a potent blocker of ADH, was administered prior (1 and 24 h) to the injection of the mutagen. The observation that a dose dependent increase of mutants in the liver (and to a lower extent in the spleens) of treated animals takes place under conditions in which ADH activity is blocked, whereas several microsomal enzymes are stimulated, indicated that besides oxidation of NDELA by ADH other metabolic activation pathways are involved. Apparently enzymes contained in the liver homogenate, possibly NADPH dependent enzymes of the microsomal ethanol oxidizing system, play an important role in the formation of mutagenic metabolites of NDELA.
Collapse
|
30
|
Ritchie LJ, Hall RM, Podger DM. Mutant of Salmonella typhimurium LT2 deficient in DNA adenine methylation. J Bacteriol 1986; 167:420-2. [PMID: 3522556 PMCID: PMC212898 DOI: 10.1128/jb.167.1.420-422.1986] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
A mutant of Salmonella typhimurium LT2 deficient in methylation of the adenine residues in the sequence 5'-GATC-3' was isolated. The mutation (dam-1) was linked to the cysG locus, and the properties of the mutant were similar to those of Escherichia coli dam mutants. Reversion of the hisC3076 frameshift marker by 9-aminoacridine was substantially enhanced by the dam-1 mutation, implying a direct role for adenine methylation in the prevention of frameshift mutation induction.
Collapse
|
31
|
Kerklaan PR, Bouter S, Zijlstra JA, Mohn GR. The effect of mixed-function oxidase and amine oxidase inhibitors on the activation of dialkylnitrosamines and 1,2-dimethylhydrazine to bacterial mutagens in mice. J Cancer Res Clin Oncol 1986; 111:196-202. [PMID: 3525573 DOI: 10.1007/bf00389234] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The effect of the mixed-function oxidase inhibitor phenylimidazole (PI) and the amine oxidase inhibitors iproniazid (IPRO) and aminoacetonitrile (AAN) on the mutagenic activity of various carcinogens was determined in intrasanguineous host-mediated assays, using mice as hosts and E. coli 343/113 as an indicator of mutagenic activity. The carcinogenic compounds dimethyl-, diethyl-, methylethyl-, and diethanolnitrosamine (DMNA, DENA, MENA, and DELNA respectively) and 1,2-dimethylhydrazine (SDMH) were administered i.p. to mice pretreated or not with one of the inhibitors. After 4 h exposure to each of the carcinogens, E. coli cells recovered from the liver of non-pretreated mice showed considerable induction of VALr mutations; after pretreatment of the hosts with the three inhibitors, significant reduction of the amounts of induced mutants in vivo was observed. Particularly, PI proved a very efficient inhibitor of DENA, MENA, DELNA, and SDMH mutagenicity (93%-97% reduction), suggesting that these carcinogens are mainly activated by cytochrome P-450-dependent enzymes. However, since PI might also inhibit the NAD-mediated activation of DELNA by alcohol dehydrogenase (ADH), the present experiments do not rule out an additional role of ADH in the in vivo mutagenic activation of DELNA. AAN and IPRO were less and much less effective, respectively, in reducing the mutagenic activity of all compounds. Surprisingly, PI showed less inhibition of the mutagenic activity of DMNA (60% reduction), as compared to the other carcinogens; this indicates that metabolic routes other than the cytochrome P-450-dependent enzyme system may be important for the activation of DMNA.
Collapse
|
32
|
Kerklaan PR, Bouter S, van Elburg PE, Mohn GR. Evaluation of the DNA repair host-mediated assay. II. Presence of genotoxic factors in various organs of mice treated with chemotherapeutic agents. Mutat Res 1986; 164:19-29. [PMID: 2419750 DOI: 10.1016/0165-1161(86)90038-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The DNA repair host-mediated assay was further calibrated by testing 7 chemotherapeutic agents known to possess carcinogenic activity, namely bleomycin (BLM), cis-diamminedichloroplatinum-II (cis-Pt), cyclophosphamide (CP), diethylstilboestrol (DES), isonicotinic acid hydrazide (isoniazid, INH), natulan (NAT) and mitomycin C (MMC). Differential survival of wild-type and uvrB/recA E. coli strains served as a measure of genotoxic activity. In in vitro assays, BLM, cis-Pt and MMC exhibited high genotoxic activity. The other 4 compounds had no measurable effect on the survival of the two strains, either with or without mouse liver preparations. In the host-mediated assays BLM, cis-Pt, MMC and also NAT induced strong killing of the DNA repair-deficient bacteria recovered from liver, spleen, lungs, kidneys and the blood of treated mice compared to the wild-type strain. The results are not indicative of large organ-specific differences in genotoxically active amounts of the drugs immediately after their application to the host animals. CP, INH and DES did not show geneotix activity in these assays even at very high exposure levels. To compare the genetic endpoint measured in the DNA repair assays, i.e. induction of repairable DNA damage, with the induction of gene mutations, the ability of the 7 drugs to induce valine-resistant (VALr) mutants in E. coli was measured in host-mediated assays under identical treatment conditions. INH showed considerable mutagenic activity in E. coli cells recovered from liver and spleen, while BLM and MMC induced a 3-4-fold increase in VALr mutants above spontaneous levels. The other compounds showed no mutagenic activity under these in vivo conditions. From these results it can be concluded that the type of primary DNA lesions produced by these chemotherapeutic agents (cross-links by MMC and cis-Pt, and strand breaks by BLM and possibly by NAT; base alkylation by INH) appears to determine whether a compound will be highly positive in the DNA repair assay as in the case of BLM, cis-Pt, MMC and NAT, and less effective in inducing mutations under similar conditions, or whether the opposite will occur, as in the case of INH; DES and CP probably do not interact sufficiently with bacterial DNA to show an effect in either of the genetic endpoints; and the present DNA repair host-mediated assay may represent a sensitive, rapid and economic method for monitoring genotoxic factors in various organs of experimental animals which have been treated with cytostatic drugs.
Collapse
|
33
|
Use of the DNA-repair host-mediated assay for determining the organ distribution of genotoxic factors in mice treated orally with nitro-aromatic compounds. Mutat Res 1986; 164:9-17. [PMID: 2419751 DOI: 10.1016/0165-1161(86)90037-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The distribution of genotoxic factors in various organs of mice treated orally with nitro-aromatic compounds of actual or potential use as chemotherapeutic (antiprotozoal and anthelminthical) agents was investigated in the DNA-repair host-mediated assay, with mice as host animals and a pair of E. coli K12 strains differing in DNA-repair capacity as indicators of genotoxicity. The test substances were derivatives of nitroimidazole (metronidazole), nitrofuran (SQ 18 506) and nitrodiphenylamine (amoscanate). Animal-mediated assays were performed by injecting mixtures of the two E. coli strains both intravenously and orally into mice, which were subsequently treated with the test chemicals, and from which the differential survival of indicator bacteria present in liver, lungs, spleen, kidneys, stomach, small intestine, colon and the blood stream was determined on selective agar medium. The same strains and selection procedures were used for assessing the genotoxic activity of the compounds in vitro. All three compounds displayed genotoxic activity in vitro, the order of potency on the basis of exposure concentration being SQ 18 506 greater than metronidazole greater than amoscanate. In the animal-mediated assays the same ranking order of genotoxic activity was observed, but the exposure levels required to produce significant genotoxic effects in vivo were (substantially) higher than in the in vitro tests: SQ 18 506 was active at 0.1 mg/kg body weight, metronidazole at 4 mg/kg, and amoscanate at dosages higher than 10 mg/kg. In host-mediated assays the highest genotoxic activity for all three chemicals was observed in organs of the gastro-intestinal tract (usually in the stomach). All three chemicals also induced genotoxic effects in organs remote from the gastro-intestinal tract although with substantially lower activity, the order of potency being again SQ 18 506 greater than metronidazole greater than amoscanate. In the case of SQ 18 506 and metronidazole, dose-dependent genotoxic activities were observed in liver, spleen, lungs, kidneys and the blood stream, with no clear indication of a preferential target or non-target organ, while the minor genotoxic effects of amoscanate were restricted to bacteria present in the blood stream. This can be taken as an indication that the substances (or active metabolites thereof) have been transported from the intestinal tract into the blood stream and distributed evenly in organ tissues, without an indication of organ specific deactivation during the time periods (less than 180 min) presently investigated.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
34
|
van Zeeland AA, Mohn GR, Neuhäuser-Klaus A, Ehling UH. Quantitative comparison of genetic effects of ethylating agents on the basis of DNA adduct formation. Use of O6-ethylguanine as molecular dosimeter for extrapolation from cells in culture to the mouse. ENVIRONMENTAL HEALTH PERSPECTIVES 1985; 62:163-9. [PMID: 3910416 PMCID: PMC1568695 DOI: 10.1289/ehp.8562163] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
DNA-adduct formation and induction of gene mutations were determined simultaneously after treatment with the four ethylating agents, ethyl methanesulfonate (EMS), ethylnitrosourea (ENU), diethyl sulfate (DES), and N-ethyl-N'-nitro-N-nitrosoguanidine (ENNG). Both, in E. coli K-12 (NAL-resistance) and in V79 Chinese hamster cells in culture (HPRT-deficiency), the frequencies of mutation induction by all chemicals were the same when plotted against the amount of O6-ethylguanine formed in DNA, suggesting that this DNA adduct can be used as a common dosimeter for the comparisons of the frequencies of gene mutations induced by ethylating agents in various mutagenicity assay systems. Using ENU, such a comparison was performed between mutation induction in V79 cells in vitro and in the specific-locus assay in the mouse. The data indicate that at equal levels of O6-ethylguanine in the DNA of V79 cells and in testicular DNA from male mice treated with ENU, the frequencies of induced mutants in both assay systems were quite similar. These results support the concept that the determination of premutagenic DNA adducts in vivo can be used to monitor exposure to chemical mutagens and that genetic risk estimations may ultimately be performed on the basis of such measurements and of comparative mutagenesis in vitro and in vivo.
Collapse
|
35
|
Baan RA, Lansbergen MJ, de Bruin PA, Willems MI, Lohman PH. The organ-specific induction of DNA adducts in 2-acetylaminofluorene-treated rats, studied by means of a sensitive immunochemical method. Mutat Res 1985; 150:23-32. [PMID: 4000159 DOI: 10.1016/0027-5107(85)90097-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Exposure of cells to chemical carcinogens and mutagens may result in the formation of DNA adducts, which can give rise to mutations in the genome and to cellular transformation. Methods to measure DNA-adduct formation may be useful for 'biomonitoring', to establish exposure of laboratory animals or humans to DNA-damaging agents. For such purposes, immunochemical methods appear to be suitable, because they allow sensitive detection and quantification of DNA adducts in small amounts of sample in a non-radiolabelled form. We have worked out optimal conditions for the detection of DNA adducts by means of competitive enzyme-linked immunosorbent assay (ELISA). This technique involves interaction of soluble antigen, immobilized antigen and antibody. It appeared that the sensitivity of the competitive assay can be improved by lowering the amount of immobilized antigen, adsorbed to the wall of the plastic reaction vessel. On the basis of these observations, suitable conditions were selected for a sensitive quantitative assay of adducts in DNA isolated from various organs of rats, treated (p.o.) with the liver carcinogen 2-acetylaminofluorene (2-AAF). Under the conditions of these experiments, the available rabbit antiserum recognizes the guanosine-AAF adduct with high specificity. A time- and dose-dependent induction of AAF adducts could be measured in liver DNA from exposed rats, whereas the amount of adducts in DNA from spleen and nucleated blood cells remained below the detection limit (1 adduct/10(8) nucleotides). The implications of these findings with respect to the relevance of blood cell biomonitoring for target cell exposure are discussed.
Collapse
|
36
|
Mohn GR, van Zeeland AA. Quantitative comparative mutagenesis in bacteria, mammalian cells, and animal-mediated assays. A convenient way of estimating genotoxic activity in vivo? Mutat Res 1985; 150:159-75. [PMID: 3889614 DOI: 10.1016/0027-5107(85)90113-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The accumulation of environmental compounds which exhibit genotoxic properties in short-term assays and the increasing lag of time for obtaining confirmation or not in long-term animal mutagenicity and carcinogenicity tests, makes it necessary to develop alternative, rapid methodologies for estimating genotoxic activity in vivo. In the experimental approach used here, it was assumed that the genotoxic activity of foreign compounds in animals, and ultimately humans, is determined among others by exposure level, organ distribution of (DNA) dose, and genotoxic potency per unit of dose, and that knowledge about these 3 parameters may allow to rapidly determine the expected degree of genotoxicity in various organs of exposed animals. In view of the high degree of qualitative correlation between mutagenic activity of chemicals in bacteria and in cultured mammalian cells, and their mutagenic and carcinogenic properties in animals, and in order to be able to distinguish whether mutagenic potency differences were due to differences in (DNA) dose rather than other physiological factors, the results of mutagenicity tests obtained in the present experiments using bacteria and mammalian cells were compared on the basis of DNA dose rather than exposure concentrations, with the following questions in mind: Is there an absolute or a relative correlation between the mutagenic potencies of various ethylating agents in bacteria (E. coli K12) and in mammalian cells (V79 Chinese hamster) after treatment in standardized experiments, and can specific DNA adducts be made responsible for mutagenicity? Is the order of mutagenic potency of various ethylating agents observed in bacteria in vitro representative of the ranking of mutagenic potency found in vivo? Since the answer to this last question was negative, a further question addressed to was whether short-term in vivo assays could be developed for a rapid determination of the presence (and persistence) of genotoxic factors in various organs of mice treated with chemicals. In quantitative comparative mutagenesis experiments using E. coli K12 and Chinese hamster cells treated under standardized conditions in vitro with 5 ethylating agents, there was no indication of an absolute correlation between the number of induced mutants per unit of dose in the bacteria and the mammalian cells. The ranking of mutagenic potency was, however, identical in bacteria and mammalian cells, namely, ENNG greater than ENU greater than or equal to DES greater than DEN congruent to EMS, the mutagenic activity of DEN being dependent on the presence of mammalian liver preparations.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
37
|
Kerklaan PR, Bouter S, van Elburg PA, Mohn GR. Evaluation of the DNA-repair host-mediated assay. I. Induction of repairable DNA damage in E. coli cells recovered from liver, spleen, lungs, kidneys, and the blood stream of mice treated with methylating carcinogens. Mutat Res 1985; 148:1-12. [PMID: 3881659 DOI: 10.1016/0027-5107(85)90202-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The DNA-repair host-mediated assay was further calibrated by determining the genotoxic activities of 4 methylating carcinogens, namely, dimethylnitrosamine (DMNA), 1,2-dimethylhydrazine (SDMH), methyl nitrosourea (MNU) and methyl methanesulphonate (MMS) in various organs of treated mice. The ranking of the animal-mediated genotoxic activities of the compounds was compared with that obtained in DNA repair assays performed in vitro. The differential survival of strain E. coli K-12/343/113 and of its DNA-repair-deficient derivatives recA, polA and uvrB/recA, served as a measure of genotoxic potency. In the in vitro assays and at equimolar exposure concentrations, MMS and MNU are the most active chemicals, followed by DMNA, which shows a slight genotoxic effect only in the presence of mouse liver homogenate; SDMH has no activity under these conditions. In the host-mediated assays, the order of genotoxic potency of the compounds was quite different: those carcinogens which require mammalian metabolic activation, namely, DMNA and SDMH, show strong effects in liver and blood, a lesser effect in the lungs and kidneys and the least effect in the spleen. The activity of MNU, a directly acting compound, is similar in all organs investigated, but it is clearly lower than that of DMNA and SDMH. MMS, also a directly acting carcinogen, causes some (barely significant) effect at the highest dose tested. A similar order of potency was observed when the compounds were tested in intrasanguineous host-mediated assays with gene mutation as an endpoint. DMNA and SDMH induce comparable frequencies of L-valine-resistant mutants in E. coli K-12/343/113 recovered from liver and spleen of treated mice, the effect in the liver being the strongest. MNU is mutagenic only at a higher dose, while MMS shows no effect. The results are discussed with respect to the literature data on organ-specific DNA adduct formation induced by the compounds. It is concluded that qualitatively there is a good correlation between the degree of genotoxic activity found in the DNA repair host-mediated assay and DNA adduct formation in the animal's own cells. This is exemplified by the finding that the relative order of genotoxic activity of the 4 methylating agents in bacteria recovered from various organs (DMNA approximately equal to SDMH greater than MNU greater than MMS) is reflected by the same order of magnitude in DNA alkylation in corresponding mammalian organs. Quantitatively, the indirectly acting agents DMNA and SDMH seem to induce fewer genotoxic effects in bacteria present in the liver than would be expected on the basis of DNA-adduct formation data.
Collapse
|
38
|
Mohn GR. The DNA repair host-mediated assay as a rapid and sensitive in vivo procedure for the determination of genotoxic factors present in various organs of mice. Some preliminary results with mitomycin C. Arch Toxicol 1984; 55:268-71. [PMID: 6440509 DOI: 10.1007/bf00341024] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The DNA repair host-mediated assay, in which repairable DNA damage is determined in E. coli cells present in various organs of mice exposed to genotoxic agents, was further developed to broaden the range of organs under study and to simplify the procedure of assessing differential bacterial cell survival. A pair of derivatives of E. coli K-12 strain 343/113 was constructed which differed vastly in DNA repair capacity (uvr+/rec+ vs uvrB/recA), as a means of assessing DNA damaging effects; furthermore, the strains differed in their ability to ferment lactose (delta Lac vs Lac+), so that the individual survival of both strains could be determined on a single agar medium (containing neutral red as pH indicator), on which the strains had different colony colour morphology (red, Lac+ vs white, Lac- colonies). Finally, the strains were made streptomycin-dependent, to prevent uncontrolled growth of the bacterial cells within the various organs and also to inhibit contamination of the survival agar medium by representatives of the normal intestinal microflora. The experimental procedure consisted of injecting mixtures of stationary cells of the two strains (ca. 3-5 X 10(8) viable cells per mouse) both intravenously and orally into mice, either pretreated or subsequently treated with test chemicals. Ninety minutes after injection of the bacteria, the liver, spleen, lungs, kidneys, stomach, intestine, colon, and ca. 50 microliter blood, were removed, suspended in buffer, homogenized, and the survival of the two strains determined on neutral red agar supplemented with streptomycin.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
39
|
Natarajan AT, Simons JW, Vogel EW, van Zeeland AA. Relationship between cell killing, chromosomal aberrations, sister-chromatid exchanges and point mutations induced by monofunctional alkylating agents in Chinese hamster cells. A correlation with different ethylation products in DNA. Mutat Res 1984; 128:31-40. [PMID: 6472304 DOI: 10.1016/0027-5107(84)90044-7] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Several monofunctional alkylating agents (AA) were compared for their ability to induce chromosomal aberrations, cell killing, sister-chromatid exchanges (SCE) and point mutations in Chinese hamster cells (CHO and V79 cells). The AAs chosen varied in their reaction kinetics as well as their affinity to nucleophilic sites (different s values). AAs with low s values were more mutagenic in comparison to those with high s values, whereas the reverse was true for induction of cytotoxic effects. Neither SCEs nor chromosomal aberrations correlated with the induction of point mutations, indicating that different primary DNA lesions and repair pathways are involved in these biological processes. Molecular dosimetric studies indicate that O6 alkylation of guanine is the most probable cause of lesions in DNA leading to point mutations following treatment with ethyl methanesulphonate and ethyl nitrosourea.
Collapse
|
40
|
Landegent JE, Jasen in de Wal N, Baan RA, Hoeijmakers JH, Van der Ploeg M. 2-Acetylaminofluorene-modified probes for the indirect hybridocytochemical detection of specific nucleic acid sequences. Exp Cell Res 1984; 153:61-72. [PMID: 6203769 DOI: 10.1016/0014-4827(84)90448-8] [Citation(s) in RCA: 165] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A new approach is presented for the indirect hybridocytochemical localization of specific nucleic acid sequences in microscopic preparations. The method is based on the application of probes modified with N-acetoxy-2-acetylaminofluorene. After hybridization, the 2-acetylaminofluorene-labelled probes are recognized by antibodies directed against modified guanosine and visualized immunocytochemically. This procedure has been optimized on two model objects: mouse satellite DNA in interphase nuclei and chromosomes, and kinetoplast DNA in Crithidia fasciculata. A first application that may be of clinical importance is given by the detection of human cytomegalovirus in infected human lung fibroblasts. Other potentials of this procedure are discussed. Its advantages are: (1) the simple, rapid and reproducible labelling procedure; (2) the high stability of both label and modified probes; (3) the feasibility of labelling both double-stranded (ds) and single-stranded (ss) probes (DNA as well as RNA); (4) the rapid and sensitive detection of hybrids.
Collapse
|