1
|
Effect of common antivertiginous agents on the high velocity vestibulo-ocular reflex. Clin Neurophysiol 2017; 128:2211-2216. [PMID: 28985517 DOI: 10.1016/j.clinph.2017.08.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/14/2017] [Accepted: 08/13/2017] [Indexed: 11/23/2022]
Abstract
OBJECTIVE It has long been suggested that antivertiginous medications exert their symptomatic effect through inhibition of the vestibulo-ocular reflex (VOR). We tested this hypothesis by directly measuring the VOR after administration of three agents from different substance classes: an antihistamine, a benzodiazepine and a calcium channel antagonist. METHODS The gain and the variability of the high velocity VOR was assessed using video head impulses (vHIT) under the following conditions: baseline, after dimenhydrinate, after diazepam and after cinnarizine. RESULTS We found that all three medications did not change any VOR gain or variability parameter: At 60ms, the gain was 0.95 at baseline, 0.99 under dimenhydrinate, 0.99 under diazepam and 0.96 under cinnarizine. The gain variability across repetitive head impulses remained also uninfluenced. CONCLUSIONS The human high frequency VOR remains robust to pharmacological perturbations at common clinical doses and the assumption that symptomatic vertigo relief is achieved merely through impairment of the VOR requires re-examination. SIGNIFICANCE Alternative mechanisms of pharmacological action might be operant, such as the modulation of vestibulo-cortical pathways, a differential effect on the low frequency VOR and an altered sensitivity to drugs in acute unilateral vestibulopathy.
Collapse
|
2
|
Abstract
Ideally, vestibular pharmacotherapy is intended, through specific and targeted molecular actions, to significantly alleviate vertigo symptoms, to protect or repair the vestibular sensory network under pathologic conditions, and to promote vestibular compensation, with the eventual aim of improving the patient's quality of life. In fact, in order to achieve this aim, considerable progress still needs to be made. The lack of information on the etiology of vestibular disorders and the pharmacologic targets to modulate, as well as the technical challenge of targeting a drug to its effective site are some of the main issues yet to be overcome. In this review, my intention is to provide an account of the therapeutic principles that have shaped current vestibular pharmacotherapy and to further explore crucial questions that must be taken into consideration in order to develop targeted and specific pharmacologic therapies for each type and stage of vestibular disorders.
Collapse
Affiliation(s)
- C Chabbert
- Integrative and Adaptative Neurosciences, University of Aix Marseille, Marseille, France.
| |
Collapse
|
3
|
Weerts AP, De Meyer G, Pauwels G, Vanspauwen R, Dornhoffer JL, Van de Heyning PH, Wuyts FL. Pharmaceutical countermeasures have opposite effects on the utricles and semicircular canals in man. Audiol Neurootol 2012; 17:235-42. [PMID: 22517315 DOI: 10.1159/000337273] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 02/14/2012] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Sensory conflicts in the vestibular system lead to motion sickness of which space motion sickness (SMS) is a special case. SMS affects up to 70% of the astronauts during the first 3 days in space. The search for effective countermeasures has led to several nonpharmacological and pharmacological approaches. The current study focuses on the effects of lorazepam (1 mg), meclizine (25 mg), promethazine (25 mg), and scopolamine (0.4 mg) on the vestibular system, with special focus on the canal and otolith functions separately. METHODS The study had a placebo-controlled, single blind, repeated measures design. Sixteen healthy volunteers were subjected to a total of 7 test sessions, the first and last being without intake of medication. Semicircular canal function was evaluated by means of electronystagmography and otolith function with unilateral centrifugation. The horizontal semicircular canal function was characterized by the vestibulo-ocular reflex (VOR) gain measured during earth vertical axis rotation as well as the total caloric response. The function of the utricles was represented by the utricular sensitivity, reflecting the ocular counter roll relative to the virtual induced head tilt. RESULTS Promethazine significantly decreased the semicircular canal and utricular parameters. Both scopolamine and lorazepam caused only a decrease in the utricular sensitivity, whereas meclizine only decreased the semicircular canal-induced VOR gain. DISCUSSION The results show that the drugs affected different areas of the vestibular system and that the effects can thus be attributed to the specific pharmacological properties of each drug. Meclizine, as an antihistaminergic and weak anticholinergic drug, only affected the VOR gain, suggesting a central action on the medial vestibular nucleus. The same site of action is suggested for the anticholinergic scopolamine since acetylcholine receptors are present and utricular fibers terminate here. The global vestibular suppression caused by promethazine is probably a consequence of its anticholinergic, antihistaminergic, and antidopaminergic properties. Based on the fact that lorazepam increased the affinity of gamma-aminobutyric acid (GABA) for the GABA(A)-receptor and its effects on the utriculi, the site of action seems to be the lateral vestibular nucleus. CONCLUSION Meclizine, scopolamine, and lorazepam selectively suppress specific parts of the vestibular system. Selective suppression of different parts of the vestibular system may be more beneficial for alleviating (space) motion sickness than general suppressive agents. Additionally, this knowledge may help the clinician in his therapeutic management of patients with either semicircular canal or otolith dysfunction.
Collapse
Affiliation(s)
- Aurélie P Weerts
- Antwerp University Research Centre for Equilibrium and Aerospace (AUREA), Edegem, Belgium
| | | | | | | | | | | | | |
Collapse
|
4
|
Beraneck M, Idoux E. Reconsidering the role of neuronal intrinsic properties and neuromodulation in vestibular homeostasis. Front Neurol 2012; 3:25. [PMID: 22403570 PMCID: PMC3289128 DOI: 10.3389/fneur.2012.00025] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 02/09/2012] [Indexed: 12/29/2022] Open
Abstract
The sensorimotor transformations performed by central vestibular neurons constantly adapt as the animal faces conflicting sensory information or sustains injuries. To ensure the homeostasis of vestibular-related functions, neural changes could in part rely on the regulation of 2° VN intrinsic properties. Here we review evidence that demonstrates modulation and plasticity of central vestibular neurons’ intrinsic properties. We first present the partition of Rodents’ vestibular neurons into distinct subtypes, namely type A and type B. Then, we focus on the respective properties of each type, their putative roles in vestibular functions, fast control by neuromodulators and persistent modifications following a lesion. The intrinsic properties of central vestibular neurons can be swiftly modulated by a wealth of neuromodulators to adapt rapidly to temporary changes of ecophysiological surroundings. To illustrate how intrinsic excitability can be rapidly modified in physiological conditions and therefore be therapeutic targets, we present the modulation of vestibular reflexes in relation to the variations of the neuromodulatory inputs during the sleep/wake cycle. On the other hand, intrinsic properties can also be slowly, yet permanently, modified in response to major perturbations, e.g., after unilateral labyrinthectomy (UL). We revisit the experimental evidence, which demonstrates that drastic alterations of the central vestibular neurons’ intrinsic properties occur following UL, with a slow time course, more on par with the compensation of dynamic deficits than static ones. Data are interpreted in the framework of distributed processes that progress from global, large-scale coping mechanisms (e.g., changes in behavioral strategies) to local, small-scale ones (e.g., changes in intrinsic properties). Within this framework, the compensation of dynamic deficits improves over time as deeper modifications are engraved within the finer parts of the vestibular-related networks. Finally, we offer perspectives and working hypotheses to pave the way for future research aimed at understanding the modulation and plasticity of central vestibular neurons’ intrinsic properties.
Collapse
Affiliation(s)
- Mathieu Beraneck
- Centre d'Etude de la SensoriMotricité, CNRS UMR 8194, Université Paris Descartes, Sorbonne Paris Cité Paris, France
| | | |
Collapse
|
5
|
|
6
|
Soto E, Vega R. Neuropharmacology of vestibular system disorders. Curr Neuropharmacol 2010; 8:26-40. [PMID: 20808544 PMCID: PMC2866460 DOI: 10.2174/157015910790909511] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 12/17/2009] [Accepted: 01/08/2010] [Indexed: 11/22/2022] Open
Abstract
This work reviews the neuropharmacology of the vestibular system, with an emphasis on the mechanism of action of drugs used in the treatment of vestibular disorders. Otolaryngologists are confronted with a rapidly changing field in which advances in the knowledge of ionic channel function and synaptic transmission mechanisms have led to the development of new scientific models for the understanding of vestibular dysfunction and its management. In particular, there have been recent advances in our knowledge of the fundamental mechanisms of vestibular system function and drug mechanisms of action. In this work, drugs acting on vestibular system have been grouped into two main categories according to their primary mechanisms of action: those with effects on neurotransmitters and neuromodulator receptors and those that act on voltage-gated ion channels. Particular attention is given in this review to drugs that may provide additional insight into the pathophysiology of vestibular diseases. A critical review of the pharmacology and highlights of the major advances are discussed in each case.
Collapse
Affiliation(s)
- Enrique Soto
- Institute of Physiology, Autonomous University of Puebla, México.
| | | |
Collapse
|
7
|
Eisenman LM. Motion sickness may be caused by a neurohumoral action of acetylcholine. Med Hypotheses 2009; 73:790-3. [DOI: 10.1016/j.mehy.2009.04.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 04/15/2009] [Accepted: 04/17/2009] [Indexed: 11/30/2022]
|
8
|
Tighilet B, Trottier S, Mourre C, Lacour M. Changes in the histaminergic system during vestibular compensation in the cat. J Physiol 2006; 573:723-39. [PMID: 16613878 PMCID: PMC1779741 DOI: 10.1113/jphysiol.2006.107805] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
To determine how the histaminergic system is implicated in vestibular compensation, we studied the changes in histidine decarboxylase (HDC; the enzyme synthesizing histamine) mRNA regulation in the tuberomammillary (TM) nuclei of cats killed 1 week, 3 weeks and 3 months after unilateral vestibular neurectomy (UVN). We also used one- and two-step bilateral vestibular neurectomized (BVN) cats to determine whether HDC mRNA regulation depended on the asymmetrical vestibular input received by the TM nuclei neurons. In addition, we analysed the HDC mRNA changes in the TM nuclei and the recovery of behavioural functions in UVN cats treated with thioperamide, a pure histaminergic drug. Finally, we quantified binding to histamine H3 receptors (H3Rs) in the medial vestibular nucleus (VN) by means of a histamine H3R agonist ([3H]N-alpha-methylhistamine) in order to further investigate the sites and mechanisms of action of histamine in this structure. This study shows that UVN increases HDC mRNA expression in the ipsilateral TM nucleus at 1 week. This increased expression persisted 3 weeks after UVN, and regained control values at 3 months. HDC mRNA expression was unchanged in the one-step BVN cats but showed mirror asymmetrical increases in the two-step BVN compared to the 1 week UVN cats. Three weeks' thioperamide treatment induced a bilateral HDC mRNA up-regulation in the UVN cats, which was higher than in the untreated UVN group. Binding to histamine H3Rs in the MVN showed a strong bilateral decrease after thioperamide treatment, while it was reduced ipsilaterally in the UVN cats. That such changes of the histaminergic system induced by vestibular lesion and treatment may play a functional role in vestibular compensation is strongly supported by the behavioural data. Indeed, spontaneous nystagmus, posture and locomotor balance were rapidly recovered in the UVN cats treated with thioperamide. These results demonstrate that changes in histamine levels are related to vestibular compensation.
Collapse
MESH Headings
- Adaptation, Physiological
- Animals
- Binding Sites
- Cats
- Functional Laterality
- Gene Expression Regulation
- Histamine/metabolism
- Histamine Agonists/metabolism
- Histamine Antagonists/pharmacology
- Histamine Antagonists/therapeutic use
- Histidine Decarboxylase/genetics
- Histidine Decarboxylase/metabolism
- Hypothalamic Area, Lateral/drug effects
- Hypothalamic Area, Lateral/enzymology
- Methylhistamines/metabolism
- Motor Activity/drug effects
- Nystagmus, Pathologic/drug therapy
- Piperidines/pharmacology
- Piperidines/therapeutic use
- Postural Balance/drug effects
- RNA, Messenger/metabolism
- Receptors, Histamine H3/drug effects
- Receptors, Histamine H3/metabolism
- Time Factors
- Vestibular Nerve/surgery
- Vestibule, Labyrinth/drug effects
- Vestibule, Labyrinth/enzymology
- Vestibule, Labyrinth/innervation
Collapse
Affiliation(s)
- Brahim Tighilet
- UMR 6149 Neurobiologie Intégrative et Adaptative, Pôle 3C Comportement, Cerveau, Cognition, Centre de St Charles - Case B, 3 Place Victor Hugo, 13331 Marseille Cedex 3, France.
| | | | | | | |
Collapse
|
9
|
Sun Y, Waller HJ, Godfrey DA, Rubin AM. Spontaneous activity in rat vestibular nuclei in brain slices and effects of acetylcholine agonists and antagonists. Brain Res 2002; 934:58-68. [PMID: 11937070 DOI: 10.1016/s0006-8993(02)02361-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Extracellular recording was used to investigate spontaneously active neurons in all four major nuclei of the rat vestibular nuclear complex (VNC) in brainstem slices. The density of spontaneously active neurons was highest in the medial vestibular nucleus (MVN), slightly lower in the superior (SuVN) and spinal (SpVN) nuclei, and lowest in the lateral vestibular nucleus (LVN). We compared the effects of acetylcholine agonists and antagonists on spontaneously discharging neurons in MVN, SuVN, and SpVN with those in the nearby dorsal cochlear nucleus (DCN). The proportion of neurons responding to carbachol was greatest in DCN and smallest in SpVN. Unlike in DCN, some neurons in MVN, SuVN, and SpVN showed decreased firing during carbachol or muscarine. Magnitudes of responses to carbachol and muscarine were closely correlated (P<0.01). MVN neurons possessed nicotinic as well as muscarinic receptors. Activation of either type was unaffected by blocking synaptic transmission. The IC(50) values for the muscarinic subtype-preferential antagonists were compared, and tropicamide, preferential for M(4), was the most potent. Our results suggest that: (1) the relative numbers of spontaneously active neurons in rat VNC differ among nuclei; (2) acetylcholine agonists elicit changes in mean firing rates of neurons in MVN, SuVN and SpVN, but fewer neurons respond, and responses are smaller than in DCN; (3) both muscarinic and nicotinic acetylcholine receptors are present on MVN neurons, but muscarinic receptors may be more prominent.
Collapse
Affiliation(s)
- Yizhe Sun
- Department of Otolaryngology, Head and Neck Surgery, Medical College of Ohio, 3065 Arlington Avenue, Toledo, OH 43614, USA
| | | | | | | |
Collapse
|
10
|
Abstract
The aim of this review is to provide clinicians with a picture of the mechanisms by which: histamine and histaminergic agonists act on the vestibular system both peripherally and centrally; and histaminergic agonists and antagonists interfere with the recovery process after peripheral vestibular lesion. We have focused on betahistine, a structural analogue of histamine with weak histamine H(1) receptor agonist and more potent H(3) receptor antagonist properties, to review the currently available data on the role of the histaminergic system in the recovery process after peripheral vestibular deficits and the effects of histamine analogues in the clinical treatment of vertigo. This review provides new insights into the basic mechanisms by which betahistine improves vestibular compensation in animal models of unilateral vestibular dysfunction, and elucidates particularly the mechanisms of action of this substance at the level of the CNS. It is proposed that betahistine may reduce peripherally the asymmetric functioning of the sensory vestibular organs in addition to increasing vestibulocochlear blood flow by antagonising local H(3) heteroreceptors. Betahistine acts centrally by enhancing histamine synthesis within tuberomammillary nuclei of the posterior hypothalamus and histamine release within vestibular nuclei through antagonism of H(3) autoreceptors. This mechanism, together with less specific effects of betahistine on alertness regulation through cerebral H(1) receptors, should promote and facilitate central vestibular compensation. Elucidation of the mechanisms of action of betahistine is of particular interest for the treatment of vestibular and cochlear disorders and vertigo.
Collapse
Affiliation(s)
- M Lacour
- Department of Integrative and Adaptative Neurobiology, University of Provence/Centre National de la Recherche Scientifique, Marseille, France.
| | | |
Collapse
|
11
|
Abstract
Menière's disease is defined by the association of 4 symptoms: vertigo attacks, fluctuating hearing loss, tinnitus and an auricular plenitude sensation. The pathophysiology is commonly explained by a distension of membranous labyrinth by the endolymph, equally called endolymphatic hydrops. Recent studies also tend to relate the disease to immune mechanisms. The treatment is medical in the majority of patients but there is no international consensus on the management of the different stages of Menière's disease. Regarding the lack of clinical studies clearly demonstrating the effectiveness of a certain therapy or another. the recommendations are usually based on the empirical experience of practitioners and on the observation of a marked amelioration at 2 years of treatment in the majority of patients. The treatment of the acute phase of Menière's disease is basically symptomatic. Vestibular suppressant drugs have a well-established record in controlling acute attacks of vertigo. Most have variable anticholinergic, anti-emetic and vestibular sedative effects. If necessary, the administration of benzodiazepines will help to alleviate anxiety. Long term management of Menière's disease includes a low salt diet, the use of diuretics in the post-crisis phase, and the very common use in Europe of histaminergic agents. Corticosteroids are used in bilateral forms of Menière's disease, particularly if an autoimmune basis is suspected. All authors insist on the interest and the importance of regular follow-up, especially with regard to the psychological status and responsiveness to treatment of the patient. Surgical indications are rare and the least invasive procedures are used first. The choice of the procedure should take into consideration the need to preserve the auditory function of the patient.
Collapse
Affiliation(s)
- H Thai-Van
- Service d'Explorations Fonctionnelles ORL et Audiophonologiques, Hĵpital Edouard Herriot, Lyon, France.
| | | | | |
Collapse
|
12
|
Lacour M, Tighilet B. Vestibular compensation in the cat: the role of the histaminergic system. ACTA OTO-LARYNGOLOGICA. SUPPLEMENTUM 2001; 544:15-8. [PMID: 10904796 DOI: 10.1080/000164800750044434] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Histamine is thought to be involved in the recovery of vestibular function as histaminergic medications are effective in vestibular-related syndromes. We conducted studies in the cat to assess the effects of betahistine (a histamine-like substance) on the behavioural recovery process after unilateral vestibular neurectomy (UVN). We also investigated histamine immunoreactivity changes in the vestibular and tuberomammillary nuclei of betahistine-treated lesioned cats compared with untreated and unlesioned cats. Betahistine strongly accelerated the behavioural recovery process after UVN, with a time benefit of approximately 2 weeks for both static posture (support surface) and dynamic equilibrium function (locomotor balance) compared with untreated animals. A bilateral decrease in histamine immunoreactivity was seen in both acute and compensated UVN cats; this effect was strongly accentuated with betahistine treatment. In conclusion, the results indicate that vestibular lesion reduces histamine staining due to an increase in histamine release in the vestibular and tuberomammillary nuclei that promote vestibular recovery. Betahistine dihydrochloride should contribute to this process by acting on both the presynaptic histamine H3 and postsynaptic histamine H1 receptors.
Collapse
Affiliation(s)
- M Lacour
- Laboratoire de Neurobiologie des Restaurations Fonctionelles, Université de Provence, Marseille, France.
| | | |
Collapse
|
13
|
Takeshita S, Sasa M, Ishihara K, Matsubayashi H, Yajin K, Okada M, Izumi R, Arita K, Kurisu K. Cholinergic and glutamatergic transmission in medial vestibular nucleus neurons responding to lateral roll tilt in rats. Brain Res 1999; 840:99-105. [PMID: 10517957 DOI: 10.1016/s0006-8993(99)01775-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The responses of the medial vestibular nucleus (MVN) neurons to lateral tilt and the neurotransmitters mediating otolith information to MVN neurons were investigated using rats. A computer-operated goniometer was tilted 20 degrees clockwise and counterclockwise at an angular speed of 5 degrees /s and paused in the inclined positions for 10 s to record neuronal responses in the static phase. The 185 MVN neurons recorded were classified into eight types according to their responses to tilt (alpha, beta, gamma, delta, epsilon, zeta, eta and theta). A majority showed increased firing in response to ipsilateral tilting and decreased firing in response to contralateral tilting (alpha type: 31.4%) or exhibited the reverse pattern (beta type: 36.8%). Further, other groups of neurons increased (gamma type) or decreased (delta type) firing rates to either side tilting and increased (epsilon and zeta type) or decreased (eta and theta type) firing only on one side. Atropine or L-glutamic acid diethyl ester hydrochloride (GDEE) applied microiontophoretically antagonized tilt-induced firing of alpha type neurons in 58.8% or 60.0%, respectively, and of beta type neurons in 66.7% or 58.3%, respectively. When the effects of atropine and GDEE were examined in the same neurons, antagonizing effects of both drugs on tilt-induced firing were obtained in 28.6% and 40.0% of alpha and beta type neurons, respectively. These results suggest that both acetylcholine and glutamate act as neurotransmitters in the transmission of otolith information to most MVN neurons.
Collapse
Affiliation(s)
- S Takeshita
- Department of Neurosurgery, Hiroshima University School of Medicine, Hiroshima, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Tighilet B, Lacour M. Histamine immunoreactivity changes in vestibular-lesioned and histaminergic-treated cats. Eur J Pharmacol 1997; 330:65-77. [PMID: 9228415 DOI: 10.1016/s0014-2999(97)10124-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Histamine is likely involved in vestibular function recovery since histaminergic medications are effective in vestibular-related syndromes. We investigated the histamine immunoreactivity changes after unilateral vestibular neurectomy and the effects of betahistine (a partial histamine H1 receptor agonist and an histamine H3 receptor antagonist) and thioperamide (a pure histamine H3 receptor antagonist) treatment in cats. Histamine staining was analyzed in the tuberomammillary and vestibular nuclei through immunohistochemical methods and quantification techniques in light microscopy. Unilateral vestibular neurectomy induced a strong bilateral decrease in histamine immunoreactivity in the vestibular nuclei and a smaller reduction in the tuberomammillary nuclei in both acute (1 week) and compensated (3 weeks, 1 year) cats. One-week thioperamide or betahistine treatment led to a near-total lack of staining in these structures in both lesioned and control cats. One-month betahistine treatment had weaker effects in the compensated cats. We conclude that vestibular lesions reduce histamine staining because of an increase in histamine release in the vestibular and tuberomammillary nuclei, promoting vestibular functions recovery, and betahistine could contribute to this process by acting on both the presynaptic histamine H3 and postsynaptic histamine H1 receptors.
Collapse
Affiliation(s)
- B Tighilet
- UMR CNRS 6562 Neurobiologie Intégrative et Adaptive, Université de Provence/CNRS, Centre de St Jérôme, Marseille, France
| | | |
Collapse
|
15
|
Darlington CL, Gallagher JP, Smith PF. In vitro electrophysiological studies of the vestibular nucleus complex. Prog Neurobiol 1995; 45:335-46. [PMID: 7624481 DOI: 10.1016/0301-0082(94)00056-n] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- C L Darlington
- Department of Psychology, University of Otago, Dunedin, New Zealand
| | | | | |
Collapse
|
16
|
Serafin M, Khateb A, Vibert N, Vidal PP, Mühlethaler M. Medial vestibular nucleus in the guinea-pig: histaminergic receptors. I. An in vitro study. Exp Brain Res 1993; 93:242-8. [PMID: 8387929 DOI: 10.1007/bf00228391] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Antihistaminergic drugs are currently used for the symptomatic treatment of vestibular-related syndromes such as vertigo and motion sickness. We therefore investigated whether histamine could modulate the firing of medial vestibular nuclei neurons (MVNn). Recently, we have demonstrated that different cell types are present among MVNn in guinea-pig brainstem slices. Bath-application of histamine at 10(-4) or 10(-5) M induced a small membrane depolarization accompanied by a slight decrease in membrane resistance and a reversible increase in spontaneous firing in all MVN cell types. These effects were presumably postsynaptic as they persisted in a low-calcium/high-magnesium solution. Using a variety of agonists and antagonists of histamine receptors (H1, H2 and H3), we conclude that these effects are mediated by H2 receptors. The companion paper is concerned with an in vivo study of the histaminergic modulation of the vestibular function (Yabe et al., in press).
Collapse
Affiliation(s)
- M Serafin
- Département de Physiologie, CMU, Geneva, Switzerland
| | | | | | | | | |
Collapse
|
17
|
Yabe T, Chat M, Malherbe E, Vidal PP. Effects of Ginkgo biloba extract (EGb 761) on the guinea pig vestibular system. Pharmacol Biochem Behav 1992; 42:595-604. [PMID: 1513841 DOI: 10.1016/0091-3057(92)90004-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Previous studies have demonstrated that the administration of Ginkgo biloba extract (EGb 761) improves the compensation of the vestibular syndrome induced by transection of the VIIIth nerve. To investigate the mechanisms at play, the vestibular nuclei of alert guinea pigs were perfused with EGb 761. This perfusion always induced a stereotyped reversible postural syndrome that was the mirror image of the syndrome provoked by the unilateral lesion of the otolithical receptors. This result supports the hypothesis that EGb 761 has a direct excitatory effect on the lateral vestibular nuclei (LVN) neurons. In a second step, we quantified the horizontal vestibuloocular reflex (HVOR) of the normal guinea pig following IP injection of EGb 761. In normal guinea pig, IP administration of EGb 761 led to a reversible, dose-dependent decrease of the HVOR gain without affecting the phase of the reflex. These data help to explain the therapeutic effects of EGb 761 during vestibular syndromes and strongly suggest an impact at the neuronal level.
Collapse
Affiliation(s)
- T Yabe
- Laboratoire de Physiologie Neurosensorielle, CNRS, Paris, France
| | | | | | | |
Collapse
|
18
|
de Waele C, Serafin M, Khateb A, Vibert N, Yabe T, Arrang JM, Mulhethaler M, Vidal PP. An in vivo and in vitro study of the vestibular nuclei histaminergic receptors in the guinea pig. Ann N Y Acad Sci 1992; 656:550-65. [PMID: 1534649 DOI: 10.1111/j.1749-6632.1992.tb25235.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- C de Waele
- Laboratory of Neurosensory Physiology, CNRS, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Phelan KD, Gallagher JP. Direct muscarinic and nicotinic receptor-mediated excitation of rat medial vestibular nucleus neurons in vitro. Synapse 1992; 10:349-58. [PMID: 1585263 DOI: 10.1002/syn.890100410] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We have utilized intracellular recording techniques to investigate the cholinoceptivity of rat medial vestibular nucleus (MVN) neurons in a submerged brain slice preparation. Exogenous application of the mixed cholinergic agonists, acetylcholine (ACh) or carbachol (CCh), produced predominantly membrane depolarization, induction of action potential firing, and decreased input resistance. Application of the selective muscarinic receptor agonist muscarine (MUSC), or the selective nicotinic receptor agonists nicotine (NIC) or 1,1-dimethyl-4-phenylpiperazinium (DMPP) also produced membrane depolarizations. The MUSC-induced depolarization was accompanied by decreased conductance, while an increase in conductance appeared to underlie the NIC- and DMPP-induced depolarizations. The muscarinic and nicotinic receptor mediated depolarizations persisted in tetrodotoxin and/or low Ca2+/high Mg2+ containing media, suggesting direct postsynaptic receptor activation. The MUSC-induced depolarization could be reversibly blocked by the selective muscarinic-receptor antagonist, atropine, while the DMPP-induced depolarization could be reversibly suppressed by the selective ganglionic nicotinic-receptor antagonist, mecamylamine. Some neurons exhibited a transient membrane hyperpolarization during the depolarizing response to CCh or MUSC application. This transient inhibition could be reversibly blocked by the gamma-aminobutyric acid (GABA) antagonist, bicuculline, suggesting that the underlying hyperpolarization results indirectly from the endogenous release of GABA acting at GABA receptors. This study confirms the cholinoceptivity of MVN neurons and establishes that individual MVN cells possess muscarinic as well as nicotinic receptors. The data provide support for a prominent role of cholinergic mechanisms in the direct and indirect regulation of the excitability of MVN neurons.
Collapse
Affiliation(s)
- K D Phelan
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston 77550
| | | |
Collapse
|
20
|
Smith PF, Darlington CL. Neurochemical mechanisms of recovery from peripheral vestibular lesions (vestibular compensation). BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1991; 16:117-33. [PMID: 1760653 DOI: 10.1016/0165-0173(91)90001-o] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This paper reviews the literature relating to the neurochemical basis of vestibular compensation, a process of behavioral recovery which occurs following the removal of afferent input from one labyrinth (unilateral labyrinthectomy, UL). Although vestibular compensation is known to be correlated with a return of resting activity to the vestibular nucleus (VN) ipsilateral to the UL (the deafferented VN), the neurochemical mechanisms by which this neuronal recovery occurs, are unknown. At present, there is little evidence to support the hypothesis that denervation supersensitivity of excitatory amino acid, dopamine, norepinephrine or acetylcholine receptors in the deafferented VN, is responsible for vestibular compensation: binding studies for glutamate or acetylcholine do not support an upregulation of these receptor types. However, changes in the affinity or efficacy of these receptor complexes cannot be ruled out. There are still many neurotransmitter systems, such as serotonergic and histaminergic systems, which have not been investigated in relation to vestibular compensation. In several species it has been shown that treatment with adrenocorticotropic hormone, fragment 4-10 (ACTH-(4-10], can accelerate vestibular compensation. It is not clear how these drugs exert their effects. In vitro electrophysiological studies have shown that VN neurons are capable of generating resting activity in the absence of their normal afferent inputs and it is possible that these neurons have pacemaker-like membrane characteristics which contribute to the regeneration of activity following UL. Recent biochemical studies have revealed changes in the phosphorylation patterns of a number of proteins during compensation. The possible relationship between these phosphorproteins and the synaptic or membrane changes which are responsible for vestibular compensation remains to be determined.
Collapse
Affiliation(s)
- P F Smith
- Department of Psychology, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
21
|
Abstract
The vasodilating properties of histamine were the basis for histamine treatment of episodic vertigo and other inner ear dysfunctions. The successes obtained led to the development of betahistine: an orally active histamine analogue; its general pharmacology resembles that of histamine. Animal pharmacology experiments proved that betahistine increases cerebral blood flow and probably also affects vestibular neurons. From clinical studies, it appears that betahistine is an effective agent for the symptomatic treatment of Meniere's syndrome. Efficacy has also been shown in the treatment of patients suffering from paroxysmal vertigo.
Collapse
|
22
|
Phelan KD, Nakamura J, Gallagher JP. Histamine depolarizes rat medial vestibular nucleus neurons recorded intracellularly in vitro. Neurosci Lett 1990; 109:287-92. [PMID: 2139500 DOI: 10.1016/0304-3940(90)90009-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The effects of histamine (HA) on the resting membrane potential and input resistance of rat medial vestibular nucleus (MVN) neurons were investigated using intracellular recording techniques from a submerged brain slice preparation. The exogenous application of HA predominantly produced a concentration-dependent membrane depolarization and induction of action potential firing. The depolarization exhibited a rapid onset, a slow recovery, and usually occurred in the absence of any apparent change in conductance. These effects of HA could be mimicked by the H2-agonist impromidine and were reversibly blocked by the H2-antagonist cimetidine. Tetrodotoxin (TTX) or low calcium/high magnesium-containing media failed to block completely the HA-induced depolarization supporting a direct postsynaptic receptor mediated action of HA. The diminished HA-induced depolarization observed following pretreatment with TTX cannot exclude an additional presynaptic action by HA. The present findings reveal that HA exerts a novel direct excitation of rat MVN neurons through an H2-receptor.
Collapse
Affiliation(s)
- K D Phelan
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston 77550
| | | | | |
Collapse
|
23
|
Ujihara H, Akaike A, Sasa M, Takaori S. Muscarinic regulation of spontaneously active medial vestibular neurons in vitro. Neurosci Lett 1989; 106:205-10. [PMID: 2586827 DOI: 10.1016/0304-3940(89)90227-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We examined the effects of cholinergic agonists and antagonists on spontaneously occurring action potentials extracellularly recorded from medial vestibular nucleus (MVN) neurons in rat brainstem slice preparation to elucidate the cholinergic mechanism involved in excitation. Addition of carbachol (10(-6)-10(-5) M) and muscarine (10(-6)-10(-5) M) into the bath dose-dependently increased the spontaneous firing rate, while nicotine (10(-5)-10(-4) M) had no effects. Acetylcholine (10(-6)-10(-5) M) in the presence of physostigmine (10(-7) M) also increased the firing rate in a dose-dependent manner. Conversely, atropine (10(-8)-3 x 10(-7) M) slightly decreased the firing and dose-dependently inhibited the carbachol-induced increase in the firing rate. These results suggest that the firing rate of spontaneously active MVN neurons are regulated by acetylcholine via muscarinic receptors.
Collapse
Affiliation(s)
- H Ujihara
- Department of Pharmacology, Faculty of Medicine, Kyoto University, Japan
| | | | | | | |
Collapse
|
24
|
Ujihara H, Akaike A, Sasa M, Takaori S. Electrophysiological evidence for cholinoceptive neurons in the medial vestibular nucleus: studies on rat brain stem in vitro. Neurosci Lett 1988; 93:231-5. [PMID: 3241648 DOI: 10.1016/0304-3940(88)90087-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Electrophysiological studies were performed to determine whether or not cholinoceptive neurons are present in the rat medial vestibular nucleus (MVN) using brainstem slice preparations. Fifty-three MVN neurons, whose activities were extracellularly recorded, fired spikes spontaneously and regularly with an interspike interval of 180 +/- 27 ms (mean +/- S.E.M.) and a coefficient of variation of 0.11 +/- 0.02. Intracellularly recorded neurons also exhibited similar spontaneous and regular generation of action potentials. Carbachol dose-dependently increased the spontaneous firing, although the firing rate was decreased in a few neurons. The addition of atropine reduced the firing rate, and dose-dependently attenuated the carbachol-induced excitation of the neurons. In a low Ca2+ and high Mg2+ medium, carbachol also increased the firing rate. These results indicate that the MVN contains neurons with spontaneous and regular firing, and that the excitability of these neurons is regulated by a cholinergic muscarinic mechanism.
Collapse
Affiliation(s)
- H Ujihara
- Department of Pharmacology, Faculty of Medicine, Kyoto University, Japan
| | | | | | | |
Collapse
|
25
|
Abstract
Histamine and other imidazole-containing substances were found to increase ampullar nerve afferent firing rate while both H1 and H2 histamine antagonists effectively inhibited ampullar nerve activity. A specific inhibitor of histidine decarboxylase, the enzyme which catalyses the synthesis of histamine, reduced ampullar nerve firing in a dose-dependent manner. These observations suggest a physiological role for histamine in the inner ear. Maintenance of a response to histamine after de-efferentation of the crista ampullaris supports the hypothesis that the site of action is the hair cell; antagonism of the histamine response by a cholinergic antagonist, atropine, and antagonism of a cholinergically mediated facilitation by the histaminergic antagonist pyrilamine, indicate that the site of action may involve the acetylcholine receptor complex on the crista ampullaris hair cells. The observation that imidazole-containing compounds cause significant effects on semicircular canal neurotransmission provides an important finding with regard to the site of action of antihistamines used for the treatment of vertigo and motion sickness.
Collapse
Affiliation(s)
- G D Housley
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana 70112
| | | | | |
Collapse
|
26
|
Yoshida S, Sasa M, Takaori S. Different sensitivity to hypoxia in neuronal activities of lateral vestibular and spinal trigeminal nuclei. Stroke 1988; 19:357-64. [PMID: 2895509 DOI: 10.1161/01.str.19.3.357] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Electrophysiologic studies were performed to examine the effects of hypoxia on neuronal activities of the lateral vestibular and spinal trigeminal nuclei using rats anesthetized with chloral hydrate. The rats inhaled a gas mixture of 5% oxygen and 95% nitrogen for 3.5 minutes to induce hypoxia, followed by room air. Under these conditions, mean PaO2 was decreased from 85 to 22 mm Hg 3 minutes after the start of the inhalation concomitant with a decrease in blood pressure from 108 to 55 mm Hg. There were no significant differences in these variables between rats used for vestibular nucleus experiments and rats used for trigeminal nucleus experiments. In the lateral vestibular nucleus, hypoxia inhibited postsynaptic components of the evoked field potential, spike generation of monosynaptic neurons on vestibular nerve stimulation, and firing induced by iontophoretic application of glutamate. In the spinal trigeminal nucleus, however, there were no alterations of the field potential or spike generation of the neurons on trigeminal nerve stimulation. These results indicate that the lateral vestibular nucleus neurons are much more sensitive to hypoxia than the spinal trigeminal nucleus neurons. The failure of transmission in the monosynaptic neurons of the lateral vestibular nucleus is suggested to be due to the inhibition of excitability of the postsynaptic membrane.
Collapse
Affiliation(s)
- S Yoshida
- Department of Pharmacology, Faculty of Medicine, Kyoto University, Japan
| | | | | |
Collapse
|
27
|
Donoso AO. The possible role of brain histamine in neuroendocrine and cardiovascular regulation. Med Res Rev 1986; 6:365-86. [PMID: 3016430 DOI: 10.1002/med.2610060305] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
28
|
Ito J, Matsuoka I, Sasa M, Fujimoto S, Takaori S. Electrophysiologic evidence for involvement of acetylcholine as a neurotransmitter in the lateral vestibular nucleus. Otolaryngol Head Neck Surg 1981; 89:1025-9. [PMID: 6121314 DOI: 10.1177/019459988108900629] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Monosynaptic spike generation of lateral vestibular nucleus (LVN) neurons with vestibular nerve stimulation in cats was inhibited by microiontophoretic atropine and gamma-aminobutyric acid (GABA). Spontaneous firing of the LVN monosynaptic neuron was increased by iontophoretic acetylcholine and glutamate. Atropine inhibited acetylcholine-induced firing without affecting glutamate-induced firing, while GABA blocked spike generation produced by acetylcholine and glutamate. Acetylcholine probably plays a role in transmission from the vestibular nerve to the LVN monosynaptic neurons.
Collapse
|
29
|
Geller HM. Histamine actions on activity of cultured hypothalamic neurons: evidence for mediation by H1- and H2-histamine receptors. Brain Res 1981; 227:89-101. [PMID: 6258751 DOI: 10.1016/0165-3806(81)90096-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Tuberal hypothalamic tissue cultures were used to investigate the actions of histaminergic agents on neuronal activity using extracellular glass micropipettes. Histamine and H1- and H2-agonists were applied locally onto single active neurons by iontophoresis, while histaminergic antagonists were perfused through the bathing medium. Peri-event histogram and ratemeter analysis showed histamine to both excite and depress unit activity. Excitations were only antagonized by putative H1- and not H2-histamine antagonists, whereas inhibitions were antagonized by H2- and H2-antagonists. Dimaprit, a specific H2-agonist, elicited inhibitions of activity, while 2-(2-pyridyl)ethylamine, a putative H1-agonist, elicited both excitations and inhibitions. Two pharmacologically distinct populations of histamine receptors may exit in the hypothalamus: excitatory H2-receptors and inhibitory H2-receptors.
Collapse
|
30
|
Ikeda Y, Sasa M, Takaori S. Selective effect of ethanol on the vestibular nucleus neurons in the cat. JAPANESE JOURNAL OF PHARMACOLOGY 1980; 30:665-73. [PMID: 7206372 DOI: 10.1254/jjp.30.665] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Effects of intravenous administration of ethanol on the neuronal activities of the lateral vestibular nucleus (LVN) and spinal trigeminal nucleus (STN) were investigated in cats. The LVN neurons were classified into three groups according to the latency of the first spike elicited by orthodromic vestibular nerve stimulation and antidromic vestibulospinal tract stimulation: monosynaptic, polysynaptic I and polysynaptic II neurons. Ethanol of 0.2--1.6 g/kg dose-dependently suppressed the orthodromic spike generation of the monosynaptic and polysynaptic II neurons without affecting their latency and antidromic spike generation of the former neuron. The mean spike numbers of the monosynaptic and polysynaptic II neurons were significantly decreased with ethanol over 0.4 g/kg. The polysynaptic I neuron, however, remained unaffected by the drug up to 0.8 g/kg. Similarly, the spike generation of the STN relay neuron and interneuron elicited by trigeminal nerve stimulation remained unaltered with ethanol given in doses up to 0.8 g/kg. These results indicate that small doses of ethanol more selectively interfere with synaptic transmission in the LVN monosynaptic and polysynaptic II neurons than transmission in the STN relay neurons and interneurons.
Collapse
|
31
|
Kirsten EB, Satayavivad J, St John WM, Wang SC. Alteration of medullary respiratory unit discharge by iontophoretic application of putative neurotransmitters. Br J Pharmacol 1978; 63:275-81. [PMID: 27271 PMCID: PMC1668419 DOI: 10.1111/j.1476-5381.1978.tb09757.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
1 Cats with midcollicular decerebration were vagotomized, paralyzed and artificially ventilated. Phrenic nerve activity was recorded as an index of central respiratory rhythm. Medullary respiratory neurones and non-respiratory cells located in approximation to the ventral respiratory nucleus were tested for their responsiveness to iontophoretically applied gamma-aminobutyric acid (GABA), acetylcholine (ACh) and glutamate. 2 GABA tended to inhibit, whereas ACh and glutamate excited activity both of respiratory and non-respiratory units. Some phase-spanning respiratory unit activities were converted to phasic discharge patterns linked to either inspiration or expiration concomitant with application of low GABA doses. Appropriate applications of GABA also resulted in a complete cessation of the respiratory or non-respiratory neuronal activities. 3 While application of ACh or glutamate induced continuous firing in phasic, phase-spanning respiratory neurones, the periodic discharge patterns of inspiratory or expiratory units was not altered by ACh or, in many instances, by glutamate. Only at high doses of glutamate was the phasic discharge of some inspiratory or expiratory units converted to tonic activity. 4 These observations suggest that strong inhibitory processes serve to maintain the phasic firing pattern of respiratory units. These data also support the concept that active-inhibitory phase-switching mechanisms serve to define respiratory rhythmicity.
Collapse
|
32
|
Satayavivad J, Kirsten EB. Iontophoretic studies of histamine and histamine antagonists in the feline vestibular nuclei. Eur J Pharmacol 1977; 41:17-26. [PMID: 12984 DOI: 10.1016/0014-2999(77)90366-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The activity of single neurons in the vestibular neuronal complex of midcollicular decerebrate, decerebellectomized cats were recorded and their responsiveness to iontophoretically applied histamine and other agents determined. The majority of the cells tested were inhibited by iontophoresis of histamine while 24% were excited by this agent. Neurons exhibiting inhibitory responses were widely distributed throughout the four vestibular nuclei and adjacent reticular formation whereas excitatory responses to histamine were obtained mainly in the region of the lateral vestibular nucleus. The H2-receptor blocking agents metiamide and cimetidine were examined as to their actions on spontaneously firing cells and cells affected by histamine. Metiamide was selective in blocking histamine-induced inhibition but not excitation while cimetidine was ineffective in blocking either response. These results suggest that histamine has both inhibitory and excitatory actions on brain stem neurons and metiamide is an effective antagonist of histamine-induced inhibition.
Collapse
|