1
|
Melchor GS, Khan T, Reger JF, Huang JK. Remyelination Pharmacotherapy Investigations Highlight Diverse Mechanisms Underlying Multiple Sclerosis Progression. ACS Pharmacol Transl Sci 2019; 2:372-386. [PMID: 32259071 DOI: 10.1021/acsptsci.9b00068] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Indexed: 12/12/2022]
Abstract
Multiple sclerosis (MS) is an immune-mediated disease of the central nervous system characterized by a complex lesion microenvironment. Although much progress has been made in developing immunomodulatory treatments to reduce myelin damage and delay the progression of MS, there is a paucity in treatment options that address the multiple pathophysiological aspects of the disease. Currently available immune-centered therapies are able to reduce the immune-mediated damage exhibited in MS patients, however, they cannot rescue the eventual failure of remyelination or permanent neuronal damage that occurs as MS progresses. Recent advances have provided a better understanding of remyelination processes, specifically oligodendrocyte lineage cell progression following demyelination. Further there have been new findings highlighting various components of the lesion microenvironment that contribute to myelin repair and restored axonal health. In this review we discuss the complexities of myelin repair following immune-mediated damage in the CNS, the contribution of animal models of MS in providing insight on OL progression and myelin repair, and current and potential remyelination-centered therapeutic targets. As remyelination therapies continue to progress into clinical trials, we consider a dual approach targeting the inflammatory microenvironment and intrinsic remyelination mechanisms to be optimal in aiding MS patients.
Collapse
Affiliation(s)
- George S Melchor
- Department of Biology and Center for Cell Reprogramming, Georgetown University, Washington, DC 20057, United States.,Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC 20057, United States
| | - Tahiyana Khan
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC 20057, United States
| | - Joan F Reger
- Department of Biology and Center for Cell Reprogramming, Georgetown University, Washington, DC 20057, United States
| | - Jeffrey K Huang
- Department of Biology and Center for Cell Reprogramming, Georgetown University, Washington, DC 20057, United States.,Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC 20057, United States
| |
Collapse
|
2
|
Dopaminergic impact of cART and anti-depressants on HIV neuropathogenesis in older adults. Brain Res 2019; 1723:146398. [PMID: 31442412 DOI: 10.1016/j.brainres.2019.146398] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 08/09/2019] [Accepted: 08/19/2019] [Indexed: 01/21/2023]
Abstract
The success of combination antiretroviral therapy (cART) has transformed HIV infection into a chronic condition, resulting in an increase in the number of older, cART-treated adults living with HIV. This has increased the incidence of age-related, non-AIDS comorbidities in this population. One of the most common comorbidities is depression, which is also associated with cognitive impairment and a number of neuropathologies. In older people living with HIV, treating these overlapping disorders is complex, often creating pill burden or adverse drug-drug interactions that can exacerbate these neurologic disorders. Depression, NeuroHIV and many of the neuropsychiatric therapeutics used to treat them impact the dopaminergic system, suggesting that dopaminergic dysfunction may be a common factor in the development of these disorders. Further, changes in dopamine can influence the development of inflammation and the regulation of immune function, which are also implicated in the progression of NeuroHIV and depression. Little is known about the optimal clinical management of drug-drug interactions between cART drugs and antidepressants, particularly in regard to dopamine in older people living with HIV. This review will discuss those interactions, first examining the etiology of NeuroHIV and depression in older adults, then discussing the interrelated effects of dopamine and inflammation on these disorders, and finally reviewing the activity and interactions of cART drugs and antidepressants on each of these factors. Developing better strategies to manage these comorbidities is critical to the health of the aging, HIV-infected population, as the older population may be particularly vulnerable to drug-drug interactions affecting dopamine.
Collapse
|
3
|
Plemel JR, Liu WQ, Yong VW. Remyelination therapies: a new direction and challenge in multiple sclerosis. Nat Rev Drug Discov 2017; 16:617-634. [PMID: 28685761 DOI: 10.1038/nrd.2017.115] [Citation(s) in RCA: 188] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Multiple sclerosis is characterized by inflammatory activity that results in destruction of the myelin sheaths that enwrap axons. The currently available medications for multiple sclerosis are predominantly immune-modulating and do not directly promote repair. White matter regeneration, or remyelination, is a new and exciting potential approach to treating multiple sclerosis, as remyelination repairs the damaged regions of the central nervous system. A wealth of new strategies in animal models that promote remyelination, including the repopulation of oligodendrocytes that produce myelin, has led to several clinical trials to test new reparative therapies. In this Review, we highlight the biology of, and obstacles to, remyelination. We address new strategies to improve remyelination in preclinical models, highlight the therapies that are currently undergoing clinical trials and discuss the challenges of objectively measuring remyelination in trials of repair in multiple sclerosis.
Collapse
Affiliation(s)
- Jason R Plemel
- Hotchkiss Brain Institute and the Departments of Clinical Neurosciences and Oncology, University of Calgary, 3330 Hospital Drive, Calgary, Alberta T2N 4N1, Canada
| | - Wei-Qiao Liu
- Hotchkiss Brain Institute and the Departments of Clinical Neurosciences and Oncology, University of Calgary, 3330 Hospital Drive, Calgary, Alberta T2N 4N1, Canada
| | - V Wee Yong
- Hotchkiss Brain Institute and the Departments of Clinical Neurosciences and Oncology, University of Calgary, 3330 Hospital Drive, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
4
|
Hewlett WA, Fridman S, Trivedi BL, Schmidt DE, de Paulis T, Ebert MH. Characterization of desamino-5-[125I]iodo-3-methoxy-zacopride ([125I]MIZAC) binding to 5-HT3 receptors in the rat brain. Prog Neuropsychopharmacol Biol Psychiatry 1998; 22:397-410. [PMID: 9608609 DOI: 10.1016/s0278-5846(98)00012-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
1. Antagonists at 5-HT3 receptors have shown activity in animal models of mental illness, however, few radiolabeled 5-HT3 ligands are available for preclinical studies. MIZAC, an analogue of the selective 5-HT3 antagonist, zacopride, binds with high affinity (1.3-1.5 nM) to CNS 5-HT3 sites. The authors report here the selectivity of MIZAC for these sites in rat brain homogenates. 2. Ninety-seven percent of total specific binding of [125I]MIZAC (0.1 nM) of was displaced by bemesetron (3 microM), a selective 5-HT3 antagonist. Competition studies using ligands with known affinities for 5-HT3 sites give a high correlation with reported pKi values (r2 0.98). Bemesetron displaceable binding has a regional distribution consistent with that of the 5-HT3 receptor, i.e. highest in cortex and hippocampus, and lowest in striatum and cerebellum. 3. Potent antagonists present at concentrations sufficient to occupy 95% of other 5-HT receptor populations (1A, 1B, 1D, 2A, 2B, 2C, 5A, 5B, 6, and 7) showed minimal ability to displace [125I]MIZAC binding (3 nM). Specificity studies using radioligand binding assays selective for 5-HT4, 5-HT6, and 5-HT7 receptors, and for binding sites of other neurotransmitters indicate a high degree of selectivity of [125I]MIZAC for the 5-HT3 receptor. 4. [125I]MIZAC binds to an apparent low affinity (benzac) site having a unique pharmacology. Low affinity binding was displaceable by benztropine, but not by other muscarinic agents nor inhibitors of dopamine uptake. The regional distribution of the low affinity site differed markedly from that of the high affinity site. The apparent affinity of [125I]MIZAC for the benzac site is two orders of magnitude lower than for the 5-HT3 receptor. Given its high selectivity for 5-HT3 binding sites, [125I]MIZAC appears to be a promising ligand for labeling 5-HT3 receptors in vitro and in vivo.
Collapse
Affiliation(s)
- W A Hewlett
- Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | | | | | | | | | |
Collapse
|
5
|
Hewlett WA, Schmidt DE, Mason NS, Trivedi BL, Ebert MH, de Paulis T. Synthesis and 5-HT-3 receptor binding of 2- and 3-(halo)alkoxyl substituted (S)-N-(1-azabicyclo[2.2.2]oct-3-yl)-5-chlorobenzamides as potential radioligands. Nucl Med Biol 1998; 25:141-53. [PMID: 9468029 DOI: 10.1016/s0969-8051(97)00161-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In an effort to develop selective, high-affinity radioligands for the 5-HT-3 receptor, a series of homologues of 5-chloro-2,3-dimethoxy-N-(1-azabicyclo[2.2.2]oct-3-yl)benzamide (2b) was prepared in which individual methoxy groups were replaced by ethoxyl, (2-fluoroethoxyl), allyloxyl, propargyloxyl, or (3-iodoallyl)oxyl groups. Affinities for the 5-HT-3 receptor were determined by displacement of the binding of [125I]MIZAC (2a), a selective 5-HT-3 receptor antagonist radioligand, in rat brain homogenates. The 3-substituted homologues were more potent than the lead compound, 2b. The homologue having the largest 3-substituent, i.e., E-(S)-N-(1-azabicyclo[2.2.2]oct-3-yl)-5-chloro-3-(3-iodo-2-propenyl)oxy- 2-methoxybenzamide (3b, THIZAC), had one of the highest affinities, Ki 0.08 nM. The 2-substituted homologues were equipotent with 2b, having Ki 0.2-0.3 nM, regardless of the size of the substituent. The corresponding iodoallyl derivative, E-(S)-N-(1-azabicyclo[2.2.2]oct-3-yl)-5-chloro-2-(3-iodo-2-propenyl)oxy- 3-methoxybenzamide (4, LIZAC), displayed a Ki of 0.29 nM. Saturation binding of [125I]-4 gave a KD of 0.31 +/- 0.04 nM and a Bmax of 2.36 +/- 0.10 fmol/mg of entorhinal cortex. In vivo biodistribution of [125I]-4 in the rat brain showed increased accumulation in hippocampus relative to that in cerebellum. Both the high-affinity ligands [125I]-3b and [125I]-4 are potentially useful radioligands for studying the 5-HT-3 receptor.
Collapse
Affiliation(s)
- W A Hewlett
- Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | | | | | |
Collapse
|
6
|
Carey RJ, De Veaugh-Geiss J. Chronic benztropine and haloperidol administration induce behaviorally equivalent pharmacological hypersensitivities separately but not in combination. Psychopharmacology (Berl) 1982; 76:341-5. [PMID: 6812108 DOI: 10.1007/bf00449122] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
This study reports the pharmacologic induction of behavioral pharmacologic hypersensitivity in an animal model of tardive dyskinesia. Four groups of rats received IP injections twice daily of 2.5 mg/kg haloperidol (H), 10 mg/kg benztropine (B), 2.5 mg/kg H plus 10 mg/kg benztropine (H + B), or saline for 4 weeks. Drug-induced catalepsy and spontaneous oral activity were measured daily during treatment. At 1 and 2 weeks after withdrawal of treatment, all groups were tested with apomorphine (AP) for the induction of stereotyped behavior. At 6 weeks after withdrawal of treatment, all animals were tested for catalepsy after receiving 2.5 mg/kg H. During the chronic treatment phase, H inhibited and B enhanced spontaneous oral activity. Also, H induced profound catalepsy during week 1, with partial tolerance to this effect observed during weeks 2-4. At 2 weeks after withdrawal, equivalent enhancement of AP stereotypy was seen in the H and B groups, but H + B (and saline) did not cause enhancement. At 6 weeks after withdrawal, enhancement of catalepsy was observed in the H and B groups, while H + B and control groups did not differ. Both H and B administered chronically can produce hypersensitivity when given alone, but this effect is attenuated when H and B are given in combination. While preservation of the dopamine-(DA)-acetylcholine balance during treatment appears to protect against hypersensitivity, the blockade of DA reuptake by benztropine, rather than its anticholinergic properties, may explain both the failure of combined treatment to induce hypersensitivity and the ability of B alone to induce hypersensitivity.
Collapse
|
7
|
Stephens DN, Herberg LJ. Dopamine--acetylcholine "balance" in nucleus accumbens and corpus striatum and its effect on hypothalamic self-stimulation. Eur J Pharmacol 1979; 54:331-9. [PMID: 436932 DOI: 10.1016/0014-2999(79)90062-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Three experiments investigated the suppression of hypothalamic self-stimulation in rats by neuroleptics and its restoration by centrally acting anticholinergic agents. Scopolamine (0.1--1.0 mg/kg i.p.) and benztropine (1.0--10.0 mg/kg i.p.) each enhanced self-stimulation when administered alone, and partially restored performance suppressed by spiroperidol (0.05--0.15 mg/kg i.p.). Benztropine strongly inhibits transmitter reuptake at DA synapses but scopolamine does not, thus inhibition of DA reuptake cannot fully account for the stimulant or antineuroleptic action of anticholinergic drugs. Neuroleptic and anticholinergic effects on self-stimulation rate were mutually subtractive, and statistical evidence of interaction was not obtained. Scopolamine was shown also to restore performance extinguished by discontinuation of the stimulating current. Smaller doses of scopolamine (50 nmol; 19 microgram) injected directly into the nucleus accumbens septi partially restored responding suppressed by spiroperidol, though similar doses of scopolamine injected bilaterally into the caudate-putamen were ineffective. These findings suggest that hypothalamic self-stimulation may be influenced by ACh-and DA-containing systems which exert independent effects on a third system controlling performance. These effects appear to reflect the level of arousal or motivation rather than the reinforcement process itself.
Collapse
|
8
|
Nieoullon A, Cheramy A, Glowinski J. An adaptation of the push-pull cannula method to study the in vivo release of (3H)dopamine synthesized from (3H)tyrosine in the cat caudate nucleus: effects of various physical and pharmacological treatments. J Neurochem 1977; 28:819-28. [PMID: 894289 DOI: 10.1111/j.1471-4159.1977.tb10633.x] [Citation(s) in RCA: 135] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|