1
|
Hauge S, Eek Mariampillai A, Rødland GE, Bay LTE, Landsverk HB, Syljuåsen RG. Expanding roles of cell cycle checkpoint inhibitors in radiation oncology. Int J Radiat Biol 2021; 99:941-950. [PMID: 33877959 DOI: 10.1080/09553002.2021.1913529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE Radiation-induced activation of cell cycle checkpoints have been of long-standing interest. The WEE1, CHK1 and ATR kinases are key factors in cell cycle checkpoint regulation and are essential for the S and G2 checkpoints. Here, we review the rationale for why inhibitors of WEE1, CHK1 and ATR could be beneficial in combination with radiation. CONCLUSIONS Combined treatment with radiation and inhibitors of these kinases results in checkpoint abrogation and subsequent mitotic catastrophe. This might selectively radiosensitize tumor cells, as they often lack the p53-dependent G1 checkpoint and therefore rely more on the G2 checkpoint to repair DNA damage. Further affecting the repair of radiation damage, inhibition of WEE1, CHK1 or ATR also specifically suppresses the homologous recombination repair pathway. Moreover, inhibition of these kinases can induce massive replication stress during S phase of the cell cycle, likely contributing to eliminate radioresistant S phase cells. Intriguingly, recent findings suggest that cell cycle checkpoint inhibitors in combination with radiation can also enhance anti-tumor immune effects. Altogether, the expanding knowledge about the functional roles of WEE1, CHK1 and ATR inhibitors support that they are promising candidates for use in combination with radiation treatment.
Collapse
Affiliation(s)
- Sissel Hauge
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Adrian Eek Mariampillai
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Gro Elise Rødland
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Lilli T E Bay
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Helga B Landsverk
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Randi G Syljuåsen
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
2
|
Palazzo RP, Jardim LB, Bacellar A, de Oliveira FR, Maraslis FT, Pereira CHJ, da Silva J, Maluf SW. DNA damage and repair in individuals with ataxia-telangiectasia and their parents. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 836:122-126. [DOI: 10.1016/j.mrgentox.2018.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 04/04/2018] [Accepted: 06/01/2018] [Indexed: 10/14/2022]
|
3
|
DNA Repair Deficient Chinese Hamster Ovary Cells Exhibiting Differential Sensitivity to Charged Particle Radiation under Aerobic and Hypoxic Conditions. Int J Mol Sci 2018; 19:ijms19082228. [PMID: 30061540 PMCID: PMC6121575 DOI: 10.3390/ijms19082228] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/18/2018] [Accepted: 07/23/2018] [Indexed: 12/31/2022] Open
Abstract
It has been well established that hypoxia significantly increases both cellular and tumor resistance to ionizing radiation. Hypoxia associated radiation resistance has been known for some time but there has been limited success in sensitizing cells to radiation under hypoxic conditions. These studies show that, when irradiated with low linear energy transfer (LET) gamma-rays, poly (ADP-ribose), polymerase (PARP), Fanconi Anemia (FANC), and mutant Chinese Hamster Ovary (CHO) cells respond similarly to the non-homologous end joining (NHEJ) and the homologous recombination (HR) repair mutant CHO cells. Comparable results were observed in cells exposed to 13 keV/μm carbon ions. However, when irradiated with higher LET spread out Bragg peak (SOBP) carbon ions, we observed a decrease in the oxygen enhancement ratio (OER) in all the DNA of repair mutant cell lines. Interestingly, PARP mutant cells were observed as having the largest decrease in OER. Finally, these studies show a significant increase in the relative biological effectiveness (RBE) of high LET SOBP carbon and iron ions in HR and PARP mutants. There was also an increase in the RBE of NHEJ mutants when irradiated to SOBP carbon and iron ions. However, this increase was lower than in other mutant cell lines. These findings indicate that high LET radiation produces unique types of DNA damage under hypoxic conditions and PARP and HR repair pathways play a role in repairing this damage.
Collapse
|
4
|
Nagasawa H, Lin YF, Kato TA, Brogan JR, Shih HY, Kurimasa A, Bedford JS, Chen BPC, Little JB. Coordination of the Ser2056 and Thr2609 Clusters of DNA-PKcs in Regulating Gamma Rays and Extremely Low Fluencies of Alpha-Particle Irradiation to G 0/G 1 Phase Cells. Radiat Res 2017; 187:259-267. [PMID: 28118114 DOI: 10.1667/rr14679.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The catalytic subunit of DNA dependent protein kinase (DNA-PKcs) and its kinase activity are critical for mediation of non-homologous end-joining (NHEJ) of DNA double-strand breaks (DSB) in mammalian cells after gamma-ray irradiation. Additionally, DNA-PKcs phosphorylations at the T2609 cluster and the S2056 cluster also affect DSB repair and cellular sensitivity to gamma radiation. Previously we reported that phosphorylations within these two regions affect not only NHEJ but also homologous recombination repair (HRR) dependent DSB repair. In this study, we further examine phenotypic effects on cells bearing various combinations of mutations within either or both regions. Effects studied included cell killing as well as chromosomal aberration induction after 0.5-8 Gy gamma-ray irradiation delivered to synchronized cells during the G0/G1 phase of the cell cycle. Blocking phosphorylation within the T2609 cluster was most critical regarding sensitization and depended on the number of available phosphorylation sites. It was also especially interesting that only one substitution of alanine in each of the two clusters separately abolished the restoration of wild-type sensitivity by DNA-PKcs. Similar patterns were seen for induction of chromosomal aberrations, reflecting their connection to cell killing. To study possible change in coordination between HRR and NHEJ directed repair in these DNA-PKcs mutant cell lines, we compared the induction of sister chromatid exchanges (SCEs) by very low fluencies of alpha particles with mutant cells defective in the HRR pathway that is required for induction of SCEs. Levels of true SCEs induced by very low fluence of alpha-particle irradiation normally seen in wild-type cells were only slightly decreased in the S2056 cluster mutants, but were completely abolished in the T2609 cluster mutants and were indistinguishable from levels seen in HRR deficient cells. Again, a single substitution in the S2056 together with a single substitution in the T2609 cluster abolished SCE formation and thus also effectively interferes with HRR.
Collapse
Affiliation(s)
- Hatsumi Nagasawa
- a Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523
| | - Yu-Fen Lin
- b Department of Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | - Takamitsu A Kato
- a Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523
| | - John R Brogan
- a Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523
| | - Hung-Ying Shih
- b Department of Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | - Akihiro Kurimasa
- c Tohoku Medical and Pharmaceutical University, Sendai, Japan, 981-8558; and
| | - Joel S Bedford
- a Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523
| | - Benjamin P C Chen
- b Department of Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | - John B Little
- d Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts 02115
| |
Collapse
|
5
|
Infection of a Single Cell Line with Distinct Strains of Human Cytomegalovirus Can Result in Large Variations in Virion Production and Facilitate Efficient Screening of Virus Protein Function. J Virol 2015; 90:2523-35. [PMID: 26676783 DOI: 10.1128/jvi.01762-15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 12/11/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Previously, we reported that the absence of the ataxia telangiectasia mutated (ATM) kinase, a critical DNA damage response (DDR) signaling component for double-strand breaks, caused no change in HCMV Towne virion production. Later, others reported decreased AD169 viral titers in the absence of ATM. To address this discrepancy, human foreskin fibroblasts (HFF) and three ATM(-) lines (GM02530, GM05823, and GM03395) were infected with both Towne and AD169. Two additional ATM(-) lines (GM02052 and GM03487) were infected with Towne. Remarkably, both previous studies' results were confirmed. However, the increased number of cell lines and infections with both lab-adapted strains confirmed that ATM was not necessary to produce wild-type-level titers in fibroblasts. Instead, interactions between individual virus strains and the cellular microenvironment of the individual ATM(-) line determined efficiency of virion production. Surprisingly, these two commonly used lab-adapted strains produced drastically different titers in one ATM(-) cell line, GM05823. The differences in titer suggested a rapid method for identifying genes involved in differential virion production. In silico comparison of the Towne and AD169 genomes determined a list of 28 probable candidates responsible for the difference. Using serial iterations of an experiment involving virion entry and input genome nuclear trafficking with a panel of related strains, we reduced this list to four (UL129, UL145, UL147, and UL148). As a proof of principle, reintroduction of UL148 largely rescued genome trafficking. Therefore, use of a battery of related strains offers an efficient method to narrow lists of candidate genes affecting various virus life cycle checkpoints. IMPORTANCE Human cytomegalovirus (HCMV) infection of multiple cell lines lacking ataxia telangiectasia mutated (ATM) protein produced wild-type levels of infectious virus. Interactions between virus strains and the microenvironment of individual ATM(-) lines determined the efficiency of virion production. Infection of one ATM(-) cell line, GM05823, produced large titer differentials dependent on the strain used, Towne or AD169. This discrepancy resolved a disagreement in the literature of a requirement for ATM expression and HCMV reproduction. The titer differentials in GM08523 cells were due, in part, to a decreased capacity of AD169 virions to enter the cell and traffic genomes to the nucleus. In silico comparison of the Towne, AD169, and related variant strains' genomes was coupled with serial iterations of a virus entry experiment, narrowing 28 candidate proteins responsible for the phenotype down to 4. Reintroduction of UL148 significantly rescued genome trafficking. Differential behavior of virus strains can be exploited to elucidate gene function.
Collapse
|
6
|
Virsik‐Köpp P, Rave‐Fränk M, Hofman‐Hüther H, Schmidberger H. Role of DNA‐dependent protein kinase in the process of radiation‐induced aberration formation. Int J Radiat Biol 2015. [DOI: 10.1080/09553000310001658789a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
7
|
Lin YF, Nagasawa H, Little JB, Kato TA, Shih HY, Xie XJ, Wilson Jr. PF, Brogan JR, Kurimasa A, Chen DJ, Bedford JS, Chen BPC. Differential radiosensitivity phenotypes of DNA-PKcs mutations affecting NHEJ and HRR systems following irradiation with gamma-rays or very low fluences of alpha particles. PLoS One 2014; 9:e93579. [PMID: 24714417 PMCID: PMC3979685 DOI: 10.1371/journal.pone.0093579] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 03/04/2014] [Indexed: 12/03/2022] Open
Abstract
We have examined cell-cycle dependence of chromosomal aberration induction and cell killing after high or low dose-rate γ irradiation in cells bearing DNA-PKcs mutations in the S2056 cluster, the T2609 cluster, or the kinase domain. We also compared sister chromatid exchanges (SCE) production by very low fluences of α-particles in DNA-PKcs mutant cells, and in homologous recombination repair (HRR) mutant cells including Rad51C, Rad51D, and Fancg/xrcc9. Generally, chromosomal aberrations and cell killing by γ-rays were similarly affected by mutations in DNA-PKcs, and these mutant cells were more sensitive in G1 than in S/G2 phase. In G1-irradiated DNA-PKcs mutant cells, both chromosome- and chromatid-type breaks and exchanges were in excess than wild-type cells. For cells irradiated in late S/G2 phase, mutant cells showed very high yields of chromatid breaks compared to wild-type cells. Few exchanges were seen in DNA-PKcs-null, Ku80-null, or DNA-PKcs kinase dead mutants, but exchanges in excess were detected in the S2506 or T2609 cluster mutants. SCE induction by very low doses of α-particles is resulted from bystander effects in cells not traversed by α-particles. SCE seen in wild-type cells was completely abolished in Rad51C- or Rad51D-deficient cells, but near normal in Fancg/xrcc9 cells. In marked contrast, very high levels of SCEs were observed in DNA-PKcs-null, DNA-PKcs kinase-dead and Ku80-null mutants. SCE induction was also abolished in T2609 cluster mutant cells, but was only slightly reduced in the S2056 cluster mutant cells. Since both non-homologous end-joining (NHEJ) and HRR systems utilize initial DNA lesions as a substrate, these results suggest the possibility of a competitive interference phenomenon operating between NHEJ and at least the Rad51C/D components of HRR; the level of interaction between damaged DNA and a particular DNA-PK component may determine the level of interaction of such DNA with a relevant HRR component.
Collapse
Affiliation(s)
- Yu-Fen Lin
- Department of Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Hatsumi Nagasawa
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - John B. Little
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Takamitsu A. Kato
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Hung-Ying Shih
- Department of Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Xian-Jin Xie
- Department of Clinical Sciences, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Paul F. Wilson Jr.
- Department of Biosciences, Brookhaven National Laboratory, Upton, New York, United States of America
| | - John R. Brogan
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Akihiro Kurimasa
- Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Tottori, Japan
| | - David J. Chen
- Department of Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Joel S. Bedford
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Benjamin P. C. Chen
- Department of Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| |
Collapse
|
8
|
Liu C, Kawata T, Shigematsu N, Cucinotta F, George K, Saito M, Uno T, Isobe K, Ito H. A comparison of chromosome repair kinetics in G(0) and G(1) reveals that enhanced repair fidelity under noncycling conditions accounts for increased potentially lethal damage repair. Radiat Res 2010; 174:566-73. [PMID: 20954858 DOI: 10.1667/rr2159.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Potentially lethal damage (PLD) and its repair were studied in confluent human fibroblasts by analyzing the kinetics of chromosome break rejoining and misrejoining in irradiated cells that were either held in noncycling G(0) phase or allowed to enter G(1) phase of the cell cycle immediately after 6 Gy irradiation. Virally mediated premature chromosome condensation (PCC) methods were combined with fluorescence in situ hybridization (FISH) to study chromosomal aberrations in interphase. Flow cytometry revealed that the vast majority of cells had not yet entered S phase 15 h after release from G(0). By this time some 95% of initially produced prematurely condensed chromosome breaks had rejoined, indicating that most repair processes occurred during G(1). The rejoining kinetics of prematurely condensed chromosome breaks was similar for each culture condition. However, under noncycling conditions misrepair peaked at 0.55 exchanges per cell, while under cycling conditions (G(1)) it peaked at 1.1 exchanges per cell. At 12 h postirradiation, complex-type exchanges were sevenfold more abundant for cycling cells (G(1)) than for noncycling cells (G(0)). Since most repair in G(0)/G(1) occurs via the non-homologous end-joining (NHEJ) process, increased PLD repair may result from improved cell cycle-specific rejoining fidelity of the NHEJ pathway.
Collapse
Affiliation(s)
- Cuihua Liu
- a Department of Radiology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Wilson PF, Hinz JM, Urbin SS, Nham PB, Thompson LH. Influence of homologous recombinational repair on cell survival and chromosomal aberration induction during the cell cycle in gamma-irradiated CHO cells. DNA Repair (Amst) 2010; 9:737-44. [PMID: 20434408 DOI: 10.1016/j.dnarep.2010.03.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 03/23/2010] [Accepted: 03/26/2010] [Indexed: 11/29/2022]
Abstract
The repair of DNA double-strand breaks (DSBs) by homologous recombinational repair (HRR) underlies the high radioresistance and low mutability observed in S-phase mammalian cells. To evaluate the contributions of HRR and non-homologous end-joining (NHEJ) to overall DSB repair capacity throughout the cell cycle after gamma-irradiation, we compared HRR-deficient RAD51D-knockout 51D1 to CgRAD51D-complemented 51D1 (51D1.3) CHO cells for survival and chromosomal aberrations (CAs). Asynchronous cultures were irradiated with 150 or 300cGy and separated by cell size using centrifugal elutriation. Cell survival of each synchronous fraction ( approximately 20 fractions total from early G1 to late G2/M) was measured by colony formation. 51D1.3 cells were most resistant in S, while 51D1 cells were most resistant in early G1 (with survival and chromosome-type CA levels similar to 51D1.3) and became progressively more sensitive throughout S and G2. Both cell lines experienced significantly reduced survival from late S into G2. Metaphases were collected from every third elutriation fraction at the first post-irradiation mitosis and scored for CAs. 51D1 cells irradiated in S and G2 had approximately 2-fold higher chromatid-type CAs and a remarkable approximately 25-fold higher level of complex chromatid-type exchanges compared to 51D1.3 cells. Complex exchanges in 51D1.3 cells were only observed in G2. These results show an essential role for HRR in preventing gross chromosomal rearrangements in proliferating cells and, with our previous report of reduced survival of G2-phase NHEJ-deficient prkdc CHO cells [Hinz et al., DNA Repair 4, 782-792, 2005], imply reduced activity/efficiency of both HRR and NHEJ as cells transition from S to G2.
Collapse
Affiliation(s)
- Paul F Wilson
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94551-0808, USA
| | | | | | | | | |
Collapse
|
10
|
Down-regulation of survivin by oxaliplatin diminishes radioresistance of head and neck squamous carcinoma cells. Radiother Oncol 2010; 96:267-73. [PMID: 20638740 DOI: 10.1016/j.radonc.2010.06.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2010] [Accepted: 06/30/2010] [Indexed: 11/22/2022]
Abstract
BACKGROUND Oxaliplatin is integrated in treatment strategies against a variety of cancers including radiation protocols. Herein, as a new strategy we tested feasibility and rationale of oxaliplatin in combination with radiation to control proliferation of head and neck squamous cell carcinoma (HNSCC) cells and discussed survivin-related signaling and apoptosis induction. METHODS Cytotoxicity and apoptosis induced by radiation and/or oxaliplatin were examined in relation to survivin status using two HNSCC cell lines viz., Cal27 and NT8e, and one normal 293-cell line. Survivin gene knockdown by siRNA was also tested in relevance to oxaliplatin-mediated radiosensitization effects. RESULTS Survivin plays a critical role in mediating radiation-resistance in part through suppression of apoptosis via a caspase-dependent mechanism. Oxaliplatin treatment significantly decreased expression of survivin in cancer cells within 24-72 h. Apoptotic cells and caspase-3 activity were increased parallely with decrease in cell viability, if irradiated during this sensitive period. The cytotoxicity of oxaliplatin and radiation combination was greater than additive. Survivin gene knockdown experiments have demonstrated the role of survivin in radiosensitization of cancer cells mediated by oxaliplatin. CONCLUSIONS Higher expression of survivin is a critical factor for radioresistance in HNSCC cell lines. Pre-treatment of cancer cells with oxaliplatin significantly increased the radiosensitivity through induction of apoptosis by potently inhibiting survivin.
Collapse
|
11
|
Zheng YL, Kosti O, Loffredo CA, Bowman E, Mechanic L, Perlmutter D, Jones R, Shields PG, Harris CC. Elevated lung cancer risk is associated with deficiencies in cell cycle checkpoints: genotype and phenotype analyses from a case-control study. Int J Cancer 2010; 126:2199-210. [PMID: 19626602 DOI: 10.1002/ijc.24771] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cell cycle checkpoints play critical roles in the maintenance of genomic integrity and inactivation of checkpoint genes are frequently perturbed in most cancers. In a case-control study of 299 non-small cell lung cancer cases and 550 controls in Baltimore, we investigated the association between gamma-radiation-induced G(2)/M arrest in cultured blood lymphocytes and lung cancer risk, and examined genotype-phenotype correlations between genetic polymorphisms of 20 genes involving in DNA repair and cell cycle control and gamma-radiation-induced G(2)/M arrest. The study was specifically designed to examine race and gender differences in risk factors. Our data indicated that a less efficient DNA damage-induced G(2)/M checkpoint was associated with an increased risk of lung cancer in African American women with an adjusted odds ratio (OR) of 2.63 (95% CI = 1.01-7.26); there were no statistically significant associations for Caucasians, or African American men. When the African American women were categorized into quartiles, a significant reverse trend of decreased G(2)/M checkpoint function and increased lung cancer risk was present, with lowest-vs.-highest quartile OR of 13.72 (95% CI = 2.30-81.92, p(trend) < 0.01). Genotype-phenotype correlation analysis indicated that polymorphisms in ATM, CDC25C, CDKN1A, BRCA2, ERCC6, TP53, and TP53BP1 genes were significantly associated with the gamma-radiation-induced G(2)/M arrest phenotype. This study provides evidence that a less efficient G(2)/M checkpoint is significantly associated with lung cancer risk in African American women. The data also suggested that the function of G(2)/M checkpoint is modulated by genetic polymorphisms in genes involved in DNA repair and cell cycle control.
Collapse
Affiliation(s)
- Yun-Ling Zheng
- Cancer Genetics and Epidemiology Program, Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Mamon HJ, Dahlberg W, Azzam EI, Nagasawa H, Muto MG, Little JB. Differing effects of breast cancer 1, early onset (BRCA1) and ataxia‐telangiectasia mutated (ATM) mutations on cellular responses to ionizing radiation. Int J Radiat Biol 2009; 79:817-29. [PMID: 14630541 DOI: 10.1080/09553000310001610952] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
PURPOSE The ataxia-telangiectasia mutated (ATM) gene encodes a protein kinase, the activation of which is an early event in the cellular response to ionizing radiation. One of the many substrates of ATM is BRCA1 (breast cancer 1, early onset gene), which has been associated with susceptibility to breast and ovarian cancer, and has been implicated in DNA repair processes. Various cellular responses to radiation were analysed in cells with mutations in ATM or BRCA1 in an attempt to clarify which effects of ATM can be mediated through BRCA1. MATERIALS AND METHODS The response to radiation of cells with mutations in ATM or BRCA1 was examined, as were BRCA1-mutant tumour cells transfected with an exogenous wild-type BRCA1 allele. Assays included cell-survival curves, studies of potentially lethal damage repair, measurement of chromosomal aberrations and of G1 arrest, and Western blot analysis of lysates of irradiated cells to determine the phosphorylation of the product of the human Mdm2 gene (HDM2). RESULTS Both ATM and BRCA1 mutations were associated with sensitivity to ionizing radiation, deficient repair of potentially lethal damage and markedly increased chromosomal aberrations. A BRCA1-mutated tumour cell line HCC1937, like ATM mutant cells, did not exhibit a normal G1 arrest but, unlike ATM mutant cells, did exhibit phosphorylation of HDM2. Expression of wild-type BRCA1 in HCC1937 cells partially restored radioresistance, restored repair of potentially lethal damage and markedly reduced radiation-induced chromosomal aberrations. G1 arrest, however, was not restored by expression of BRCA1. CONCLUSIONS The results are consistent with a model in which ATM phosphorylation of BRCA1 regulates DNA repair functions, particularly those involved in potentially lethal damage repair and chromosomal integrity, but not other aspects of the cellular response to radiation such as G1 cell cycle arrest. To the authors' knowledge, this is the first demonstration of the ability of exogenously expressed BRCA1 to restore the ability to perform potentially lethal damage repair and maintain chromosomal integrity in irradiated cells.
Collapse
Affiliation(s)
- H J Mamon
- Laboratory of Radiobiology Harvard School of Public Health 655 Huntington Avenue Boston MA 02115 USA.
| | | | | | | | | | | |
Collapse
|
13
|
Affiliation(s)
- J. Thacker
- DNA Repair and Mutagenesis Group, MRC Radiobiology Unit, Chilton, Didcot, OX11 0RD, UK
| |
Collapse
|
14
|
Sudo H, Garbe J, Stampfer MR, Barcellos-Hoff MH, Kronenberg A. Karyotypic instability and centrosome aberrations in the progeny of finite life-span human mammary epithelial cells exposed to sparsely or densely ionizing radiation. Radiat Res 2008; 170:23-32. [PMID: 18582160 DOI: 10.1667/rr1317.1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Accepted: 03/04/2008] [Indexed: 11/03/2022]
Abstract
The human breast is sensitive to radiation carcinogenesis, and genomic instability occurs early in breast cancer development. This study tests the hypothesis that ionizing radiation elicits genomic instability in finite life-span human mammary epithelial cells (HMEC) and asks whether densely ionizing radiation is a more potent inducer of instability. HMEC in a non-proliferative state were exposed to X rays or 1 GeV/nucleon iron ions followed by delayed plating. Karyotypic instability and centrosome aberrations were monitored in expanded clonal isolates. Severe karyotypic instability was common in the progeny of cells that survived X-ray or iron-ion exposure. There was a lower dose threshold for severe karyotypic instability after iron-ion exposure. More than 90% of X-irradiated colonies and >60% of iron-ion-irradiated colonies showed supernumerary centrosomes at levels above the 95% upper confidence limit of the mean for unirradiated clones. A dose response was observed for centrosome aberrations for each radiation type. There was a statistically significant association between the incidence of karyotypic instability and supernumerary centrosomes for iron-ion-exposed colonies and a weaker association for X-irradiated colonies. Thus genomic instability occurs frequently in finite life-span HMEC exposed to sparsely or densely ionizing radiation and may contribute to radiation-induced breast cancer.
Collapse
Affiliation(s)
- Hiroko Sudo
- Life Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | | | | | | | | |
Collapse
|
15
|
Kato TA, Nagasawa H, Weil MM, Little JB, Bedford JS. Levels of gamma-H2AX Foci after low-dose-rate irradiation reveal a DNA DSB rejoining defect in cells from human ATM heterozygotes in two at families and in another apparently normal individual. Radiat Res 2006; 166:443-53. [PMID: 16953663 DOI: 10.1667/rr3604.1] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We have investigated the use of the gamma-H2AX assay, reflecting the presence of DNA double-strand breaks, as a possible means for identifying individuals who are mildly hypersensitive to ionizing radiation, such as some ATM heterozygotes. We compared levels of gamma-H2AX foci after irradiation in cells from six apparently normal individuals as well as from individuals from two separate AT families including the proband, mother, father and three unaffected siblings in each family. After a 1-Gy single acute (high-dose-rate) gamma-ray dose delivered to noncycling contact-inhibited monolayers of cells, clear differences were seen between samples from normal individuals (ATM(+/+)) and probands (ATM(-/-)) at nearly all sampling times after irradiation, but no clear distinctions were seen for cells from normal compared to obligate heterozygotes (ATM(+/-)). In contrast, after 24 h of continuous irradiation at a dose rate of 10 cGy/h, appreciable differences in numbers of foci per cell were observed for cells from individuals for all the known ATM genotypes compared with controls. Four unaffected siblings had mean numbers of foci per cell similar to that for the obligate heterozygotes, whereas the other two had mean values similar to that for normal controls. We determined independently that those siblings with mean numbers of foci per cell in the range of ATM heterozygotes carried the mutant allele, while both siblings with a normal number of foci per cell after irradiation had normal alleles. A more limited set of experiments using lymphoblastoid cell strains in the low-dose-rate assay also revealed distinct differences for normal compared to ATM heterozygotes from the same families and opens the possibility of using peripheral blood lymphocytes as a more suitable material for an assay to detect mild hypersensitivities to radiation among individuals.
Collapse
Affiliation(s)
- Takamitsu A Kato
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | | | | | | | | |
Collapse
|
16
|
Kato TA, Nagasawa H, Weil MM, Genik PC, Little JB, Bedford JS. γ-H2AX Foci after Low-Dose-Rate Irradiation RevealAtmHaploinsufficiency in Mice. Radiat Res 2006; 166:47-54. [PMID: 16808619 DOI: 10.1667/rr3587.1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We have investigated the use of the gamma-H2AX assay, reflecting the presence of DNA double-strand breaks (DSBs), as a possible means for identifying individuals who may be intermediate with respect to the extremes of hyper-radiosensitivity phenotypes. In this case, cells were studied from mice that were normal (Atm+/+), heterozygous (Atm+/-), or homozygous recessive (Atm-/-) for a truncating mutation in the Atm gene. After single acute (high-dose-rate) exposures, differences in mean numbers of gamma-H2AX foci per cell between samples from Atm+/+ and Atm-/- mice were clear at nearly all sampling times, but at no sampling time was there a clear distinction for cells from Atm+/+ and Atm+/- mice. In contrast, under conditions of low-dose-rate irradiation at 10 cGy/h, appreciable differences in the levels of gamma-H2AX foci per cell were observed in synchronized G1 cells derived from Atm+/- mice relative to cells from Atm+/+ mice. The levels were intermediate between those for cells from Atm+/+ and Atm-/- mice. After 24 h exposure at this dose rate, measurements in cells from four different mice for each genotype yielded mean frequencies of foci per cell of 1.77 +/- 0.13 (SEM) for Atm+/+ cells, 4.75 +/- 0.20 for the Atm+/- cells, and 11.10 +/- 0.33 for the Atm-/-cells. The distributions of foci per G1 cell were not significantly different from Poisson. To the extent that variations in sensitivity with respect to gamma-H2AX focus formation reflect variations in radiosensitivity for biological effects of concern, such as carcinogenesis, and that similar differences are seen for other genetic DNA DSB processing defects in general, this assay may provide a relatively straightforward means for distinguishing individuals who may be mildly hypersensitive to radiation such as we observed for Atm heterozygous mice.
Collapse
Affiliation(s)
- Takamitsu A Kato
- Department of Environmental and Radiological Health Sciences, Colorado State University. Fort Collins, Colorado 80523, USA
| | | | | | | | | | | |
Collapse
|
17
|
Zheng YL, Loffredo CA, Alberg AJ, Yu Z, Jones RT, Perlmutter D, Enewold L, Krasna MJ, Yung R, Shields PG, Harris CC. Less efficient g2-m checkpoint is associated with an increased risk of lung cancer in African Americans. Cancer Res 2005; 65:9566-73. [PMID: 16230422 PMCID: PMC1403288 DOI: 10.1158/0008-5472.can-05-1003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cell cycle checkpoints play critical roles in the maintenance of genomic integrity. The inactivation of checkpoint genes by genetic and epigenetic mechanisms is frequent in all cancer types, as a less-efficient cell cycle control can lead to genetic instability and tumorigenesis. In an on-going case-control study consisting of 216 patients with non-small cell lung cancer, 226 population-based controls, and 114 hospital-based controls, we investigated the relationship of gamma-radiation-induced G2-M arrest and lung cancer risk. Peripheral blood lymphocytes were cultured for 90 hours, exposed to 1.0 Gy gamma-radiation, and harvested at 3 hours after gamma-radiation treatment. gamma-Radiation-induced G2-M arrest was measured as the percentage of mitotic cells in untreated cultures minus the percentage of mitotic cells in gamma-radiation-treated cultures from the same subject. The mean percentage of gamma-radiation-induced G2-M arrest was significantly lower in cases than in population controls (1.18 versus 1.44, P < 0.01) and hospital controls (1.18 versus 1.40, P = 0.01). When dichotomized at the 50th percentile value in combined controls (population and hospital controls), a lower level of gamma-radiation-induced G2-M arrest was associated with an increased risk of lung cancer among African Americans after adjusting for baseline mitotic index, age, gender, and pack-years of smoking [adjusted odd ratio (OR), 2.25; 95% confidence interval (95% CI), 0.97-5.20]. A significant trend of an increased risk of lung cancer with a decreased level of G2-M arrest was observed (P(trend) = 0.02) among African Americans, with a lowest-versus-highest quartile adjusted OR of 3.74 (95% CI, 0.98-14.3). This trend was most apparent among African American females (P(trend) < 0.01), with a lowest-versus-highest quartile adjusted OR of 11.75 (95% CI, 1.47-94.04). The results suggest that a less-efficient DNA damage-induced G2-M checkpoint is associated with an increased risk of lung cancer among African Americans. Interestingly, we observed a stronger association of DNA damage-induced G2-M arrest and lung cancer among African Americans when compared with Caucasians. If replicated, these results may provide clues to the exceedingly high lung cancer incidence experienced by African Americans.
Collapse
Affiliation(s)
- Yun-Ling Zheng
- Laboratory of Human Carcinogenesis, National Cancer Institute, Bethesda, Maryland
- Cancer Genetics and Epidemiology Program, Georgetown University, Washington, District of Columbia
| | - Christopher A. Loffredo
- Cancer Genetics and Epidemiology Program, Georgetown University, Washington, District of Columbia
| | | | - Zhipeng Yu
- Laboratory of Human Carcinogenesis, National Cancer Institute, Bethesda, Maryland
| | - Raymond T. Jones
- Department of Pathology and Surgery, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Donna Perlmutter
- Department of Pathology and Surgery, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Lindsey Enewold
- Cancer Genetics and Epidemiology Program, Georgetown University, Washington, District of Columbia
| | - Mark J. Krasna
- Department of Pathology and Surgery, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Rex Yung
- Pulmonary Medicine, Johns Hopkins Medical Institutions; and
| | - Peter G. Shields
- Cancer Genetics and Epidemiology Program, Georgetown University, Washington, District of Columbia
| | - Curtis C. Harris
- Laboratory of Human Carcinogenesis, National Cancer Institute, Bethesda, Maryland
- Requests for reprints: Curtis C. Harris, Laboratory of Human Carcinogenesis, Center For Cancer Research, National Cancer Institute, 37 Convent Drive, Building 37, Room 3068, Bethesda, MD 20892-4255. Phone: 301-496-2048; Fax: 301-496-0497; E-mail:
| |
Collapse
|
18
|
Virsik-Köpp P, Hofman-Hüther H, Rave-Fränk M, Schmidberger H. The Effect of Wortmannin on Radiation-Induced Chromosome Aberration Formation in the Radioresistant Tumor Cell Line WiDr. Radiat Res 2005; 164:148-56. [PMID: 16138421 DOI: 10.1667/rr3396.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We analyzed the formation of radiation-induced chromosome aberrations in the cells of the radioresistant colon carcinoma cell line WiDr after treatment with wortmannin, an inhibitor of PI-3 kinases, including DNA-PK. Cells irradiated in G0/G1 phase with 200 kV X rays were treated with wortmannin before or after irradiation. Chromosome-type and chromatid-type aberrations were scored in metaphase cells by either Giemsa staining or FISH. Moreover, DNA-PK activity was measured in the absence and presence of wortmannin. In irradiated G0/G1-phase WiDr cells, only chromosome-type aberrations, including simple and complex exchanges and excess acentrics, were observed. After addition of 1 to 20 microM wortmannin, the formation of chromosome-type exchange aberrations was completely suppressed. The irradiated cells displayed exclusively chromatid-type aberrations including simple and complex chromatid exchanges and chromatid/isochromatid breaks. Whether the chromatid-type aberrations arise during G0/G1 as a result of homologous recombination processes coping with damaged DNA or whether DNA damage induced during G0/G1 phase persists until S and G2 phase and is then processed by homologous recombination pathways must be investigated further.
Collapse
Affiliation(s)
- Patricia Virsik-Köpp
- Abteilung für Umweltmedizin und Hygiene, Medizinische Fakultät, Georg-August-Universität Göttingen, D-37075 Göttingen, Germany.
| | | | | | | |
Collapse
|
19
|
Loucas BD, Cornforth MN. Evidence that Unrejoined DNA Double-Strand Breaks are not Predominantly Responsible for Chromosomal Radiosensitivity of AT Fibroblasts. Radiat Res 2004; 162:554-65. [PMID: 15624310 DOI: 10.1667/rr3255] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
To examine more fully the nature of chromosomal radiosensitivity in ataxia telangiectasia (AT) cells, we employed 24-color combinatorial painting to visualize 137Cs gamma-ray-induced chromosome-type aberrations in cells of two AT and one normal primary human fibroblast strains irradiated in log-phase growth. As a measure of misrejoined radiation-induced DSBs, we quantified exchange breakpoints associated with both simple and complex exchanges. As a measure of unrejoined DSBs, we quantified breakpoints from terminal deletions as well as deletions associated with incomplete exchange. For each of these end points, the frequency of damage per unit dose was markedly higher in AT cells compared to normal cells, although the proportion of total breaks that remained unrejoined was rather similar. The majority of breakpoints in both cell types were involved in exchanges. AT cells had a much higher frequency of complex exchanges compared to normal cells given the same dose, but for doses that resulted in approximately the same level of total breakpoints, the relative contribution from complex damage was also similar. We conclude that although terminal deletions and incomplete exchanges contribute to AT cell radiosensitivity, their relative abundance does not-in apparent contrast to the situation in lymphoblastoid cells-overwhelmingly account for the increased damage we observed in cycling AT fibroblasts. Thus, from a cytogenetic perspective, a higher level of unrepaired DSBs does not provide a universal explanation for the radiation-sensitive AT phenotype.
Collapse
Affiliation(s)
- Bradford D Loucas
- Department of Radiation Oncology, University of Texas Medical Branch, Galveston, Texas 77555-0656, USA.
| | | |
Collapse
|
20
|
Fernet M, Moullan N, Lauge A, Stoppa-Lyonnet D, Hall J. Cellular responses to ionising radiation of AT heterozygotes: differences between missense and truncating mutation carriers. Br J Cancer 2004; 90:866-73. [PMID: 14970866 PMCID: PMC2410162 DOI: 10.1038/sj.bjc.6601549] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
It has been estimated that approximately 1% of the general population are ataxia telangiectasia (AT) mutated (ATM) heterozygotes. The ATM protein plays a central role in DNA-damage response pathways; however, the functional consequences of the presence of either heterozygous truncating or missense mutations on ATM expression and the ionising radiation (IR)-induced cellular phenotype remain to be fully determined. To investigate this relationship, the ATM mRNA and protein levels and several cellular end points were characterised in 14 AT heterozygote (AT het) lymphoblastoid cell lines, compared to normal and AT homozygote lines. The AT het cell lines displayed a wide range of IR-induced responses: despite lower average levels of ATM mRNA and protein expression compared to normal cells, 13 out of 14 were capable of phosphorylating the ATM substrates p53-ser15 and Chk2, leading to a normal cell cycle progression after irradiation. However, cell survival was lower than in the normal cell lines. The presence of a missense compared to a truncating mutation was associated with lower cell survival after exposure to 2 Gy irradiation (P=0.005), and a higher level of ATM mRNA expression (P=0.047). Our results underline the difficulty in establishing a reliable test for determining ATM heterozygosity.
Collapse
Affiliation(s)
- M Fernet
- DNA Repair Group, International Agency for Research on Cancer, 150 cours Albert Thomas, 69372 Lyon cedex 08, France
| | - N Moullan
- DNA Repair Group, International Agency for Research on Cancer, 150 cours Albert Thomas, 69372 Lyon cedex 08, France
| | - A Lauge
- Service de Génétique, Institut Curie, 26 rue d'Ulm, 75248 Paris cedex 05, France
| | - D Stoppa-Lyonnet
- Service de Génétique, Institut Curie, 26 rue d'Ulm, 75248 Paris cedex 05, France
| | - J Hall
- DNA Repair Group, International Agency for Research on Cancer, 150 cours Albert Thomas, 69372 Lyon cedex 08, France
- DNA Repair Group, International Agency for Research on Cancer, 150 cours Albert Thomas, 69372 Lyon cedex 08, France. E-mail:
| |
Collapse
|
21
|
Nagasawa H, Little JB. Bystander effect for chromosomal aberrations induced in wild-type and repair deficient CHO cells by low fluences of alpha particles. Mutat Res 2002; 508:121-9. [PMID: 12379467 DOI: 10.1016/s0027-5107(02)00193-8] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We have previously shown that when confluent cultures of mammalian cells are exposed to very low fluences of alpha particles, fluences whereby as few as 1% of the cell nuclei are traversed by a single particle, genetic effects including specific gene mutations and sister chromatid exchanges (SCE) are induced in neighboring, non-irradiated "bystander" cells. The present investigation was designed to examine the induction of chromosomal aberrations in wild-type CHO cells and its DNA double strand break repair deficient mutant xrs-5 by a broad range of alpha particle fluences yielding mean doses of 0.17-200cGy. The dose-response curve for the induction of aberrations was curvilinear for both cell lines, with a greater effect occurring at very low fluences owing to aberrations arising in bystander cells. These aberrations were predominantly of the chromatid-type. With such fluences, the number of cells with induced aberrations per nucleus irradiated increased up to 4-fold in CHO cells and 15-fold in xrs-5 cells over that expected if aberrations occurred only in irradiated cells. These results are discussed in terms of the hypothesis that the primary DNA damage in bystander CHO cells is oxidative base damage leading to a relatively small bystander effect for gross chromosomal aberrations as compared with mutations or SCE; the larger bystander effect in xrs-5 cells is the result of oxidative damage and non-repaired DNA strand breaks which may result from opposed oxidative lesions.
Collapse
Affiliation(s)
- Hatsumi Nagasawa
- Department of Cancer Cell Biology, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
| | | |
Collapse
|
22
|
Bedford JS, Dewey WC. Radiation Research Society. 1952-2002. Historical and current highlights in radiation biology: has anything important been learned by irradiating cells? Radiat Res 2002; 158:251-91. [PMID: 12175305 DOI: 10.1667/0033-7587(2002)158[0251:hachir]2.0.co;2] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Around 30 years ago, a very prominent molecular biologist confidently proclaimed that nothing of fundamental importance has ever been learned by irradiating cells! The poor man obviously did not know about discoveries such as DNA repair, mutagenesis, connections between mutagenesis and carcinogenesis, genomic instability, transposable genetic elements, cell cycle checkpoints, or lines of evidence historically linking the genetic material with nucleic acids, or origins of the subject of oxidative stress in organisms, to name a few things of fundamental importance learned by irradiating cells that were well known even at that time. Early radiation studies were, quite naturally, phenomenological. They led to the realization that radiations could cause pronounced biological effects. This was followed by an accelerating expansion of investigations of the nature of these radiobiological phenomena, the beginnings of studies aimed toward better understanding the underlying mechanisms, and a better appreciation of the far-reaching implications for biology, and for society in general. Areas of principal importance included acute tissue and tumor responses for applications in medicine, whole-body radiation effects in plants and animals, radiation genetics and cytogenetics, mutagenesis, carcinogenesis, cellular radiation responses including cell reproductive death, cell cycle effects and checkpoint responses, underlying molecular targets leading to biological effects, DNA repair, and the genetic control of radiosensitivity. This review summarizes some of the highlights in these areas, and points to numerous examples where indeed, many things of considerable fundamental importance have been learned by irradiating cells.
Collapse
Affiliation(s)
- Joel S Bedford
- Department of Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523-1673, USA.
| | | |
Collapse
|
23
|
Little JB, Nagasawa H, Dahlberg WK, Zdzienicka MZ, Burma S, Chen DJ. Differing responses of Nijmegen breakage syndrome and ataxia telangiectasia cells to ionizing radiation. Radiat Res 2002; 158:319-26. [PMID: 12175309 DOI: 10.1667/0033-7587(2002)158[0319:dronbs]2.0.co;2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Nijmegen breakage syndrome (NBS) is a rare autosomal recessive disorder. Originally thought to be a variant of ataxia telangiectasia (AT), the cellular phenotype of NBS has been described as almost indistinguishable from that of AT. Since the gene involved in NBS has been cloned and its functions studied, we sought to further characterize its cellular phenotype by examining the response of density-inhibited, confluent cultures of human diploid fibroblasts to irradiation in the G(0)/G(1) phase of the cell cycle. Both NBS and AT cells were markedly sensitive to the cytotoxic effects of radiation. NBS cells, however, were proficient in recovery from potentially lethal damage and exhibited a pronounced radiation-induced G(1)-phase arrest. Irradiated AT cells showed no potentially lethal damage and no G(1)-phase arrest. Both cell types were hypersensitive to the induction of chromosomal aberrations, whereas the distribution of aberrations in irradiated NBS cells was similar to that of normal controls, AT cells showed a high frequency of chromatid-type aberrations. TP53 and CDKN1A (also known as p21(Waf1)) expression was attenuated in irradiated NBS cells, but maximal induction occurred 2 h postirradiation, as was observed in normal controls. The similarities and differences in cellular phenotype between irradiated NBS and AT cells are discussed in terms of the functional properties of the signaling pathways downstream of AT involving the NBS1 and TP53 proteins.
Collapse
Affiliation(s)
- John B Little
- Harvard School of Public Health, 665 Huntington Avenue, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Fitzek MM, Dahlberg WK, Nagasawa H, Mukai S, Munzenrider JE, Little JB. Unexpected sensitivity to radiation of fibroblasts from unaffected parents of children with hereditary retinoblastoma. Int J Cancer 2002; 99:764-8. [PMID: 12115515 DOI: 10.1002/ijc.10401] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The response to ionizing radiation was examined in diploid skin fibroblasts derived from 5 patients with hereditary type retinoblastoma as well as their parents. Unexpected sensitivity to cell killing, as measured by clonogenic survival, as well as enhanced radiation-induced G(1) arrest were observed in at least 1 parental fibroblast strain in all 5 families. In all cases, parental strains were equally or more radiosensitive than the probands. The mutation of the retinoblastoma gene (RB) determined in 4 of 5 probands was either absent from the parental cells, as expected from the negative family histories, or identical, in 1 father who was a known carrier. In the fifth family, the family history was negative for retinoblastoma. We hypothesize that the increased parental cell sensitivity to radiation suggests the presence of an as yet unrecognized genetic event occurring in 1 or both parents of children with retinoblastoma. Whether it increases mutability of the RB locus or other loci or interacts with RB is conjectural.
Collapse
Affiliation(s)
- Markus M Fitzek
- Department of Cancer Cell Biology, Harvard School of Public Health, Boston, MA 02116, USA
| | | | | | | | | | | |
Collapse
|
25
|
Rogers PB, Plowman PN, Harris SJ, Arlett CF. Four radiation hypersensitivity cases and their implications for clinical radiotherapy. Radiother Oncol 2000; 57:143-54. [PMID: 11054518 DOI: 10.1016/s0167-8140(00)00249-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND PURPOSE Over a 20 year period, four out of 2000 paediatric radiotherapy patients, treated at St. Bartholomew's Hospital (three with lymphoma, one with angiosarcoma), have revealed extreme/fatal clinical hypersensitivity in normal tissues. PATIENTS AND METHODS Cellular hypersensitivity was confirmed in vitro and attributed to the ataxia-telangiectasia (A-T) gene in cases I and II, a newly described defect in the DNA ligase 4 gene in case III, and a novel and as yet incompletely defined, molecular defect in case IV who presented with xeroderma pigmentosum (XP). RESULTS The severe clinical hypersensitivity preceded the cellular and molecular analysis, but did not manifest as a clinically exaggerated normal tissue reaction until 3+ weeks after the start of a conventionally fractionated course of radiotherapy, by which time the latent damage had been inflicted. There were no clinical stigmata to alert the clinician to a predisposing syndrome in two patients (cases I and II). We point out that approximately 20% of A-T patients are classified as variants with delayed expression of clinical symptoms, and case II falls into this category. CONCLUSIONS As lymphoma (incidence, one in 100000 children) constituted the majority of the diagnoses, questions arise as to: (1), the probability of other centres having experienced and being presented in the future with similar problems (particularly bearing in mind that other oncologically predisposing radiosensitivity syndromes have not been not represented in our experience); and (2), the appropriateness, efficiency and applicability of predictive assays. Unambiguous cellular radiosensitivity would have been apparent from clonal assays on fibroblast cultures from all four cases prior to treatment, but such assays take 4-6 weeks to produce results. While estimates of chromosome damage or clonal assays on pre-treatment blood derived cells would be faster, there is a health economics issue as to the general applicability of such 'screening' assays.
Collapse
Affiliation(s)
- P B Rogers
- Department Of Radiotherapy, St Bartholomew's Hospital, West Smithfield, London EC1A 7BE, UK
| | | | | | | |
Collapse
|
26
|
Abstract
Oxidative stress and the damage that results from it have been implicated in a wide number of disease processes including atherosclerosis, autoimmune disorders, neuronal degeneration, and cancer. Reactive oxygen species (ROS) are ubiquitous and occur naturally in all aerobic species, coming from both exogenous and endogenous sources. ROS are quite reactive and readily damage biological molecules, including DNA. While the damaging effects of ROS on DNA have been intensively studied, the effects of oxidative damage on cell cycle checkpoint function have not. Here will we review several biologically important ROS and their sources, the cell cycle, checkpoints, and current knowledge about the effects of ROS on initiating checkpoint responses.
Collapse
Affiliation(s)
- R E Shackelford
- Growth Control and Cancer Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | | | | |
Collapse
|
27
|
Merrill BJ, Holm C. A requirement for recombinational repair in Saccharomyces cerevisiae is caused by DNA replication defects of mec1 mutants. Genetics 1999; 153:595-605. [PMID: 10511542 PMCID: PMC1460794 DOI: 10.1093/genetics/153.2.595] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To examine the role of the RAD52 recombinational repair pathway in compensating for DNA replication defects in Saccharomyces cerevisiae, we performed a genetic screen to identify mutants that require Rad52p for viability. We isolated 10 mec1 mutations that display synthetic lethality with rad52. These mutations (designated mec1-srf for synthetic lethality with rad-fifty-two) simultaneously cause two types of phenotypes: defects in the checkpoint function of Mec1p and defects in the essential function of Mec1p. Velocity sedimentation in alkaline sucrose gradients revealed that mec1-srf mutants accumulate small single-stranded DNA synthesis intermediates, suggesting that Mec1p is required for the normal progression of DNA synthesis. sml1 suppressor mutations suppress both the accumulation of DNA synthesis intermediates and the requirement for Rad52p in mec1-srf mutants, but they do not suppress the checkpoint defect in mec1-srf mutants. Thus, it appears to be the DNA replication defects in mec1-srf mutants that cause the requirement for Rad52p. By using hydroxyurea to introduce similar DNA replication defects, we found that single-stranded DNA breaks frequently lead to double-stranded DNA breaks that are not rapidly repaired in rad52 mutants. Taken together, these data suggest that the RAD52 recombinational repair pathway is required to prevent or repair double-stranded DNA breaks caused by defective DNA replication in mec1-srf mutants.
Collapse
Affiliation(s)
- B J Merrill
- Department of Pharmacology, Division of Cellular and Molecular Medicine, Center for Molecular Genetics, University of California, San Diego, California 92093-0651, USA
| | | |
Collapse
|
28
|
Oppitz U, Bernthaler U, Schindler D, Sobeck A, Hoehn H, Platzer M, Rosenthal A, Flentje M. Sequence analysis of the ATM gene in 20 patients with RTOG grade 3 or 4 acute and/or late tissue radiation side effects. Int J Radiat Oncol Biol Phys 1999; 44:981-8. [PMID: 10421529 DOI: 10.1016/s0360-3016(99)00108-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PURPOSE Patients with ataxia-telangiectasia (A-T) show greatly increased radiation sensitivity and cancer predisposition. Family studies imply that the otherwise clinically silent heterozygotes of this autosomal recessive disease run a 3.5 to 3.8 higher risk of developing cancer. In vitro studies suggest moderately increased cellular radiation sensitivity of A-T carriers. They may also show elevated clinical radiosensitivity. We retrospectively examined patients who presented with severe adverse reactions during or after standard radiation treatment for mutations in the gene responsible for A-T, ATM, considering a potential means of future identification of radiosensitive individuals prospectively to adjust dosage schedules. MATERIAL AND METHODS We selected 20 cancer patients (breast, 11; rectum, 2; ENT, 2; bladder, 1; prostate, 1; anus, 1; astrocytoma, 1; Hodgkins lymphoma, 1) with Grade 3 to 4 (RTOG) acute and/or late tissue radiation side effects by reaction severity. DNA from the peripheral blood of patients was isolated. All 66 exons and adjacent intron regions of the ATM gene were PCR-amplified and examined for mutations by a combination of agarose gel electrophoresis, single-stranded conformational polymorphism (SSCP) analysis, and exon-scanning direct sequencing. RESULTS Only 2 of the patients revealed altogether four heteroallelic sequence variants. The latter included two single-base deletions in different introns, a single-base change causing an amino acid substitution in an exon, and a large insertion in another intron. Both the single-base deletions and the single-base change represent known polymorphisms. The large insertion was an Alu repeat, shown not to give rise to altered gene product. CONCLUSIONS Despite high technical efforts, no unequivocal ATM mutation was detected. Nevertheless, extension of similar studies to larger and differently composed cohorts of patients suffering severe adverse effects of radiotherapy, and application of new technologies for mutation detection may be worthwhile to assess the definite prevalence of significant ATM mutations within the group of radiotherapy patients with adverse reactions. To date, it must be recognized that our present results do not suggest that heterozygous ATM mutations are involved in clinically observed radiosensitivity but, rather, invoke different genetic predisposition or so far unknown exogenous factors.
Collapse
Affiliation(s)
- U Oppitz
- Department of Radiation Therapy, University of Wuerzburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Boyle JM, Greaves MJ, Camplejohn RS, Birch JM, Roberts SA, Varley JM. Radiation-induced G1 arrest is not defective in fibroblasts from Li-Fraumeni families without TP53 mutations. Br J Cancer 1999; 79:1657-64. [PMID: 10206274 PMCID: PMC2362814 DOI: 10.1038/sj.bjc.6690265] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Radiation-induced G1 arrest was studied in four classes of early passage skin fibroblasts comprising 12 normals, 12 heterozygous (mut/wt) TP53 mutation-carriers, two homozygous (mut/-) TP53 mutation-carriers and 16 strains from nine Li-Fraumeni syndrome or Li-Fraumeni-like families in which no TP53 mutation has been found, despite sequencing of all exons, exon-intron boundaries, 3' and 5' untranslated regions and promoter regions. In an assay of p53 allelic expression in yeast, cDNAs from these non-mutation strains behaved as wild-type p53. Using two different assays, we found G1 arrest was reduced in heterozygous strains with mis-sense mutations and one truncation mutation, when compared to the range established for the normal cells. Heterozygous strains with mutations at splice sites behaved like normal cells, whilst homozygous (mut/-) strains showed either extremely reduced, or no, arrest. Strains from all nine non-mutation families gave responses within the normal range. Exceptions to the previously reported inverse correlation between G1 arrest and clonogenic radiation resistance were observed, indicating that these phenotypes are not strictly interdependent.
Collapse
Affiliation(s)
- J M Boyle
- CRC Section of Molecular Genetics, Paterson Institute for Cancer Research, Christie CRC Research Centre, Manchester, UK
| | | | | | | | | | | |
Collapse
|
30
|
Shackelford RE, Kaufmann WK, Paules RS. Cell cycle control, checkpoint mechanisms, and genotoxic stress. ENVIRONMENTAL HEALTH PERSPECTIVES 1999; 107 Suppl 1:5-24. [PMID: 10229703 PMCID: PMC1566366 DOI: 10.1289/ehp.99107s15] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The ability of cells to maintain genomic integrity is vital for cell survival and proliferation. Lack of fidelity in DNA replication and maintenance can result in deleterious mutations leading to cell death or, in multicellular organisms, cancer. The purpose of this review is to discuss the known signal transduction pathways that regulate cell cycle progression and the mechanisms cells employ to insure DNA stability in the face of genotoxic stress. In particular, we focus on mammalian cell cycle checkpoint functions, their role in maintaining DNA stability during the cell cycle following exposure to genotoxic agents, and the gene products that act in checkpoint function signal transduction cascades. Key transitions in the cell cycle are regulated by the activities of various protein kinase complexes composed of cyclin and cyclin-dependent kinase (Cdk) molecules. Surveillance control mechanisms that check to ensure proper completion of early events and cellular integrity before initiation of subsequent events in cell cycle progression are referred to as cell cycle checkpoints and can generate a transient delay that provides the cell more time to repair damage before progressing to the next phase of the cycle. A variety of cellular responses are elicited that function in checkpoint signaling to inhibit cyclin/Cdk activities. These responses include the p53-dependent and p53-independent induction of Cdk inhibitors and the p53-independent inhibitory phosphorylation of Cdk molecules themselves. Eliciting proper G1, S, and G2 checkpoint responses to double-strand DNA breaks requires the function of the Ataxia telangiectasia mutated gene product. Several human heritable cancer-prone syndromes known to alter DNA stability have been found to have defects in checkpoint surveillance pathways. Exposures to several common sources of genotoxic stress, including oxidative stress, ionizing radiation, UV radiation, and the genotoxic compound benzo[a]pyrene, elicit cell cycle checkpoint responses that show both similarities and differences in their molecular signaling.
Collapse
Affiliation(s)
- R E Shackelford
- Growth Control and Cancer Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | | | | |
Collapse
|
31
|
Abstract
Cancer is a multi-step process evolving as the result of the accumulation of a number of mutational events. The growing body of evidence implicating genetic instability as a key feature of this evolutionary process and the risk of malignancy associated with chromosomal instability syndromes highlight the importance of understanding the mechanisms that cells use to maintain the integrity of their genomes. Classic examples of inherited chromosomal instability with cancer predisposition are Bloom's syndrome, ataxia telangiectasia, and Fanconi anaemia, although the mechanisms involved are far from understood. Selected features of these inherited disorders are reviewed to provide a background to the more recently discovered inducible chromosomal instability, a phenotype in which apparently normal cells that have survived ionizing radiation and certain chemical insults may produce descendants exhibiting a high frequency of de novo chromosome aberrations and gene mutations. The phenotype is induced at frequencies considerably greater than conventional mutation frequencies but little is understood of the underlying mechanism(s). To date, chromosomal instability induced by ionizing radiation has been the most extensively studied phenotype and it is evident that the expression of inducible instability has a strong dependence on the type of radiation exposure, the cell type irradiated, and the genetic 'predisposition' of the irradiated cell.
Collapse
Affiliation(s)
- E G Wright
- Radiation and Genome Stability Unit, Medical Research Council, Harwell, Oxfordshire, U.K.
| |
Collapse
|
32
|
Morgan SE, Lovly C, Pandita TK, Shiloh Y, Kastan MB. Fragments of ATM which have dominant-negative or complementing activity. Mol Cell Biol 1997; 17:2020-9. [PMID: 9121450 PMCID: PMC232049 DOI: 10.1128/mcb.17.4.2020] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The ATM protein has been implicated in pathways controlling cell cycle checkpoints, radiosensitivity, genetic instability, and aging. Expression of ATM fragments containing a leucine zipper motif in a human tumor cell line abrogated the S-phase checkpoint after ionizing irradiation and enhanced radiosensitivity and chromosomal breakage. These fragments did not abrogate irradiation-induced G1 or G2 checkpoints, suggesting that cell cycle checkpoint defects alone cannot account for chromosomal instability in ataxia telangiectasia (AT) cells. Expression of the carboxy-terminal portion of ATM, which contains the PI-3 kinase domain, complemented radiosensitivity and the S-phase checkpoint and reduced chromosomal breakage after irradiation in AT cells. These observations suggest that ATM function is dependent on interactions with itself or other proteins through the leucine zipper region and that the PI-3 kinase domain contains much of the significant activity of ATM.
Collapse
Affiliation(s)
- S E Morgan
- The Johns Hopkins Oncology Center, Baltimore, Maryland 21205, USA
| | | | | | | | | |
Collapse
|
33
|
Affiliation(s)
- M S Meyn
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
34
|
Abstract
The development of a normal cell into a tumor cell appears to depend in part on mutations in genes that normally control cell cycle and cell death, thereby resulting in inappropriate cellular survival and tumorigenesis. ATM ("mutated in ataxia-telangiectasia") and p53 are two gene products that are believed to play a major role in maintaining the integrity of the genome such that alterations in these gene products may contribute to increased incidence of genomic changes such as deletions, translocations, and amplifications, which are common during oncogenesis. p53 is a critical participant in a signal transduction pathway that mediates either a G1 arrest or apoptosis in response to DNA damage. In addition, p53 is believed to be involved in the mitotic spindle checkpoint and in the regulation of centrosome function. Following certain cytotoxic stresses, normal ATM function is required for p53-mediated G1 arrest. ATM is also involved in other cellular processes such as S phase and G2-M phase arrest and in radiosensitivity. The understanding of the roles that both p53 and ATM play in cell cycle progression and cell death in response to DNA damage may provide new insights into the molecular mechanisms of cellular transformation and may help identify potential targets for improved cancer therapies.
Collapse
Affiliation(s)
- S E Morgan
- Johns Hopkins Oncology Center, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
35
|
Haas-Kogan DA, Yount G, Haas M, Levi D, Kogan SS, Hu L, Vidair C, Deen DF, Dewey WC, Israel MA. p53-dependent G1 arrest and p53-independent apoptosis influence the radiobiologic response of glioblastoma. Int J Radiat Oncol Biol Phys 1996; 36:95-103. [PMID: 8823264 DOI: 10.1016/s0360-3016(96)00244-1] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
PURPOSE Loss of the p53 tumor suppressor gene has been associated with tumor progression, disease relapse, poor response to antineoplastic therapy, and poor prognosis in many malignancies. We have investigated the contribution of p53-mediated radiation-induced apoptosis and G1 arrest to the well described radiation resistance of glioblastoma multiforme (GM) cells. METHODS AND MATERIALS Radiation survival in vitro was quantitated using linear quadratic and repair-saturation mathematical models. Isogenic derivatives of glioblastoma cells differing only in their p53 status were generated using a retroviral vector expressing a dominant negative mutant of p53. Radiation-induced apoptosis was assayed by Fluorescence-activated cell sorter (FACS) analysis, terminal deoxynucleotide transferase labeling technique, and chromatin morphology. Cells were synchronized in early G1 phase and mitotic and labeling indices were measured. RESULTS Radiation-induced apoptosis of GM cells was independent of functional wild-type p53 (wt p53). Decreased susceptibility to radiation-induced apoptosis was associated with lower alpha values characterizing the shoulder of the clonogenic radiation survival curve. Using isogenic GM cells differing only in their p53 activity, we found that a p53-mediated function, radiation-induced G1 arrest, could also influence the value of alpha and clonogenic radiation resistance. Inactivation of wt p53 function by a dominant negative mutant of p53 resulted in a significantly diminished alpha value with no alteration in cellular susceptibility to radiation-induced apoptosis. The clonal derivative U87-LUX.8 expressing a functional wt p53 had an alpha (Gy-1) value of 0.609, whereas the isogenic clonal derivative U87-175.4 lacking wt p53 function had an alpha (Gy-1) value of 0.175. CONCLUSION We conclude that two distinct cellular responses to radiation, p53-independent apoptosis and p53-dependent G1-arrest, influence radiobiological parameters that characterize the radiation response of glioblastoma cells. Further understanding of the molecular basis of GM radiation resistance will lead to improvement in existing therapeutic modalities and to the development of novel treatment approaches.
Collapse
Affiliation(s)
- D A Haas-Kogan
- Department of Neurological Surgery, University of California, San Francisco 94143-0520, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Kiser GL, Weinert TA. Distinct roles of yeast MEC and RAD checkpoint genes in transcriptional induction after DNA damage and implications for function. Mol Biol Cell 1996; 7:703-18. [PMID: 8744945 PMCID: PMC275924 DOI: 10.1091/mbc.7.5.703] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In eukaryotic cells, checkpoint genes cause arrest of cell division when DNA is damaged or when DNA replication is blocked. In this study of budding yeast checkpoint genes, we identify and characterize another role for these checkpoint genes after DNA damage-transcriptional induction of genes. We found that three checkpoint genes (of six genes tested) have strong and distinct roles in transcriptional induction in four distinct pathways of regulation (each defined by induction of specific genes). MEC1 mediates the response in three transcriptional pathways, RAD53 mediates two of these pathways, and RAD17 mediates but a single pathway. The three other checkpoint genes (including RAD9) have small (twofold) but significant roles in transcriptional induction in all pathways. One of the pathways that we identify here leads to induction of MEC1 and RAD53 checkpoint genes themselves. This suggests a positive feedback circuit that may increase the cell's ability to respond to DNA damage. We make two primary conclusions from these studies. First, MEC1 appears to be the key regulator because it is required for all responses (both transcriptional and cell cycle arrest), while other genes serve only a subset of these responses. Second, the two types of responses, transcriptional induction and cell cycle arrest, appear distinct because both require MEC1 yet only cell cycle arrest requires RAD9. These and other results were used to formulate a working model of checkpoint gene function that accounts for roles of different checkpoint genes in different responses and after different types of damage. The conclusion that the yeast MEC1 gene is a key regulator also has implications for the role of a putative human homologue, the ATM gene.
Collapse
Affiliation(s)
- G L Kiser
- Molecular and Cellular Biology Department, University of Arizona, Tucson 85721, USA
| | | |
Collapse
|
37
|
Lohrer HD. Regulation of the cell cycle following DNA damage in normal and Ataxia telangiectasia cells. EXPERIENTIA 1996; 52:316-28. [PMID: 8620934 DOI: 10.1007/bf01919534] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A proportion of the population is exposed to acute doses of ionizing radiation through medical treatment or occupational accidents, with little knowledge of the immediate effects. At the cellular level, ionizing radiation leads to the activation of a genetic program which enables the cell to increase its chances of survival and to minimize detrimental manifestations of radiation damage. Cytotoxic stress due to ionizing radiation causes genetic instability, alterations in the cell cycle, apoptosis, or necrosis. Alterations in the G1, S and G2 phases of the cell cycle coincide with improved survival and genome stability. The main cellular factors which are activated by DNA damage and interfere with the cell cycle controls are: p53, delaying the transition through the G1-S boundary; p21WAF1/CIP1, preventing the entrance into S-phase; proliferating cell nuclear antigen (PCNA) and replication protein A (RPA), blocking DNA replication; and the p53 variant protein p53 as together with the retinoblastoma protein (Rb), with less defined functions during the G2 phase of the cell cycle. By comparing a variety of radioresistant cell lines derived from radiosensitive ataxia telangiectasia cells with the parental cells, some essential mechanisms that allow cells to gain radioresistance have been identified. The results so far emphasise the importance of an adequate delay in the transition from G2 to M and the inhibition of DNA replication in the regulation of the cell cycle after exposure to ionizing radiation.
Collapse
Affiliation(s)
- H D Lohrer
- Gray Laboratory, Mount Vernon Hospital, Northwood, United Kingdom
| |
Collapse
|
38
|
Role of induced genetic instability in the mutagenic effects of chemicals and radiation. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s0165-1218(96)90017-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
39
|
Abstract
Radiation-induced apoptosis is reviewed in terms of: (a) the identification of apoptotic and necrotic cells, (b) observations in vitro and in vivo of radiation-induced apoptosis, (c) genes controlling apoptosis, (d) evidence that the target may be the plasma membrane or nuclear DNA, (e) quantitative comparisons of apoptotic death and reproductive (clonogenic) death, (f) the importance of radiation-induced apoptosis in radiotherapy, and (g) studies of radiation-induced apoptosis that are needed. High priority should be placed on determining the molecular pathways that are important in the expression and modulation of radiation-induced apoptosis. Specifically, the events that modulate the apoptosis that occurs in interphase before the cell can divide should be distinguished from the events before division that modulate the misrepair of DNA damage, that results in chromosomal aberrations observed in mitotic cells, which in turn cause the progeny of the dividing cell with aberrations to die by either apoptosis or necrosis. Then, molecular events that determine whether a cell that divides with or without a chromosomal aberration will produce progeny that apoptose or necrose need to be identified. These considerations are important for determining how modulation of radiation-induced apoptosis will affect the ultimate clonogenic survival, and possibly genomic instability in the surviving progeny.
Collapse
Affiliation(s)
- W C Dewey
- Radiation Oncology Research Lab, University of California San Francisco 94103-0806, USA
| | | | | |
Collapse
|
40
|
Zölzer F, Hillebrandt S, Streffer C. Radiation induced G1-block and p53 status in six human cell lines. Radiother Oncol 1995; 37:20-8. [PMID: 8539453 DOI: 10.1016/0167-8140(95)01618-q] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Considerable attention has recently been focused on the fact that the tumor suppressor protein p53 is involved in the cellular response to radiation. In its wild-type form the protein appears to control a cell cycle checkpoint, preventing entry into S-phase following DNA damage. A number of authors observed a radiation induced G1-block in cells expressing wild-type p53, but not in p53 mutant cells. We obtained similar results with four human tumour cell lines as well as two strains of human fibroblasts, whose p53 status was ascertained at the protein as well as DNA levels. In addition to cell cycle delays in exponentially growing cell cultures, we have studied the possible role of the p53 in the transition from quiescence to active proliferation. Cells were irradiated after 6 days of serum-starvation and labelled with BrdU at different times after addition of fresh medium. Entry into S-phase was found to be delayed by several hours in the p53 wild-type cells, but no such effect was observed in the p53 mutants. Where a delay occurred, it was roughly proportional to the X-ray dose. Although it remains to be clarified, whether the cells were delayed only in G1 or also in G0, it is interesting to note that entry into S-phase can be delayed by irradiation in a quiescent state immediately before serum-stimulation, provided the cells are wild-type with respect to p53. Certain differences in the cell cycle response of transformed and untransformed cells were noted.
Collapse
Affiliation(s)
- F Zölzer
- Institut für Medizinische Strahlenbiologie, Universitätsklinikum Essen, Germany
| | | | | |
Collapse
|
41
|
Abstract
The primary focus of this review is on correlations found between DNA damage, repair, and aging. New techniques for the measurement of DNA damage and repair at the level of individual genes, in individual DNA strands and in individual nucleotides will allow us to gain information regarding the nature of these correlations. Fine structure studies of DNA damage and repair in specific regions, including active genes, telomeres, and mitochondria have begun. Considerable intragenomic DNA repair heterogeneity has been found, and there have been indications of relationships between aging and repair in specific regions. More studies are necessary, however, particularly studies of the repair of endogenous damage. It is emphasized that the information obtained must be viewed from a perspective that takes into account the total responses of the cell to damaging events and the inter-relationships that exist between DNA repair and transcription.
Collapse
Affiliation(s)
- V A Bohr
- Laboratory of Molecular Genetics, National Institutes on Aging, NIH, Baltimore, MD 21224, USA
| | | |
Collapse
|
42
|
Terada Y, Tatsuka M, Jinno S, Okayama H. Requirement for tyrosine phosphorylation of Cdk4 in G1 arrest induced by ultraviolet irradiation. Nature 1995; 376:358-62. [PMID: 7630405 DOI: 10.1038/376358a0] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Exposure to ultraviolet light arrests the function of mammalian fibroblasts in the G1 phase of the cell cycle, as well as the S and G2 phases. Although p21, an inhibitor of cyclin-dependent kinase (Cdk) that is induced by DNA damage may partly account for the arrest in G1 (ref. 1), the mechanism is little understood. Here we show that tyrosine phosphorylation of Cdk4 is required for this arrest. In rat fibroblast, Cdk4 is tyrosine-phosphorylated during G1 progression, and its dephosphorylation is required for S phase. When cells are ultraviolet-irradiated, their arrest in G1 is accompanied by an increase in phosphorylation level. Conversely, cells expressing unphosphorylatable Cdk4F17 fail to arrest in G1, and suffer significantly elevated chromosomal aberrations and cell death.
Collapse
Affiliation(s)
- Y Terada
- Okayama Cell Switching Project, ERATO, JRDC, Kyoto, Japan
| | | | | | | |
Collapse
|
43
|
Murnane JP. Cell cycle regulation in response to DNA damage in mammalian cells: a historical perspective. Cancer Metastasis Rev 1995; 14:17-29. [PMID: 7606817 DOI: 10.1007/bf00690208] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Cell cycle delay has long been known to occur in mammalian cells after exposure to DNA-damaging agents. It has been hypothesized that the function of this delay is to provide additional time for repair of DNA before the cell enters critical periods of the cell cycle, such as DNA synthesis in S phase or chromosome condensation in G2 phase. Recent evidence that p53 protein is involved in the delay in G1 in response to ionizing radiation has heightened interest in the importance of cell cycle delay, because mutations in p53 are commonly found in human cancer cells. Because mammalian cells defective in p53 protein show increased genomic instability, it is tempting to speculate that the instability is due to increased chromosome damage resulting from the lack of a G1 delay. Although this appears at first glance to be a highly plausible explanation, a review of the research performed on cell cycle regulation and DNA damage in mammalian cells provides little evidence to support this hypothesis. Studies involving cells treated with caffeine, cells from humans with the genetic disease ataxia telangiectasia, and cells that are deficient in p53 show no correlation between G1 delay and increased cell killing or chromosome damage in response to ionizing radiation. Instead, G1 delay appears to be only one aspect of a complex cellular response to DNA damage that also includes delays in S phase and G2 phase, apoptosis and chromosome repair. The exact mechanism of the genomic instability associated with p53, and its relationship to the failure to repair DNA before progression through the cell cycle, remains to be determined.
Collapse
Affiliation(s)
- J P Murnane
- Laboratory of Radiobiology and Environmental Health, University of California, San Francisco, USA
| |
Collapse
|
44
|
Navas TA, Zhou Z, Elledge SJ. DNA polymerase epsilon links the DNA replication machinery to the S phase checkpoint. Cell 1995; 80:29-39. [PMID: 7813016 DOI: 10.1016/0092-8674(95)90448-4] [Citation(s) in RCA: 327] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Inhibition of DNA synthesis induces transcription of DNA damage-inducible genes and prevents mitotic entry through the action of the S phase checkpoint. We have isolated a mutant, dun2, defective for both of these responses. DUN2 is identical to POL2, encoding DNA polymerase epsilon (pol epsilon). Unlike sad1 mutants defective for multiple cell cycle checkpoints, pol2 mutants are defective only for the S phase checkpoint and the activation of DUN1 kinase necessary for the transcriptional response to damage. Interallelic complementation and mutation analysis indicate that pol epsilon contains two separable essential domains, an N-terminal polymerase domain and a C-terminal checkpoint domain unique to epsilon polymerases. We propose that DNA pol epsilon acts as a sensor of DNA replication that coordinates the transcriptional and cell cycle responses to replication blocks.
Collapse
Affiliation(s)
- T A Navas
- Verna and Marrs McLean Department of Biochemistry, Baylor College of Medicine, Houston, Texas 77030
| | | | | |
Collapse
|
45
|
Abstract
Multiple genetic changes occur during the evolution of normal cells into cancer cells. This evolution is facilitated in cancer cells by loss of fidelity in the processes that replicate, repair, and segregate the genome. Recent advances in our understanding of the cell cycle reveal how fidelity is normally achieved by the coordinated activity of cyclin-dependent kinases, checkpoint controls, and repair pathways and how this fidelity can be abrogated by specific genetic changes. These insights suggest molecular mechanisms for cellular transformation and may help to identify potential targets for improved cancer therapies.
Collapse
Affiliation(s)
- L H Hartwell
- Department of Genetics, University of Washington, Seattle 98195
| | | |
Collapse
|
46
|
Allen JB, Zhou Z, Siede W, Friedberg EC, Elledge SJ. The SAD1/RAD53 protein kinase controls multiple checkpoints and DNA damage-induced transcription in yeast. Genes Dev 1994; 8:2401-15. [PMID: 7958905 DOI: 10.1101/gad.8.20.2401] [Citation(s) in RCA: 404] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Inhibition of DNA synthesis prevents mitotic entry through the action of the S-phase checkpoint. We have isolated S-phase arrest-defective (sad) mutants that show lethality in the presence of the DNA synthesis inhibitor hydroxyurea (HU). Several of these mutants show phenotypes consistent with inappropriate mitotic entry in the presence of unreplicated DNA, indicating a defect in the S-phase checkpoint. sad1 mutants are additionally defective for the G1 and G2 DNA damage checkpoints, and for DNA damage-induced transcription of RNR2 and RNR3. The transcriptional response to DNA damage requires activation of the Dun1 protein kinase. Activation of Dun1 in response to replication blocks or DNA damage is blocked in sad1 mutants. The HU sensitivity of sad1 mutants is suppressed by mutations in CKS1, a subunit of the p34CDC28 kinase, further establishing a link between cell cycle progression and lethality. sad1 mutants are allelic to rad53, a radiation-sensitive mutant. SAD1 encodes an essential protein kinase. The observation that SAD1 controls three distinct checkpoints suggests a common mechanism for cell cycle arrest at these points. Together, these observations implicate protein phosphorylation in the cellular response to DNA damage and replication blocks.
Collapse
Affiliation(s)
- J B Allen
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas 77030
| | | | | | | | | |
Collapse
|
47
|
Pandita TK, Hittelman WN. Increased initial levels of chromosome damage and heterogeneous chromosome repair in ataxia telangiectasia heterozygote cells. Mutat Res 1994; 310:1-13. [PMID: 7523872 DOI: 10.1016/0027-5107(94)90004-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Individuals heterozygous for ataxia telangiectasia (AT) appear clinically normal but have a 2-3-fold overall excess risk of cancer. Various approaches have been used to identify AT heterozygotes, however, the results are ambiguous. We recently reported that AT homozygotes exhibit more initial chromosome damage after irradiation than normal cells despite identical levels of DNA double strand breaks (DSBs) as well as a reduced fast repair component at both the DNA and chromosome levels. To determine whether AT heterozygotes exhibit the AT or normal cellular phenotype, we compared four AT heterozygote lymphoblastoid cell lines with normal control and AT homozygote lymphoblastoid cells with regard to cell survival, initial levels of damage, and repair at the DNA and chromosome levels after gamma-irradiation in G1, S, and G2 phase (estimated by neutral DNA filter elution and premature chromosome condensation). There was no significant difference in survival, induction and repair of DNA DSBs, or chromosome repair between AT heterozygote and normal cells. In contrast, all four AT heterozygote cell lines showed increased levels of chromosome damage; G1 phase cells showed intermediate levels and G2 phase cells showed levels equivalent to the AT homozygote phenotype. These results suggest that premature chromosome condensation may be useful for detecting AT heterozygotes.
Collapse
Affiliation(s)
- T K Pandita
- Department of Clinical Investigation, University of Texas M.D. Anderson Cancer Center, Houston 77030
| | | |
Collapse
|
48
|
Lee KS, Jung JB, Ro YJ, Ryoo YW, Kim OB, Song JY. Effects of x-irradiation on survival and extracellular matrix gene expression of cultured keloid fibroblasts. J Dermatol Sci 1994; 8:33-7. [PMID: 7947490 DOI: 10.1016/0923-1811(94)90318-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Survival and extracellular matrix gene expression were studied by viable cell count assay and Northern transfer analysis to compare the sensitivity of normal skin and keloid fibroblasts towards x-irradiation. As the dosage of radiation increased, the numbers of viable cells in irradiated groups were remarkably decreased exponentially, with no significant difference between normal and keloid cell lines. By Northern blot analysis, there was no change in size of the mRNAs for pro alpha 1(I) collagen, fibronectin and beta-actin. By slot-blot hybridization, pro alpha 1(I) collagen mRNA levels in x-irradiated fibroblasts were markedly decreased compared with non-irradiated controls. The amounts of fibronectin and beta-actin mRNAs were also decreased. This study suggests that both normal skin and keloid fibroblasts are sensitive to x-irradiation, and that extracellular matrix gene expression is also affected by such exposure.
Collapse
Affiliation(s)
- K S Lee
- Department of Dermatology, Keimyung University School of Medicine, Taegu, Korea
| | | | | | | | | | | |
Collapse
|
49
|
Beamish H, Lavin MF. Radiosensitivity in ataxia-telangiectasia: anomalies in radiation-induced cell cycle delay. Int J Radiat Biol 1994; 65:175-84. [PMID: 7907115 DOI: 10.1080/09553009414550211] [Citation(s) in RCA: 141] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A number of anomalies have been described in the progression of ataxia-telangiectasia (AT) cells through the cell cycle post-irradiation. Some uncertainty still exists as to whether AT cells show increased or reduced division delay after exposure to ionizing radiation. We have attempted to resolve the apparent inconsistencies that exist by investigating the effects of radiation on AT cells at various stages of the cell cycle. Specific labelling of S phase cells with 5-bromodeoxyuridine (BrdU) followed by irradiation caused a prolonged accumulation of these cells in G2/M phase with only 2-7% of AT cells progressing through to G1 24h post-irradiation. In contrast, 23-28% of control cells irradiated in S phase reached G1 by 24 h after irradiation. As observed previously with AT fibroblasts, AT lymphoblastoid cells irradiated in G1 phase did not experience a delay in entering S phase. After progressing through S phase these cells also were delayed in G2/M, but not to the same extent as irradiated S phase cells. On the other hand, when AT cells were irradiated in G2 phase they showed less delay initially in entry to mitosis and the subsequent G1 phase than did irradiated control cells. The overall results demonstrate that AT cells fail to show an initial delay in transitions between the G1/S and G2/M phases of the cell cycle and in progression through these phases post-irradiation, but in the long-term, after passage through S phase, they experience a prolonged delay in G2/M. Since several AT complementation groups are represented in this study, the cell cycle anomalies appear to be universal in AT. These results implicate deficiencies in control of cell cycle progression in the increased radiosensitivity and cancer predisposition in AT.
Collapse
Affiliation(s)
- H Beamish
- Queensland Cancer Fund Research Unit, Queensland Institute of Medical Research, Brisbane, Australia
| | | |
Collapse
|
50
|
Heim RA, Lench NJ, Swift M. Heterozygous manifestations in four autosomal recessive human cancer-prone syndromes: ataxia telangiectasia, xeroderma pigmentosum, Fanconi anemia, and Bloom syndrome. Mutat Res 1992; 284:25-36. [PMID: 1279391 DOI: 10.1016/0027-5107(92)90022-t] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- R A Heim
- Biological Sciences Research Center, University of North Carolina, Chapel Hill 27599-7250
| | | | | |
Collapse
|