1
|
Dinh DT, Bahari GP, Xu Q, Wei CH, Chen DR, Hsieh WC, Lin PH. Investigation of the abasic sites induced by hydrogen peroxide and methyl methanesulfonate in calf thymus DNA and BEAS-2B cells. Toxicol Lett 2024; 401:101-107. [PMID: 39326644 DOI: 10.1016/j.toxlet.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024]
Abstract
The primary goals of this study were to investigate the formation of abasic sites (AP sites) induced by methyl methanesulfonate (MMS) and hydrogen peroxide (H2O2), and to characterize specific types of these pro-mutagenic DNA lesions in calf thymus DNA (CT-DNA), and BEAS-2B human lung normal cell line. Furthermore, these profiles were compared with those observed in leukocytes derived from healthy controls (HC), breast cancer patients (BCP) before treatment, and 5-year survivors. Results indicated that both H2O2 and MMS induced the concentration- and time-dependent formation of AP sites in CT-DNA. To characterize the specific types of AP sites induced by H2O2 or MMS, we performed AP site cleavage assay using putrescine, T7 exonuclease (T7 Exo), and exonuclease III (Exo III). Results showed that the AP sites induced by H2O2 in CT-DNA were predominantly 5'-and 3'-nicked AP sites and no intact AP sites were detected. By contrast, the majority of AP sites generated by MMS in CT-DNA are not excisable and are classified as residual and intact AP sites. Similar approaches were performed in human BEAS-2B cells and comparable observations were confirmed in the cell-based model. Further investigation indicated that the profile of the AP sites observed in Taiwanese HC is identical to that of BEAS-2B cells treated with H2O2 whereas the pattern of AP sites detected in BCP is similar to that of CT-DNA exposed to H2O2, suggesting that these AP sites were produced primarily through reactive oxygen species (ROS) generation. More than 70 % of the AP sites in leukocytes derived from BCP were 5'-nicked and residual AP sites. Furthermore, the characteristics of the AP sites detected in 5-year survivors are comparable with the ones in HC by using putrescine cleavage assay. Overall, we speculate that deficiency in the DNA repair cascade may play a role in mediating the formation of specific types of AP sites detected in BCP.
Collapse
Affiliation(s)
- Dat Thanh Dinh
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung 402, Taiwan; Department of Environmental Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Gilang Putra Bahari
- Department of Environmental Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Qi Xu
- Department of Environmental Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Cheng-Hao Wei
- Department of Environmental Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Dar-Ren Chen
- Comprehensive Breast Cancer Center, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Wei-Chung Hsieh
- Department of Laboratory Medicine, Da-Chien General Hospital, Miaoli 360, Taiwan
| | - Po-Hsiung Lin
- Department of Environmental Engineering, National Chung Hsing University, Taichung 402, Taiwan; Research Center of Environmental Education and Sustainable Technology, Nantou 540, Taiwan.
| |
Collapse
|
2
|
Donnio LM, Giglia-Mari G. Keep calm and reboot - how cells restart transcription after DNA damage and DNA repair. FEBS Lett 2024. [PMID: 38991979 DOI: 10.1002/1873-3468.14964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/12/2024] [Accepted: 04/21/2024] [Indexed: 07/13/2024]
Abstract
The effects of genotoxic agents on DNA and the processes involved in their removal have been thoroughly studied; however, very little is known about the mechanisms governing the reinstatement of cellular activities after DNA repair, despite restoration of the damage-induced block of transcription being essential for cell survival. In addition to impeding transcription, DNA lesions have the potential to disrupt the precise positioning of chromatin domains within the nucleus and alter the meticulously organized architecture of the nucleolus. Alongside the necessity of resuming transcription mediated by RNA polymerase 1 and 2 transcription, it is crucial to restore the structure of the nucleolus to facilitate optimal ribosome biogenesis and ensure efficient and error-free translation. Here, we examine the current understanding of how transcriptional activity from RNA polymerase 2 is reinstated following DNA repair completion and explore the mechanisms involved in reassembling the nucleolus to safeguard the correct progression of cellular functions. Given the lack of information on this vital function, this Review seeks to inspire researchers to explore deeper into this specific subject and offers essential suggestions on how to investigate this complex and nearly unexplored process further.
Collapse
Affiliation(s)
- Lise-Marie Donnio
- Institut NeuroMyoGène-Pathophysiology and Genetics of Neuron and Muscle (INMG_PGNM), CNRS UMR 5261, INSERM U1315, Université Claude Bernard Lyon 1, Lyon, 69008, France
| | - Giuseppina Giglia-Mari
- Institut NeuroMyoGène-Pathophysiology and Genetics of Neuron and Muscle (INMG_PGNM), CNRS UMR 5261, INSERM U1315, Université Claude Bernard Lyon 1, Lyon, 69008, France
| |
Collapse
|
3
|
Prudhomme M, Johnston CHG, Soulet AL, Boyeldieu A, De Lemos D, Campo N, Polard P. Pneumococcal competence is a populational health sensor driving multilevel heterogeneity in response to antibiotics. Nat Commun 2024; 15:5625. [PMID: 38987237 PMCID: PMC11237056 DOI: 10.1038/s41467-024-49853-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 06/21/2024] [Indexed: 07/12/2024] Open
Abstract
Competence for natural transformation is a central driver of genetic diversity in bacteria. In the human pathogen Streptococcus pneumoniae, competence exhibits a populational character mediated by the stress-induced ComABCDE quorum-sensing (QS) system. Here, we explore how this cell-to-cell communication mechanism proceeds and the functional properties acquired by competent cells grown under lethal stress. We show that populational competence development depends on self-induced cells stochastically emerging in response to stresses, including antibiotics. Competence then propagates through the population from a low threshold density of self-induced cells, defining a biphasic Self-Induction and Propagation (SI&P) QS mechanism. We also reveal that a competent population displays either increased sensitivity or improved tolerance to lethal doses of antibiotics, dependent in the latter case on the competence-induced ComM division inhibitor. Remarkably, these surviving competent cells also display an altered transformation potential. Thus, the unveiled SI&P QS mechanism shapes pneumococcal competence as a health sensor of the clonal population, promoting a bet-hedging strategy that both responds to and drives cells towards heterogeneity.
Collapse
Affiliation(s)
- Marc Prudhomme
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), UMR5100, Centre de Biologie Intégrative (CBI), Centre Nationale de la Recherche Scientifique (CNRS), Toulouse, France
- Université Paul Sabatier (Toulouse III), Toulouse, France
| | - Calum H G Johnston
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), UMR5100, Centre de Biologie Intégrative (CBI), Centre Nationale de la Recherche Scientifique (CNRS), Toulouse, France
- Université Paul Sabatier (Toulouse III), Toulouse, France
| | - Anne-Lise Soulet
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), UMR5100, Centre de Biologie Intégrative (CBI), Centre Nationale de la Recherche Scientifique (CNRS), Toulouse, France
- Université Paul Sabatier (Toulouse III), Toulouse, France
| | - Anne Boyeldieu
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), UMR5100, Centre de Biologie Intégrative (CBI), Centre Nationale de la Recherche Scientifique (CNRS), Toulouse, France
- Université Paul Sabatier (Toulouse III), Toulouse, France
| | - David De Lemos
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), UMR5100, Centre de Biologie Intégrative (CBI), Centre Nationale de la Recherche Scientifique (CNRS), Toulouse, France
- Université Paul Sabatier (Toulouse III), Toulouse, France
| | - Nathalie Campo
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), UMR5100, Centre de Biologie Intégrative (CBI), Centre Nationale de la Recherche Scientifique (CNRS), Toulouse, France
- Université Paul Sabatier (Toulouse III), Toulouse, France
| | - Patrice Polard
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), UMR5100, Centre de Biologie Intégrative (CBI), Centre Nationale de la Recherche Scientifique (CNRS), Toulouse, France.
- Université Paul Sabatier (Toulouse III), Toulouse, France.
| |
Collapse
|
4
|
Kaneko S, Okada Y. Revalidation of DNA Fragmentation Analyses for Human Sperm-Measurement Principles, Comparative Standards, Calibration Curve, Required Sensitivity, and Eligibility Criteria for Test Sperm. BIOLOGY 2024; 13:484. [PMID: 39056679 PMCID: PMC11274034 DOI: 10.3390/biology13070484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/19/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024]
Abstract
(1) Background: Double-strand breaks (DSBs) in a single nucleus are usually measured using the sperm chromatin structure assay (SCSA), sperm chromatin dispersion (SCD) test, and comet assay (CA). Mono-dimensional single-cell pulsed-field gel electrophoresis (1D-SCPFGE) and angle-modulated two- dimensional single-cell pulsed-field gel electrophoresis (2D-SCPFGE) were developed to observe DNA fragmentation in separated motile sperm. (2) Methods: Comparative standards, calibration curves, required sensitivity levels, and eligibility criteria for test sperm were set up to validate the measurement principles of these tests. (3) Results: The conventional methods overlooked the interference of nucleoproteins in their measurements. In-gel proteolysis improves the measurement accuracies of 1D- and 2D-SCPFGE. Naked DNA is suitable for comparative standards and test specimens. Moreover, several dysfunctions that might induce DNA damage are observed in the separated motile sperm. Overall, the discussion highlights the need to revisit the conventional univariable analyses based on the SCSA, SCD test, and CA. (4) Conclusions: Human infertility is a complex syndrome, and the aim of quality control in intracytoplasmic sperm injection is to identify the underlying dysfunctions remaining in the separated motile sperm that render them ineligible for injection. Multivariable analyses with special consideration to confounding factors are necessary in future cohort studies.
Collapse
Affiliation(s)
- Satoru Kaneko
- Laboratory of Pathology and Development, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-0032, Japan;
- Sperm-Semen-Epididymis-Testis (SSET) Clinic, 1-5 Kanda-Iwamoto, Chiyoda, Tokyo 101-0033, Japan
| | - Yuki Okada
- Laboratory of Pathology and Development, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-0032, Japan;
| |
Collapse
|
5
|
Li C, Liu J, Wei Z, Cheng Y, Shen Z, Xin Z, Huang Y, Wang H, Li Y, Mu Z, Zhang Q. Exogenous melatonin enhances the tolerance of tiger nut (Cyperus esculentus L.) via DNA damage repair pathway under heavy metal stress (Cd 2+) at the sprout stage. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 265:115519. [PMID: 37769580 DOI: 10.1016/j.ecoenv.2023.115519] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/21/2023] [Accepted: 09/23/2023] [Indexed: 10/03/2023]
Abstract
Heavy metal (HM) stress is a non-negligible abiotic stress that seriously restricts crop yield and quality, while the sprout stage is the most sensitive to stress and directly impacts the growth and development of the later stage. Melatonin (N-acetyl-5-methoxytryptamine), as an exogenous additive, enhances stress resistance due to its ability to oxidize and reduce. However, few reports on exogenous melatonin to tiger nuts under HM stress have explored whether exogenous melatonin enhances plants' resistance to heavy metals. Here, "Jisha 2″ was used as material, with a stress concentration of 5 mg/L and 100 μmol/L of CdCl2 to explore whether exogenous melatonin enhances plant resistance and molecular mechanism. The result revealed that stress limits growth, while melatonin alleviated the sprout damage under stress from the phenotypes. Moreover, stress-enhanced reactive oxygen species (ROS) accumulation and membrane lipid peroxidation, while melatonin-increased ROS reduce damage via the analysis of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) and malondialdehyde (MDA) content, hydrogen peroxide (H2O2), superoxide anion (O2-), and Electrolyte leakage (El). Further results indicated that HM leads to DNA damage while exogenous melatonin will repair the damage by analyzing random amplified polymorphic DNA (RAPD), DNA cross-linking, 8-hydroxy-20-deoxyguanine level, and relative density of apurinic sites. Furthermore, gene expression in the DNA-repaired pathway exhibited similar results. These results applied that exogenous melatonin released the hurt caused by HM stress, with DNA repair and ROS balance serving as candidate pathways. This study elucidated the mechanism of melatonin's influence and provided theoretical insights into its application in tiger nuts.
Collapse
Affiliation(s)
- Caihua Li
- Institute of Economic Plants, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Jiayao Liu
- Institute of Economic Plants, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Zunmiao Wei
- Institute of Economic Plants, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Yan Cheng
- Institute of Economic Plants, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Zihao Shen
- Agricultural College, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Zhuo Xin
- Agricultural College, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yudi Huang
- Agricultural College, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Hongda Wang
- Agricultural College, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yuhuan Li
- Institute of Economic Plants, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Zhongsheng Mu
- Institute of Economic Plants, Jilin Academy of Agricultural Sciences, Changchun, China; Agricultural College, Heilongjiang Bayi Agricultural University, Daqing, China.
| | - Qi Zhang
- Institute of Economic Plants, Jilin Academy of Agricultural Sciences, Changchun, China; Agricultural College, Heilongjiang Bayi Agricultural University, Daqing, China.
| |
Collapse
|
6
|
Kowalik S, Groszyk J. Profiling of Barley, Wheat, and Rye FPG and OGG1 Genes during Grain Germination. Int J Mol Sci 2023; 24:12354. [PMID: 37569728 PMCID: PMC10418959 DOI: 10.3390/ijms241512354] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
This research is about the profiling of barley (Hordeum vulgare L.), wheat (Triticum aestivum L.), and rye (Secale cereale L.) FPG and OGG1 genes during grain germination. During seed germination, reactive oxygen species accumulate, which leads to DNA damage. In the base excision repair (BER) system, the enzymes formamidopyrimidine DNA glycosylase (FPG) and 8-oxoguanine DNA glycosylase (OGG1), among others, are responsible for repairing such damage. We decided to check how the expression of genes encoding these two enzymes changes in germinating grains. Spring varieties of barley, wheat, and rye from the previous growing season were used in the study. Expression level changes were checked using Real-Time PCR. After analyzing the obtained results, the maximum expression levels of FPG and OGG1 genes during germination were determined for barley, wheat, and rye. The results of the study show differences in expression levels specific to each species. The highest expression was observed at different time points for each of them. There were no differences in the highest expression for FPG and OGG1 within one species. In conclusion, the research provides information on how the level of FPG and OGG1 gene expression changes during the germination process in cereals. This is the first study looking at the expression levels of these two genes in cereals.
Collapse
Affiliation(s)
| | - Jolanta Groszyk
- Plant Breeding and Acclimatization Institute–National Research Institute, Radzików, 05-870 Błonie, Poland;
| |
Collapse
|
7
|
Schlosser J, Ihmels H. Ligands for Abasic Site-containing DNA and their Use as Fluorescent Probes. Curr Org Synth 2023; 20:96-113. [PMID: 35170411 DOI: 10.2174/1570179419666220216091422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 12/16/2021] [Accepted: 12/16/2021] [Indexed: 12/16/2022]
Abstract
Apurinic and apyrimidinic sites, also referred to as abasic or AP sites, are residues of duplex DNA in which one DNA base is removed from a Watson-Crick base pair. They are formed during the enzymatic repair of DNA and offer binding sites for a variety of guest molecules. Specifically, the AP site may bind an appropriate ligand as a substitute for the missing nucleic base, thus stabilizing the abasic site-containing DNA (AP-DNA). Notably, ligands that bind selectively to abasic sites may be employed for analytical and therapeutical purposes. As a result, there is a search for structural features that establish a strong and selective association of a given ligand with the abasic position in DNA. Against this background, this review provides an overview of the different classes of ligands for abasic site-containing DNA (AP-DNA). This review covers covalently binding substrates, namely amine and oxyamine derivatives, as well as ligands that bind to AP-DNA by noncovalent association, as represented by small heterocyclic aromatic compounds, metal-organic complexes, macrocyclic cyclophanes, and intercalator-nucleobase conjugates. As the systematic development of fluorescent probes for AP-DNA has been somewhat neglected so far, this review article contains a survey of the available reports on the fluorimetric response of the ligand upon binding to the AP-DNA. Based on these data, this compilation shall present a perspective for future developments of fluorescent probes for AP-DNA.
Collapse
Affiliation(s)
- Julika Schlosser
- Department of Chemistry and Biology, University of Siegen, Center of Micro- and Nanochemistry and (Bio)Technology (Cμ), Adolf-Reichwein-Str. 2, 57068 Siegen, Germany
| | - Heiko Ihmels
- Department of Chemistry and Biology, University of Siegen, Center of Micro- and Nanochemistry and (Bio)Technology (Cμ), Adolf-Reichwein-Str. 2, 57068 Siegen, Germany
| |
Collapse
|
8
|
Mandi C, Mahata T, Patra D, Chakraborty J, Bora A, Pal R, Dutta S. Cleavage of Abasic Sites in DNA by an Aminoquinoxaline Compound: Augmented Cytotoxicity and DNA Damage in Combination with an Anticancer Drug Chlorambucil in Human Colorectal Carcinoma Cells. ACS OMEGA 2022; 7:6488-6501. [PMID: 35252645 PMCID: PMC8892855 DOI: 10.1021/acsomega.1c04962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
The elevated level of endogenous oxidative DNA damage and spontaneous deamination of DNA bases in cancer cells substantially increase the abasic sites in DNA via base excision repairs (BERs). Thus, the predominant BER pathway is a favorable target for cancer therapy. Interestingly, elevated levels of glutathione (GSH) in certain cancer cells, such as colon cancer, are associated with acquired resistance to several chemotherapeutic agents, which increase the difficulty for the treatment of cancer. Here, we have reported an ideal nitro group-containing monoquinoxaline DNA intercalator (1d), which is reduced into a fluorescent quinoxaline amine (1e) in the presence of GSH; concurrently, 1e (∼100 nM concentration) selectively causes the in vitro cleavage of abasic sites in DNA. 1e also binds to the tetrahydrofuran analogue of the abasic site in the nanomolar to low micromolar range depending on the nucleotide sequence opposite to the abasic site and also induces a structural change in abasic DNA. Furthermore, the amine compound (1e) augments the response of the specific bifunctional alkylating drug chlorambucil at a much lower concentration in the human colorectal carcinoma cell (HCT-116), and their combination shows a potential strategy for targeted therapy. Alone or in combination, 1d and 1e lead to a cascade of cellular events such as induction of DNA double-stranded breaks and cell arrest at G0/G1 and G2/M phases, eventually leading to apoptotic cell death in HCT-116 cells. Hence, the outcome of this study provides a definitive approach that will help optimize the therapeutic applications for targeting the abasic site in cancer cells.
Collapse
Affiliation(s)
- Chandra
Sova Mandi
- Organic
and Medicinal Chemistry Division, CSIR-Indian
Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700032, West
Bengal, India
| | - Tridib Mahata
- Organic
and Medicinal Chemistry Division, CSIR-Indian
Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700032, West
Bengal, India
| | - Dipendu Patra
- Organic
and Medicinal Chemistry Division, CSIR-Indian
Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700032, West
Bengal, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jeet Chakraborty
- Organic
and Medicinal Chemistry Division, CSIR-Indian
Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700032, West
Bengal, India
| | - Achyut Bora
- Organic
and Medicinal Chemistry Division, CSIR-Indian
Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700032, West
Bengal, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ritesh Pal
- Organic
and Medicinal Chemistry Division, CSIR-Indian
Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700032, West
Bengal, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sanjay Dutta
- Organic
and Medicinal Chemistry Division, CSIR-Indian
Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700032, West
Bengal, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
9
|
Agapov A, Olina A, Kulbachinskiy A. OUP accepted manuscript. Nucleic Acids Res 2022; 50:3018-3041. [PMID: 35323981 PMCID: PMC8989532 DOI: 10.1093/nar/gkac174] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 02/26/2022] [Accepted: 03/03/2022] [Indexed: 11/14/2022] Open
Abstract
Cellular DNA is continuously transcribed into RNA by multisubunit RNA polymerases (RNAPs). The continuity of transcription can be disrupted by DNA lesions that arise from the activities of cellular enzymes, reactions with endogenous and exogenous chemicals or irradiation. Here, we review available data on translesion RNA synthesis by multisubunit RNAPs from various domains of life, define common principles and variations in DNA damage sensing by RNAP, and consider existing controversies in the field of translesion transcription. Depending on the type of DNA lesion, it may be correctly bypassed by RNAP, or lead to transcriptional mutagenesis, or result in transcription stalling. Various lesions can affect the loading of the templating base into the active site of RNAP, or interfere with nucleotide binding and incorporation into RNA, or impair RNAP translocation. Stalled RNAP acts as a sensor of DNA damage during transcription-coupled repair. The outcome of DNA lesion recognition by RNAP depends on the interplay between multiple transcription and repair factors, which can stimulate RNAP bypass or increase RNAP stalling, and plays the central role in maintaining the DNA integrity. Unveiling the mechanisms of translesion transcription in various systems is thus instrumental for understanding molecular pathways underlying gene regulation and genome stability.
Collapse
Affiliation(s)
- Aleksei Agapov
- Correspondence may also be addressed to Aleksei Agapov. Tel: +7 499 196 0015; Fax: +7 499 196 0015;
| | - Anna Olina
- Institute of Molecular Genetics, National Research Center “Kurchatov Institute” Moscow 123182, Russia
| | - Andrey Kulbachinskiy
- To whom correspondence should be addressed. Tel: +7 499 196 0015; Fax: +7 499 196 0015;
| |
Collapse
|
10
|
Guo J, Ikuemonisan J, Hatsukami DK, Hecht SS. Liquid Chromatography-Nanoelectrospray Ionization-High-Resolution Tandem Mass Spectrometry Analysis of Apurinic/Apyrimidinic Sites in Oral Cell DNA of Cigarette Smokers, e-Cigarette Users, and Nonsmokers. Chem Res Toxicol 2021; 34:2540-2548. [PMID: 34846846 DOI: 10.1021/acs.chemrestox.1c00308] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cigarette smoking is an established risk factor for oral cancer. The health effects of e-cigarettes are still under investigation but may disturb oral cavity homeostasis and cause lung and cardiovascular diseases. Carcinogens and toxicants in tobacco products and e-cigarettes may damage DNA, resulting in the formation of apurinic/apyrimidinic (AP) sites and initiation of the carcinogenic process. In this study, we optimized a liquid chromatography-nanoelectrospray ionization-high-resolution tandem mass spectrometry method to analyze AP sites in buccal cell DNA of 35 nonsmokers, 30 smokers, and 30 e-cigarette users. AP sites in e-cigarette users (median 3.3 per 107 nts) were significantly lower than in smokers (median 5.7 per 107 nts) and nonsmokers (median 6.0 per 107 nts). AP sites in smokers were not significantly different from nonsmokers (p > 0.05). The e-cigarette vaporizing solvents propylene glycol and glycerin were tested and did not protect against AP site formation in in vitro control and carcinogen exposed rat liver homogenates. However, propylene glycol may inhibit bacteria in oral cells, resulting in reduced inflammation and related effects, and reduced AP site levels in e-cigarette user DNA. This is the first study to examine AP site formation in e-cigarette users and to evaluate AP sites in human oral cell DNA.
Collapse
Affiliation(s)
- Jiehong Guo
- Masonic Cancer Center, University of Minnesota, 2231 6th Street SE, 2-210 CCRB, Minneapolis, Minnesota 55455, United States
| | - Joshua Ikuemonisan
- Masonic Cancer Center, University of Minnesota, 2231 6th Street SE, 2-210 CCRB, Minneapolis, Minnesota 55455, United States
| | - Dorothy K Hatsukami
- Masonic Cancer Center, University of Minnesota, 2231 6th Street SE, 2-210 CCRB, Minneapolis, Minnesota 55455, United States
| | - Stephen S Hecht
- Masonic Cancer Center, University of Minnesota, 2231 6th Street SE, 2-210 CCRB, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
11
|
Complementary Functions of Plant AP Endonucleases and AP Lyases during DNA Repair of Abasic Sites Arising from C:G Base Pairs. Int J Mol Sci 2021; 22:ijms22168763. [PMID: 34445469 PMCID: PMC8395712 DOI: 10.3390/ijms22168763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 11/23/2022] Open
Abstract
Abasic (apurinic/apyrimidinic, AP) sites are ubiquitous DNA lesions arising from spontaneous base loss and excision of damaged bases. They may be processed either by AP endonucleases or AP lyases, but the relative roles of these two classes of enzymes are not well understood. We hypothesized that endonucleases and lyases may be differentially influenced by the sequence surrounding the AP site and/or the identity of the orphan base. To test this idea, we analysed the activity of plant and human AP endonucleases and AP lyases on DNA substrates containing an abasic site opposite either G or C in different sequence contexts. AP sites opposite G are common intermediates during the repair of deaminated cytosines, whereas AP sites opposite C frequently arise from oxidized guanines. We found that the major Arabidopsis AP endonuclease (ARP) exhibited a higher efficiency on AP sites opposite G. In contrast, the main plant AP lyase (FPG) showed a greater preference for AP sites opposite C. The major human AP endonuclease (APE1) preferred G as the orphan base, but only in some sequence contexts. We propose that plant AP endonucleases and AP lyases play complementary DNA repair functions on abasic sites arising at C:G pairs, neutralizing the potential mutagenic consequences of C deamination and G oxidation, respectively.
Collapse
|
12
|
HMCES Maintains Replication Fork Progression and Prevents Double-Strand Breaks in Response to APOBEC Deamination and Abasic Site Formation. Cell Rep 2021; 31:107705. [PMID: 32492421 PMCID: PMC7313144 DOI: 10.1016/j.celrep.2020.107705] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/28/2020] [Accepted: 05/06/2020] [Indexed: 01/12/2023] Open
Abstract
5-Hydroxymethylcytosine (5hmC) binding, ES-cell-specific (HMCES) crosslinks to apurinic or apyrimidinic (AP, abasic) sites in single-strand DNA (ssDNA). To determine whether HMCES responds to the ssDNA abasic site in cells, we exploited the activity of apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3A (APOBEC3A). APOBEC3A preferentially deaminates cytosines to uracils in ssDNA, which are then converted to abasic sites by uracil DNA glycosylase. We find that HMCES-deficient cells are hypersensitive to nuclear APOBEC3A localization. HMCES relocalizes to chromatin in response to nuclear APOBEC3A and protects abasic sites from processing into double-strand breaks (DSBs). Abasic sites induced by APOBEC3A slow both leading and lagging strand synthesis, and HMCES prevents further slowing of the replication fork by translesion synthesis (TLS) polymerases zeta (Polζ) and kappa (Polκ). Thus, our study provides direct evidence that HMCES responds to ssDNA abasic sites in cells to prevent DNA cleavage and balance the engagement of TLS polymerases. Mehta et al. use APOBEC3A to demonstrate that HMCES responds to ssDNA abasic sites in cells and prevents replication fork collapse. APOBEC3A-induced abasic sites slow both leading and lagging strand polymerization, and HMCES engagement prevents further fork slowing because of the action of TLS polymerases zeta (Polζ) and kappa (Polκ).
Collapse
|
13
|
Drew SC. Aldehyde Production as a Calibrant of Ultrasonic Power Delivery During Protein Misfolding Cyclic Amplification. Protein J 2020; 39:501-508. [PMID: 33011953 DOI: 10.1007/s10930-020-09920-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2020] [Indexed: 11/30/2022]
Abstract
The protein misfolding cyclic amplification (PMCA) technique employs repeated cycles of incubation and sonication to amplify minute amounts of misfolded protein conformers. Spontaneous (de novo) prion formation and ultrasonic power level represent two potentially interrelated sources of variation that frustrate attempts to replicate results from different laboratories. We previously established that water splitting during PMCA provides a radical-rich environment leading to oxidative damage to substrate molecules as well as the polypropylene PCR tubes used for sample containment. Here it is shown that the cross-linking agent formaldehyde is generated from buffer ions that are attacked by hydroxyl radicals. In addition, free radical damage to protein, nucleic acid, lipid, and detergent molecules produces a substantial concentration of aldehydes (hundreds of micromolar). The measurement of aldehydes using the Hantzsch reaction provides a reliable and inexpensive method for measuring the power delivered to individual PMCA samples, and for calibrating the power output characteristics of an individual sonicator. The proposed method may also be used to better account for inter-assay and inter-laboratory variation in prion replication and de novo prion generation, the latter of which may correlate with aldehyde-induced cross-linking of substrate molecules.
Collapse
Affiliation(s)
- Simon C Drew
- Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Victoria, 3010, Australia. .,Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, 02-106, Poland.
| |
Collapse
|
14
|
Stabilization of an abasic site paired against an unnatural triazolyl nitrobenzene nucleoside. Biophys Chem 2020; 264:106428. [DOI: 10.1016/j.bpc.2020.106428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 07/03/2020] [Accepted: 07/03/2020] [Indexed: 11/22/2022]
|
15
|
Thompson PS, Cortez D. New insights into abasic site repair and tolerance. DNA Repair (Amst) 2020; 90:102866. [PMID: 32417669 PMCID: PMC7299775 DOI: 10.1016/j.dnarep.2020.102866] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/21/2020] [Accepted: 04/21/2020] [Indexed: 12/13/2022]
Abstract
Thousands of apurinic/apyrimidinic (AP or abasic) sites form in each cell, each day. This simple DNA lesion can have profound consequences to cellular function, genome stability, and disease. As potent blocks to polymerases, they interfere with the reading and copying of the genome. Since they provide no coding information, they are potent sources of mutation. Due to their reactive chemistry, they are intermediates in the formation of lesions that are more challenging to repair including double-strand breaks, interstrand crosslinks, and DNA protein crosslinks. Given their prevalence and deleterious consequences, cells have multiple mechanisms of repairing and tolerating these lesions. While base excision repair of abasic sites in double-strand DNA has been studied for decades, new interest in abasic site processing has come from more recent insights into how they are processed in single-strand DNA. In this review, we discuss the source of abasic sites, their biological consequences, tolerance mechanisms, and how they are repaired in double and single-stranded DNA.
Collapse
Affiliation(s)
- Petria S Thompson
- Vanderbilt University School of Medicine, Department of Biochemistry, Nashville, TN, 37232, USA
| | - David Cortez
- Vanderbilt University School of Medicine, Department of Biochemistry, Nashville, TN, 37232, USA.
| |
Collapse
|
16
|
Zhang H, Ba S, Yang Z, Wang T, Lee JY, Li T, Shao F. Graphene Quantum Dot-Based Nanocomposites for Diagnosing Cancer Biomarker APE1 in Living Cells. ACS APPLIED MATERIALS & INTERFACES 2020; 12:13634-13643. [PMID: 32129072 DOI: 10.1021/acsami.9b21385] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
As an essential DNA repair enzyme, apurinic/apyrimidinic endonuclease 1 (APE1) is overexpressed in most human cancers and is identified as a cancer diagnostic and predictive biomarker for cancer risk assessment, diagnosis, prognosis, and prediction of treatment efficacy. Despite its importance in cancer, however, it is still a significant challenge nowadays to sense abundance variation and monitor enzymatic activity of this biomarker in living cells. Here, we report our construction of biocompatible functional nanocomposites, which are a combination of meticulously designed unimolecular DNA and fine-sized graphene quantum dots. Upon utilization of these nanocomposites as diagnostic probes, massive accumulation of fluorescence signal in living cells can be triggered by merely a small amount of cellular APE1 through repeated cycles of enzymatic catalysis. Most critically, our delicate structural designs assure that these graphene quantum dot-based nanocomposites are capable of sensing cancer biomarker APE1 in identical type of cells under different cell conditions and can be applied to multiple cancerous cells in a highly sensitive and specific manners. This work not only brings about new methods for cytology-based cancer screening but also lays down a general principle for fabricating diagnostic probes that target other endogenous biomarkers in living cells.
Collapse
Affiliation(s)
- Hao Zhang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Sai Ba
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Zhaoqi Yang
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Tianxiang Wang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Jasmine Yiqin Lee
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Tianhu Li
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Fangwei Shao
- ZJU-UIUC Institute, Zhejiang University, Haining, Zhejiang 314400, China
| |
Collapse
|
17
|
Gao W, Xu J, Lian G, Wang X, Gong X, Zhou D, Chang J. A novel analytical principle using AP site-mediated T7 RNA polymerase transcription regulation for sensing uracil-DNA glycosylase activity. Analyst 2020; 145:4321-4327. [DOI: 10.1039/d0an00509f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
udgactivity could regulateT7 RNApolymerase transcription ability by the heteroduplex substrates with chemical modifications.
Collapse
Affiliation(s)
- Weichen Gao
- School of Life Sciences
- Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology (Tianjin)
- Tianjin 300072
- China
| | - Jin Xu
- Tianjin Hospital
- Tianjin 300211
- China
| | - Guowei Lian
- School of Life Sciences
- Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology (Tianjin)
- Tianjin 300072
- China
| | - Xiaojun Wang
- Department of Toxicology
- Tianjin Centers for Disease Control and Prevention
- Tianjin 300011
- China
| | - Xiaoqun Gong
- School of Life Sciences
- Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology (Tianjin)
- Tianjin 300072
- China
| | - Dianming Zhou
- Department of Toxicology
- Tianjin Centers for Disease Control and Prevention
- Tianjin 300011
- China
| | - Jin Chang
- School of Life Sciences
- Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology (Tianjin)
- Tianjin 300072
- China
| |
Collapse
|
18
|
Roldán-Arjona T, Ariza RR, Córdoba-Cañero D. DNA Base Excision Repair in Plants: An Unfolding Story With Familiar and Novel Characters. FRONTIERS IN PLANT SCIENCE 2019; 10:1055. [PMID: 31543887 PMCID: PMC6728418 DOI: 10.3389/fpls.2019.01055] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/30/2019] [Indexed: 05/05/2023]
Abstract
Base excision repair (BER) is a critical genome defense pathway that deals with a broad range of non-voluminous DNA lesions induced by endogenous or exogenous genotoxic agents. BER is a complex process initiated by the excision of the damaged base, proceeds through a sequence of reactions that generate various DNA intermediates, and culminates with restoration of the original DNA structure. BER has been extensively studied in microbial and animal systems, but knowledge in plants has lagged behind until recently. Results obtained so far indicate that plants share many BER factors with other organisms, but also possess some unique features and combinations. Plant BER plays an important role in preserving genome integrity through removal of damaged bases. However, it performs additional important functions, such as the replacement of the naturally modified base 5-methylcytosine with cytosine in a plant-specific pathway for active DNA demethylation.
Collapse
Affiliation(s)
- Teresa Roldán-Arjona
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Department of Genetics, University of Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
| | - Rafael R. Ariza
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Department of Genetics, University of Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
| | - Dolores Córdoba-Cañero
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Department of Genetics, University of Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
| |
Collapse
|
19
|
Srinivasan SS, Seenivasan R, Condie A, Gerson SL, Wang Y, Burda C. Gold Nanoparticle-Based Fluorescent Theranostics for Real-Time Image-Guided Assessment of DNA Damage and Repair. Int J Mol Sci 2019; 20:E471. [PMID: 30678294 PMCID: PMC6387448 DOI: 10.3390/ijms20030471] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 01/09/2019] [Accepted: 01/15/2019] [Indexed: 12/11/2022] Open
Abstract
Chemotherapeutic dosing, is largely based on the tolerance levels of toxicity today. Molecular imaging strategies can be leveraged to quantify DNA cytotoxicity and thereby serve as a theranostic tool to improve the efficacy of treatments. Methoxyamine-modified cyanine-7 (Cy7MX) is a molecular probe which binds to apurinic/apyrimidinic (AP)-sites, inhibiting DNA-repair mechanisms implicated by cytotoxic chemotherapies. Herein, we loaded (Cy7MX) onto polyethylene glycol-coated gold nanoparticles (AuNP) to selectively and stably deliver the molecular probe intravenously to tumors. We optimized the properties of Cy7MX-loaded AuNPs using optical spectroscopy and tested the delivery mechanism and binding affinity using the DLD1 colon cancer cell line in vitro. A 10:1 ratio of Cy7MX-AuNPs demonstrated a strong AP site-specific binding and the cumulative release profile demonstrated 97% release within 12 min from a polar to a nonpolar environment. We further demonstrated targeted delivery using imaging and biodistribution studies in vivo in an xenografted mouse model. This work lays a foundation for the development of real-time molecular imaging techniques that are poised to yield quantitative measures of the efficacy and temporal profile of cytotoxic chemotherapies.
Collapse
Affiliation(s)
- Shriya S Srinivasan
- Center for Chemical Dynamics and Nanomaterials Research, Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| | - Rajesh Seenivasan
- Center for Chemical Dynamics and Nanomaterials Research, Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| | - Allison Condie
- Department of Radiology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| | - Stanton L Gerson
- Department of Hematology and Oncology, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Yanming Wang
- Department of Radiology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| | - Clemens Burda
- Center for Chemical Dynamics and Nanomaterials Research, Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| |
Collapse
|
20
|
Zhou D, Lin X, Gao W, Piao J, Li S, He N, Qian Z, Zhao M, Gong X. A novel template repairing-PCR (TR-PCR) reaction platform for microRNA detection using translesional synthesis on DNA templates containing abasic sites. Chem Commun (Camb) 2019; 55:2932-2935. [DOI: 10.1039/c8cc10226k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report template repairing-PCR, a novel reverse transcription-free RNA PCR based on miRNA-primed bypass synthesis at the abasic sites on the PCR template.
Collapse
Affiliation(s)
- Dianming Zhou
- Department of Toxicology
- Tianjin Centers for Disease Control and Prevention
- Tianjin 300011
- China
| | - Xiaohui Lin
- Department of Toxicology
- Tianjin Centers for Disease Control and Prevention
- Tianjin 300011
- China
| | - Weichen Gao
- School of Life Sciences
- Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology
- Tianjin 300072
- China
| | - Jiafang Piao
- School of Life Sciences
- Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology
- Tianjin 300072
- China
| | - Shufei Li
- Department of Toxicology
- Tianjin Centers for Disease Control and Prevention
- Tianjin 300011
- China
| | - Ning He
- Department of Toxicology
- Tianjin Centers for Disease Control and Prevention
- Tianjin 300011
- China
| | - Zhiyong Qian
- Department of Toxicology
- Tianjin Centers for Disease Control and Prevention
- Tianjin 300011
- China
| | - Miao Zhao
- Department of Toxicology
- Tianjin Centers for Disease Control and Prevention
- Tianjin 300011
- China
| | - Xiaoqun Gong
- School of Life Sciences
- Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology
- Tianjin 300072
- China
| |
Collapse
|
21
|
Zhang W, Wang G, Liang A. DNA Damage Response in Quiescent Hematopoietic Stem Cells and Leukemia Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1143:147-171. [PMID: 31338819 DOI: 10.1007/978-981-13-7342-8_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In humans, hematopoietic stem cells (HSCs) adopt unique responsive pathways counteracting with the DNA-damaging assaults to weigh the balance between the maintenance of normal stem cell poor for whole-life blood regeneration and the transformation to leukemia stem cells (LSCs) for leukemia initiation. LSCs also take actions of combating with the attack launched by externally therapeutic drugs that can kill most leukemic cells, to avoid extermination and promote disease relapse. Therefore, the collection of knowledge about all these underlined mechanisms would present a preponderance for later studies. In this chapter, the universal DNA damage response (DDR) mechanisms were firstly introduced, and then DDR of HSCs were presented focusing on the DNA double-strand breaks in the quiescent state of HSCs, which poses a big advantage in promoting its transformation into preleukemic HSCs. Lastly, the DDR of LSCs were summarized based on the major outcomes triggered by different pathways in specific leukemia, upon which some aspects for future investigations were envisioned under our currently limited scope of knowledge.
Collapse
Affiliation(s)
- Wenjun Zhang
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guangming Wang
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Aibin Liang
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
22
|
Barbado C, Córdoba-Cañero D, Ariza RR, Roldán-Arjona T. Nonenzymatic release of N7-methylguanine channels repair of abasic sites into an AP endonuclease-independent pathway in Arabidopsis. Proc Natl Acad Sci U S A 2018; 115:E916-E924. [PMID: 29339505 PMCID: PMC5798382 DOI: 10.1073/pnas.1719497115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Abasic (apurinic/apyrimidinic, AP) sites in DNA arise from spontaneous base loss or by enzymatic removal during base excision repair. It is commonly accepted that both classes of AP site have analogous biochemical properties and are equivalent substrates for AP endonucleases and AP lyases, although the relative roles of these two types of enzymes are not well understood. We provide here genetic and biochemical evidence that, in Arabidopsis, AP sites generated by spontaneous loss of N7-methylguanine (N7-meG) are exclusively repaired through an AP endonuclease-independent pathway initiated by FPG, a bifunctional DNA glycosylase with AP lyase activity. Abasic site incision catalyzed by FPG generates a single-nucleotide gap with a 3'-phosphate terminus that is processed by the DNA 3'-phosphatase ZDP before repair is completed. We further show that the major AP endonuclease in Arabidopsis (ARP) incises AP sites generated by enzymatic N7-meG excision but, unexpectedly, not those resulting from spontaneous N7-meG loss. These findings, which reveal previously undetected differences between products of enzymatic and nonenzymatic base release, may shed light on the evolution and biological roles of AP endonucleases and AP lyases.
Collapse
Affiliation(s)
- Casimiro Barbado
- Maimónides Biomedical Research Institute of Córdoba, 14004 Córdoba, Spain
- Department of Genetics, University of Córdoba, 14071 Córdoba, Spain
- Reina Sofia University Hospital, 14004 Córdoba, Spain
| | - Dolores Córdoba-Cañero
- Maimónides Biomedical Research Institute of Córdoba, 14004 Córdoba, Spain
- Department of Genetics, University of Córdoba, 14071 Córdoba, Spain
- Reina Sofia University Hospital, 14004 Córdoba, Spain
| | - Rafael R Ariza
- Maimónides Biomedical Research Institute of Córdoba, 14004 Córdoba, Spain;
- Department of Genetics, University of Córdoba, 14071 Córdoba, Spain
- Reina Sofia University Hospital, 14004 Córdoba, Spain
| | - Teresa Roldán-Arjona
- Maimónides Biomedical Research Institute of Córdoba, 14004 Córdoba, Spain;
- Department of Genetics, University of Córdoba, 14071 Córdoba, Spain
- Reina Sofia University Hospital, 14004 Córdoba, Spain
| |
Collapse
|
23
|
Yamauchi T, Takeda T, Yanagi M, Takahashi N, Suzuki A, Saito Y. C2-substituted 8-aza-7-deaza-2′-deoxyadenosines as environmentally sensitive fluorescent nucleosides for discriminating apurinic/apyrimidinic sites in DNA duplex. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2016.11.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Moskalev AA, Shaposhnikov MV, Plyusnina EN, Zhavoronkov A, Budovsky A, Yanai H, Fraifeld VE. The role of DNA damage and repair in aging through the prism of Koch-like criteria. Ageing Res Rev 2013; 12:661-84. [PMID: 22353384 DOI: 10.1016/j.arr.2012.02.001] [Citation(s) in RCA: 222] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 01/27/2012] [Accepted: 02/06/2012] [Indexed: 12/21/2022]
Abstract
Since the first publication on Somatic Mutation Theory of Aging (Szilárd, 1959), a great volume of knowledge in the field has been accumulated. Here we attempted to organize the evidence "for" and "against" the hypothesized causal role of DNA damage and mutation accumulation in aging in light of four Koch-like criteria. They are based on the assumption that some quantitative relationship between the levels of DNA damage/mutations and aging rate should exist, so that (i) the longer-lived individuals or species would have a lower rate of damage than the shorter-lived, and (ii) the interventions that modulate the level of DNA damage and repair capacity should also modulate the rate of aging and longevity and vice versa. The analysis of how the existing data meets the proposed criteria showed that many gaps should still be filled in order to reach a clear-cut conclusion. As a perspective, it seems that the main emphasis in future studies should be put on the role of DNA damage in stem cell aging.
Collapse
|
25
|
Wollen Steen K, Doseth B, P. Westbye M, Akbari M, Kang D, Falkenberg M, Slupphaug G. mtSSB may sequester UNG1 at mitochondrial ssDNA and delay uracil processing until the dsDNA conformation is restored. DNA Repair (Amst) 2012; 11:82-91. [DOI: 10.1016/j.dnarep.2011.10.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 10/02/2011] [Accepted: 10/27/2011] [Indexed: 12/11/2022]
|
26
|
Strzalka W, Ziemienowicz A. Proliferating cell nuclear antigen (PCNA): a key factor in DNA replication and cell cycle regulation. ANNALS OF BOTANY 2011; 107:1127-40. [PMID: 21169293 PMCID: PMC3091797 DOI: 10.1093/aob/mcq243] [Citation(s) in RCA: 494] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
BACKGROUND PCNA (proliferating cell nuclear antigen) has been found in the nuclei of yeast, plant and animal cells that undergo cell division, suggesting a function in cell cycle regulation and/or DNA replication. It subsequently became clear that PCNA also played a role in other processes involving the cell genome. SCOPE This review discusses eukaryotic PCNA, with an emphasis on plant PCNA, in terms of the protein structure and its biochemical properties as well as gene structure, organization, expression and function. PCNA exerts a tripartite function by operating as (1) a sliding clamp during DNA synthesis, (2) a polymerase switch factor and (3) a recruitment factor. Most of its functions are mediated by its interactions with various proteins involved in DNA synthesis, repair and recombination as well as in regulation of the cell cycle and chromatid cohesion. Moreover, post-translational modifications of PCNA play a key role in regulation of its functions. Finally, a phylogenetic comparison of PCNA genes suggests that the multi-functionality observed in most species is a product of evolution. CONCLUSIONS Most plant PCNAs exhibit features similar to those found for PCNAs of other eukaryotes. Similarities include: (1) a trimeric ring structure of the PCNA sliding clamp, (2) the involvement of PCNA in DNA replication and repair, (3) the ability to stimulate the activity of DNA polymerase δ and (4) the ability to interact with p21, a regulator of the cell cycle. However, many plant genomes seem to contain the second, probably functional, copy of the PCNA gene, in contrast to PCNA pseudogenes that are found in mammalian genomes.
Collapse
Affiliation(s)
- Wojciech Strzalka
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Alicja Ziemienowicz
- Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
- For correspondence. E-mail
| |
Collapse
|
27
|
Luke AM, Chastain PD, Pachkowski BF, Afonin V, Takeda S, Kaufman DG, Swenberg JA, Nakamura J. Accumulation of true single strand breaks and AP sites in base excision repair deficient cells. Mutat Res 2010; 694:65-71. [PMID: 20851134 DOI: 10.1016/j.mrfmmm.2010.08.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 08/27/2010] [Accepted: 08/31/2010] [Indexed: 12/29/2022]
Abstract
Single strand breaks (SSBs) are one of the most frequent DNA lesions caused by endogenous and exogenous agents. The most utilized alkaline-based assays for SSB detection frequently give false positive results due to the presence of alkali-labile sites that are converted to SSBs. Methoxyamine, an acidic O-hydroxylamine, has been utilized to measure DNA damage in cells. However, the neutralization of methoxyamine is required prior to usage. Here we developed a convenient, specific SSB assay using alkaline gel electrophoresis (AGE) coupled with a neutral O-hydroxylamine, O-(tetrahydro-2H-pyran-2-yl)hydroxylamine (OTX). OTX stabilizes abasic sites (AP sites) to prevent their alkaline incision while still allowing for strong alkaline DNA denaturation. DNA from DT40 and isogenic polymerase β null cells exposed to methyl methanesulfonate were applied to the OTX-coupled AGE (OTX-AGE) assay. Time-dependent increases in SSBs were detected in each cell line with more extensive SSB formation in the null cells. These findings were supported by an assay that indirectly detects SSBs through measuring NAD(P)H depletion. An ARP-slot blot assay demonstrated a significant time-dependent increase in AP sites in both cell lines by 1mM MMS compared to control. Furthermore, the Pol β-null cells displayed greater AP site formation than the parental DT40 cells. OTX use represents a facile approach for assessing SSB formation, whose benefits can also be applied to other established SSB assays.
Collapse
Affiliation(s)
- April M Luke
- Curriculum in Toxicology, University of North Carolina, Chapel Hill, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Affiliation(s)
- Seisuke Kimura
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda-shi, Chiba, Japan
| | | |
Collapse
|
29
|
Abstract
Increases in ultraviolet radiation at the Earth's surface due to the depletion of the stratospheric ozone layer have recently fuelled interest in the mechanisms of various effects it might have on organisms. DNA is certainly one of the key targets for UV-induced damage in a variety of organisms ranging from bacteria to humans. UV radiation induces two of the most abundant mutagenic and cytotoxic DNA lesions such as cyclobutane-pyrimidine dimers (CPDs) and 6-4 photoproducts (6-4PPs) and their Dewar valence Isomers. However, cells have developed a number of repair or tolerance mechanism to counteract the DNA damage caused by UV or any other stressors. Photoreactivation with the help of the enzyme photolyase is one of the most important and frequently occurring repair mechanisms in a variety of organisms. Excision repair, which can be distinguished into base excision repair (BER) and nucleotide excision repair (NER), also plays an important role in DNA repair in several organisms with the help of a number of glycosylases and polymerases, respectively. In addition, mechanisms such as mutagenic repair or dimer bypass, recombinational repair, cell-cycle checkpoints, apoptosis and certain alternative repair pathways are also operative in various organisms. This review deals with UV-induced DNA damage and the associated repair mechanisms as well as methods of detecting DNA damage and its future perspectives.
Collapse
Affiliation(s)
- Rajeshwar P Sinha
- Institut für Botanik und Pharmazeutische Biologie, Friedrich-Alexander-Universität, Staudtstr. 5, D-91058 Erlangen, Germany
| | | |
Collapse
|
30
|
Adamczyk M, Mattingly PG, Moore JA. O-(fluoresceinylmethyl)hydroxylamine (OFMHA): a fluorescent reagent for detection of damaged nucleic acids. Bioorg Med Chem Lett 1998; 8:3599-602. [PMID: 9934478 DOI: 10.1016/s0960-894x(98)00658-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
5- and 6-O-(Fluoresceinylmethyl)hydroxylamine (OFMHA, 5a, b) were prepared from the corresponding bis-pivaloyl-protected hydroxymethylfluoresceins (1a, b) in 50-70% yield. The hydroxylamine derivatives reacted smoothly with the abasic sites present in acid/heat stressed calf thymus DNA.
Collapse
Affiliation(s)
- M Adamczyk
- Department of Chemistry, Abbott Laboratories, Abbott Park, IL 60064-3500, USA
| | | | | |
Collapse
|
31
|
Abstract
The biological impact of any DNA damaging agent is a combined function of the chemical nature of the induced lesions and the efficiency and accuracy of their repair. Although much has been learned from microbes and mammals about both the repair of DNA damage and the biological effects of the persistence of these lesions, much remains to be learned about the mechanism and tissue-specificity of repair in plants. This review focuses on recent work on the induction and repair of DNA damage in higher plants, with special emphasis on UV-induced DNA damage products.
Collapse
Affiliation(s)
- Anne B. Britt
- Section of Plant Biology, University of California, Davis, California 95616
| |
Collapse
|
32
|
Hall RD, Rouwendal GJ, Krens FA. Asymmetric somatic cell hybridization in plants. ACTA ACUST UNITED AC 1992. [DOI: 10.1007/bf00283851] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Bartlett JD, Scicchitano DA, Robison SH. Two expressed human genes sustain slightly more DNA damage after alkylating agent treatment than an inactive gene. Mutat Res 1991; 255:247-56. [PMID: 1719396 DOI: 10.1016/0921-8777(91)90028-n] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Alkylating agent damage was quantified in human T-lymphocytes by calculating gene-specific lesion frequencies and repair rates. At 3 time points after exposure to methyl methanesulfonate (0, 6, and 24 h), T-lymphocyte DNA was extracted, digested with HindIII, and divided into 2 aliquots. Apurinic sites were formed in the DNA fragments of both aliquots by heat-induced liberation of the N-methylpurines. The methoxyamine-treated aliquot provided gene fragments which were refractory to alkaline hydrolysis (full-length fragments), while the fragments in the untreated aliquot were cleaved at apurinic sites by hydroxide. After Southern blotting, lesion frequencies were calculated by comparing the band intensity of the full-length fragment to its unprotected counterpart. The restriction fragments analyzed were from the constitutively active dihydrofolate reductase (dhfr) plus hypoxanthine phosphoribosyltransferase (hprt) genes and from the transcriptionally inactive Duchenne muscular dystrophy gene (dmd). In decreasing order, the fragments containing the most lesions per kb of DNA were: hprt greater than dhfr greater than dmd. T-Lymphocytes from 2 females had 30% more heat-labile N-methylpurines in the active X-linked hprt gene than in the inactive X-linked dmd gene. The lesion frequency found in the male's lone hprt allele was the highest observed. These lesion frequency differences are discussed in terms of chromatin structure. After 6 and 24 h, no significant repair rate differences were observed among the 3 genes.
Collapse
Affiliation(s)
- J D Bartlett
- Department of Neurology and Genetics Laboratory, University of Vermont, Burlington 05401
| | | | | |
Collapse
|
34
|
Jones SK, Nee LE, Sweet L, Polinsky RJ, Bartlett JD, Bradley WG, Robison SH. Decreased DNA repair in familial Alzheimer's disease. Mutat Res 1989; 219:247-55. [PMID: 2770772 DOI: 10.1016/0921-8734(89)90007-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Alterations in the capacity of a cell to repair DNA lesions play an important role in a number of human diseases. We and others have demonstrated defective DNA repair of alkylation damage in cells from patients with Alzheimer's disease. It has been hypothesized that this defect is related to the cause of Alzheimer's disease and results in the accumulation of lesions in the central nervous system neurons. One prediction of this hypothesis is that in dominantly inherited Alzheimer's disease, the repair defect will be present in half of the offspring of affected patients long before they develop symptoms of the disease. In order to test the hypothesis that decreased DNA repair is responsible for familial Alzheimer's disease and their at-risk offspring we have studied DNA repair in these individuals after exposure of lymphoblasts to alkylating agents. Our results indicate that cell lines from affected patients repair significantly less damage in 3 h than cell lines from healthy controls. A small number of at-risk individuals were also studied and some of these had lower levels of repair, although more cell lines from individuals in this group must be studied. These findings provide further support for defective DNA repair playing a role in the pathogenesis of Alzheimer's disease.
Collapse
Affiliation(s)
- S K Jones
- Neurology Department, University of Vermont College of Medicine, Burlington 05401
| | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Exonuclease III is the major apurinic/apyrimidinic (AP) endonuclease of Escherichia coli, accounting for more than 80% of the total cellular AP endonuclease activity. We have shown earlier that the endonucleolytic activity of exonuclease III is able to hydrolyze the phosphodiester bond 5' to the urea N-glycoside in a duplex DNA [Kow, Y. W., & Wallace, S. S. (1985) Proc. Natl. Acad. Sci. U.S.A. 82, 8354-8358]. Therefore, we were interested in studying the mechanism of action of the endonucleolytic activity of exonuclease III by preparing DNA containing different base lesions as well as chemically modified AP sites. When AP sites were converted to O-alkylhydroxylamine residues, exonuclease III was able to hydrolyze the phosphodiester bond 5' to O-alkylhydroxylamine residues. The apparent Km for different O-alkylhydroxylamine residues was not affected by the particular O-alkylhydroxylamine residue substituted; however, the apparent Vmax decreased as the size of the residue increased. On the basis of a study of the substrate specificity of exonuclease III, a modification of the Weiss model for the mechanism of action of exonuclease III is presented. Furthermore, a temperature study of exonucleolytic activity of exonuclease III in the presence of Mg2+ showed discontinuity in the Arrhenius plot. However, no discontinuity was observed when the reaction was performed in the presence of Ca2+. Similarly, no discontinuity was observed for the endonucleolytic activity of exonuclease III, in the presence of either Ca2+ or Mg2+. These data suggest that, in the presence of Mg2+, exonuclease III, in the presence of either Ca2+ or Mg2+.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- Y W Kow
- Department of Microbiology and Immunology, New York Medical College, Valhalla 10595
| |
Collapse
|
36
|
Köhler F, Cardon G, Pöhlman M, Gill R, Schieder O. Enhancement of transformation rates in higher plants by low-dose irradiation: Are DNA repair systems involved in the incorporation of exogenous DNA into the plant genome? PLANT MOLECULAR BIOLOGY 1989; 12:189-99. [PMID: 24272798 DOI: 10.1007/bf00020504] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/1988] [Accepted: 11/01/1988] [Indexed: 05/27/2023]
Abstract
Irradiation (X-ray; 5-15 Gy) of protoplasts treated with plasmid-DNA and PEG yielded higher transformation rates in comparison to non-irradiated protoplasts transformed by the same method. This could be demonstrated for four plant species. The irradiation doses used did not affect the total number of colonies regenerated without selection pressure, but resulted in 3-6-fold enhancement of hygromycin- or kanamycin-resistant colonies. Plant regeneration frequencies of transformed colonies derived from irradiated and non-irradiated protoplasts were similar in tobacco as well as in Petunia. Higher integration rates of foreign DNA as a consequence of an increased recombination machinery in irradiated cells may be responsible for the enhancement of the number of stably transformed colonies.
Collapse
Affiliation(s)
- F Köhler
- Max-Planck-Institut für Züchtungsforschung, 5000, Köln-Vogelsang, FRG
| | | | | | | | | |
Collapse
|
37
|
Epe B, Mützel P, Adam W. DNA damage by oxygen radicals and excited state species: a comparative study using enzymatic probes in vitro. Chem Biol Interact 1988; 67:149-65. [PMID: 2844422 DOI: 10.1016/0009-2797(88)90094-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Repair enzyme-containing extracts from a variety of cell types are used to analyse and compare DNA damage induced by oxygen radicals and excited molecules. The differing potentials of these extracts for recognising DNA damage leads to characteristic DNA damage profiles after treatment with superoxide (xanthine/xanthine oxidase), gamma-rays, chemically generated singlet oxygen, photosensitizers (rose bengal, methylene blue), UV254 and a 1,2-dioxetane. Three different types of damage profiles are distinguished and assigned to the predominant action of hydroxyl radicals, singlet oxygen or to the photoexcitation of thymine residues. The method applied in this study allows the analysis of DNA damage and the identification or exclusion of the participation of different ultimate reactive species without chemical identification of the lesions.
Collapse
Affiliation(s)
- B Epe
- Institute of Pharmacology and Toxicology, University of Würzburg, F.R.G
| | | | | |
Collapse
|