1
|
Khani F, Pourmotabbed A, Hosseinmardi N, Nedaei SE, Fathollahi Y, Azizi H. Impairment of spatial memory and dorsal hippocampal synaptic plasticity in adulthood due to adolescent morphine exposure. Prog Neuropsychopharmacol Biol Psychiatry 2022; 116:110532. [PMID: 35149126 DOI: 10.1016/j.pnpbp.2022.110532] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 12/12/2022]
Abstract
Opioid exposure during adolescence, a crucial period of neurodevelopment, has lasting neurological and behavioral consequences and affects the cognitive functions in adulthood. This study investigated the effects of adolescent morphine exposure in spatial learning and memory and synaptic plasticity of the CA1 area of the dorsal hippocampus. Adolescent Wistar rats received increasing doses of morphine for 1, 5, and 10 days. Acute morphine group was injected 2.5 mg/kg morphine for 1 day, subchronic morphine group for 5 days, with an increasing dose of 2.5 mg/kg and reached to the dose of 12.5 mg/kg and chronic morphine group for 10 days that began with an increasing dose of 2.5 mg/kg and reached to the dose of 25 mg/kg. Then after 25 days and reaching adulthood, spatial learning and memory were evaluated via the Morris water maze (MWM) test. Moreover, we test the electrophysiological properties of dorsal hippocampal plasticity in adult rats by in vitro field potential recordings. Subchronic and chronic adolescent morphine exposure impaired spatial learning and memory in the MWM test. Baseline synaptic responses in the chronic morphine group were increased and long-term potentiation (LTP) impaired in the CA1 area in subchronic and chronic morphine groups. In adulthood, the slope of the field excitatory postsynaptic potential (fEPSP) required to elicit a half-maximal population spike (PS) amplitude was significantly larger in subchronic and chronic adolescent morphine exposure compared to the saline group. Therefore, subchronic and chronic adolescent morphine exposure altered synaptic transmission and plasticity in addition to learning and memory. Long-term morphine exposure during adolescence can interfere with neurodevelopment, making a persistent impression on plasticity and cognitive capability in adulthood.
Collapse
Affiliation(s)
- Fatemeh Khani
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Pourmotabbed
- Department of Physiology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Narges Hosseinmardi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Ershad Nedaei
- Department of Physiology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Yaghoub Fathollahi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Azizi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
2
|
Li W, He S, Zhou Y, Li Y, Hao J, Zhou X, Wang F, Zhang Y, Huang Z, Li Z, Loh HH, Law PY, Zheng H. Neurod1 modulates opioid antinociceptive tolerance via two distinct mechanisms. Biol Psychiatry 2014; 76:775-84. [PMID: 24993058 PMCID: PMC4503258 DOI: 10.1016/j.biopsych.2014.05.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 05/20/2014] [Accepted: 05/22/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND The activity of neurogenic differentiation 1 (Neurod1) decreases after morphine administration, which leads to impairments of the stability of dendritic spines in primary hippocampal neurons, adult neurogenesis in mouse hippocampi, and drug-associated contextual memory. The current study examined whether Neurod1 could affect the development of opioid tolerance. METHODS Lentivirus encoding Neurod1, microRNA-190 (miR-190), or short hairpin RNA against Neurod1 was injected into mouse hippocampi separately or combined (more than eight mice for each treatment) to modulate NeuroD1 activity. The antinociceptive median effective dose values of morphine and fentanyl were determined with tail-flick assay and used to calculate development of tolerance. Contextual learning and memory were assayed using the Morris water maze. RESULTS Decrease in NeuroD1 activity increased the initial antinociceptive median effective dose values of both morphine and fentanyl, which was reversed by restoring NeuroD1 activity. In contrast, decrease in NeuroD1 activity inhibited development of tolerance in a time-dependent manner, paralleling its effects on the acquisition and extinction of contextual memory. In addition, only development of tolerance, but not antinociceptive median effective dose values, was modulated by the expression of miR-190 and Neurod1 driven by Nestin promoter. CONCLUSIONS Neurod1 regulates the developments of opioid tolerance via a time-dependent pathway through contextual learning and a short-response pathway through antinociception.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Hui Zheng
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences.
| |
Collapse
|
3
|
Sadegh M, Fathollahi Y. Repetitive systemic morphine alters activity-dependent plasticity of schaffer-collateral-CA1 pyramidal cell synapses: Involvement of adenosine A1 receptors and adenosine deaminase. J Neurosci Res 2014; 92:1395-408. [DOI: 10.1002/jnr.23414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 04/17/2014] [Accepted: 04/21/2014] [Indexed: 01/21/2023]
Affiliation(s)
- Mehdi Sadegh
- Department of Physiology; School of Medical Sciences, Tarbiat Modares University; Tehran Iran
- Department of Physiology; Faculty of Medicine; Arak University of Medical Sciences; Arak Iran
| | - Yaghoub Fathollahi
- Department of Physiology; School of Medical Sciences, Tarbiat Modares University; Tehran Iran
| |
Collapse
|
4
|
Sadegh M, Fathollahi Y, Semnanian S. The chronic treatment in vivo of salicylate or morphine alters excitatory effects of subsequent salicylate or morphine tests in vitro in hippocampus area CA1. Eur J Pharmacol 2013; 721:103-8. [DOI: 10.1016/j.ejphar.2013.09.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Revised: 09/18/2013] [Accepted: 09/26/2013] [Indexed: 10/26/2022]
|
5
|
Ionov ID, Roslavtseva LA. Coadministration of bicuculline and NMDA induces paraplegia in the rat. Brain Res 2012; 1451:27-33. [PMID: 22445063 DOI: 10.1016/j.brainres.2012.03.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 02/27/2012] [Accepted: 03/05/2012] [Indexed: 11/28/2022]
Abstract
Motor neurons (MNs) of an adult rat are normally insensitive to the neurotoxic action of NMDA. Meanwhile, the experiments in non-motor neurons showed that sensitivity to NMDA can be increased by bicuculline, an antagonist at GABA(A) receptors. The aim of the present work was to examine whether bicuculline would produce such an effect in the adult MNs. In adult Wistar rats, intrathecal injection of bicuculline and NMDA individually failed to affect motor activity of the extremities. In contrast, bicuculline-NMDA combination dose-dependently impaired hindlimb functions. At the 9th day after injections of the combination, a paraplegia with persistent bilateral spastic extension developed in all animals. Light microscopic assessment showed that the development of the motor deficit is associated with pathological changes in spinal motor neurons (swelling, accumulation of the Nissl substance near nucleus, hyperchromatosis, shrinkage, and chromatolysis), mainly in the lumbar ventral horns. Additionally, distinct abnormalities were observed in the white matter of the lumbar cords. The bicuculline-NMDA combination induced a loss of spinal cord MNs while sparing the dorsal horn neurons. The effects of the combination were reversed by muscimol, a GABA(A) agonist. Thus, an inhibition of GABA(A)ergic processes can induce NMDA sensitivity in adult MNs. The present data may provide new insights into the mechanism of motor disorders in amyotrophic lateral sclerosis and other states wherein the combination of glutamatergic overstimulation and GABA(A)ergic understimulation takes place.
Collapse
Affiliation(s)
- Ilya D Ionov
- Centre on Theoretical Problems in Physical and Chemical Pharmacology, Russian Academy of Sciences, Moscow, Russia.
| | | |
Collapse
|
6
|
McQuiston AR. Mu opioid receptor activation normalizes temporo-ammonic pathway driven inhibition in hippocampal CA1. Neuropharmacology 2010; 60:472-9. [PMID: 21056047 DOI: 10.1016/j.neuropharm.2010.10.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 10/26/2010] [Accepted: 10/29/2010] [Indexed: 11/24/2022]
Abstract
The hippocampus of the mammalian brain is important for the formation of long-term memories. Hippocampal-dependent learning can be affected by a number of neurotransmitters including the activation of μ-opioid receptors (MOR). It has been shown that MOR activation can alter synaptic plasticity and network oscillations in the hippocampus, both of which are thought to be important for the encoding of information and formation of memories. One hippocampal oscillation that has been correlated with learning and memory formation is the 4-10 Hz theta rhythm. During theta rhythms, inputs to hippocampal CA1 from CA3 (Schaffer collaterals, SC) and the entorhinal cortex (perforant path) can integrate at different times within an individual theta cycle. Consequently, when excitatory inputs in the stratum lacunosum-moleculare (the temporo-ammonic pathway (TA), which includes the perforant path) are stimulated approximately one theta period before SC inputs, the TA can indirectly inhibit SC inputs. This inhibition is due to the activation of postsynaptic GABA(B) receptors on CA1 pyramidal neurons. Importantly, MOR activation has been shown to suppress GABA(B) inhibitory postsynaptic potentials in CA1 pyramidal neurons. Therefore, we examined how MOR activation affects the integration between TA inputs and SC inputs in hippocampal CA1. To do this we used voltage-sensitive dye imaging and whole cell patch clamping from acute hippocampal slices taken from young adult rats. Here we show that MOR activation has no effect on the integration between TA and SC inputs when activation of the TA precedes SC by less than one half of a theta cycle (<75 ms). However, MOR activation completely blocked the inhibitory action of TA on SC inputs when TA stimulation occurred approximately one theta cycle before SC activation (>150 ms). This MOR suppression of TA driven inhibition occurred in both the SC input layer of hippocampal CA1 (stratum radiatum) and the output layer of CA1 pyramidal neurons (stratum pyramidale). Thus MOR activation can have profound effects on the temporal integration between two primary excitatory pathways to hippocampal CA1 and subsequently the resultant output from CA1 pyramidal neurons. These data provide important information for understanding how acute or chronic MOR activation may affect the integration of activity within hippocampal CA1 during theta rhythm.
Collapse
Affiliation(s)
- A Rory McQuiston
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Box 980709, Richmond, VA 23298, USA.
| |
Collapse
|
7
|
Jafarzadeh Z, Fathollahi Y, Semnanian S, Omrani A, Salmanzadeh F, Salmani ME. Morphine dependence increases the response to a brief pentylenetetrazol administration in rat hippocampal CA1 in vitro. Epilepsia 2009; 50:789-800. [DOI: 10.1111/j.1528-1167.2008.01802.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Kouvaras E, Asprodini EK, Asouchidou I, Vasilaki A, Kilindris T, Michaloudis D, Koukoutianou I, Papatheodoropoulos C, Kostopoulos G. Fentanyl treatment reduces GABAergic inhibition in the CA1 area of the hippocampus 24 h after acute exposure to the drug. Neuropharmacology 2008; 55:1172-82. [PMID: 18706433 DOI: 10.1016/j.neuropharm.2008.07.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Revised: 05/27/2008] [Accepted: 07/17/2008] [Indexed: 11/19/2022]
Abstract
The effect of in vivo fentanyl treatment on synaptic transmission was studied in the CA1 area of the rat hippocampus. Animals were treated either with saline or fentanyl (4 x 80 microg/kg, s.c./15 min). Intracellular in vitro recordings were obtained, 24 h after treatment, from CA1 pyramidal neurons. No difference in pyramidal neuron basic membrane properties or postsynaptic membrane excitability was observed between neurons from saline- and fentanyl-treated animals. The peak amplitude of fast (f-) and slow (s-) components of IPSPs elicited in standard ACSF and the peak amplitude and rate of rise of isolated f- and s-IPSPs elicited in the presence of antagonists (CNQX, 10 microM; AP-5, 10 microM; CGP 55845, 1 microM; and bicuculline methochloride, 10 microM), in response to various stimulus intensities, was smaller in fentanyl-treated animals. Conversely, the rising slope of excitatory responses was similar in neurons from saline- and fentanyl-treated animals. Furthermore, in fentanyl-treated animals, lower stimulus strengths were required to elicit subthreshold excitatory responses of the same amplitude suggesting that acute exposure to fentanyl increases susceptibility of pyramidal neurons to presynaptic stimulation. GABA immunohistochemistry revealed lower GABA content in processes and neuronal somata suggesting diminished GABA release onto pyramidal neurons. We conclude that acute in vivo exposure to fentanyl is sufficient to induce long-lasting reduction in GABA-mediated transmission, rather, than enhanced excitatory transmission or modulation of the intrinsic excitability of pyramidal neurons. These findings provide evidence regarding the mechanisms involved in the early stages of tolerance development towards the analgesic effects of opioids.
Collapse
Affiliation(s)
- E Kouvaras
- Laboratory of Pharmacology, School of Medicine, University of Thessaly, Faculty of Health Sciences, 22 Papakiriazi Street, 41222 Larissa, Greece
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
McQuiston AR. Layer selective presynaptic modulation of excitatory inputs to hippocampal cornu Ammon 1 by mu-opioid receptor activation. Neuroscience 2007; 151:209-21. [PMID: 18065149 DOI: 10.1016/j.neuroscience.2007.09.077] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Revised: 08/17/2007] [Accepted: 09/20/2007] [Indexed: 01/02/2023]
Abstract
Chronic and acute activation of mu-opioid receptors (MOR) in hippocampal cornu Ammon 1 (CA1) disrupts rhythmic activity, alters activity-dependent synaptic plasticity and impairs spatial memory formation. In CA1, MORs act by hyperpolarizing inhibitory interneurons and suppressing inhibitory synaptic transmission. MOR modulation of inhibitory synaptic function translates into an increase in excitatory activity in all layers of CA1. However, the exact anatomical sites for MOR actions are not completely known. Therefore, we used voltage-sensitive dye imaging, whole cell patch clamping, photolysis of alpha-carboxy-2-nitrobenzyl ester, trifluoroacetic acid salt (CNB) -caged GABA, and micro-sectioned slices of rat hippocampus to investigate the effect of MOR activation in CA1. First, we investigated the effect of MOR activation using a MOR agonist [d-Ala2, NMe-Phe4, Gly-ol5]-enkephalin (DAMGO) on the direct activation of GABA receptors by photolysis of CNB-caged GABA in all layers of CA1. MOR activation did not affect hyperpolarizations due to direct GABA receptor activation in any layer of CA1, but MOR activation did suppress GABAergic inhibitory postsynaptic potentials suggesting that MOR activation acts by presynaptically inhibiting interneuron function. We next examined whether MOR activation was equivalently effective in all anatomical layers of CA1. To do this, cuts were made between anatomical layers of CA1 and isolated layers were stimulated electrically (five pulses at 20 Hz) to produce excitatory postsynaptic potentials (EPSPs). Under these conditions, MOR activation significantly increased EPSP areas in stratum radiatum (SR), stratum pyramidale (SP) and stratum oriens (SO) relative to stratum lacunosum-moleculare (SLM). When compared with the effect of GABA(A) and GABA(B) receptor antagonists on EPSP areas, the effect of DAMGO was proportionately larger in SR, SP and SO than in SLM. We conclude that MOR activation is more effective at directly modulating activity in SR, SP and SO, and the smaller effect in SLM is likely due to a smaller MOR inhibition of GABA release in SLM.
Collapse
MESH Headings
- Analgesics, Opioid/pharmacology
- Animals
- Coloring Agents
- Data Interpretation, Statistical
- Electrophysiology
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-
- Excitatory Postsynaptic Potentials/physiology
- Hippocampus/physiology
- Image Processing, Computer-Assisted
- Male
- Photolysis/drug effects
- Rats
- Rats, Sprague-Dawley
- Receptors, GABA/drug effects
- Receptors, GABA/physiology
- Receptors, Opioid, mu/agonists
- Receptors, Presynaptic/physiology
- Sarcoplasmic Reticulum/drug effects
- Sarcoplasmic Reticulum/physiology
Collapse
Affiliation(s)
- A R McQuiston
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA.
| |
Collapse
|
10
|
Mäenpää M, Penttilä J, Laitio T, Kaisti K, Kuusela T, Hinkka S, Scheinin H. Dynamics of neuronal assemblies are modulated by anaesthetics but not analgesics. Eur J Anaesthesiol 2007; 24:626-33. [PMID: 17376251 DOI: 10.1017/s026502150700004x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND AND OBJECTIVE We compared heart rate dynamics during surgical levels of propofol and sevoflurane anaesthesia in a highly standardized setting. METHODS We recorded electrocardiography from 24 anaesthetized healthy male subjects. In the first parallel part of the study, the subjects were anaesthetized either with sevoflurane (n = 8) or propofol (n = 8) targeted to match 1.0, 1.5 and 2.0 minimal alveolar concentration/effective concentration 50. In the second part, a separate group (n = 8) underwent four different anaesthetic regimens targeted to bispectral index 40: sevoflurane alone, sevoflurane + 70% nitrous oxide, propofol alone and propofol + 70% nitrous oxide. The electrocardiography data were analysed using conventional time and frequency domain methods, and the approximate entropy method, which estimates the complexity of the data. RESULTS The induction of anaesthesia was followed by an overall reduction of heart rate variability, evident in all frequency bands in the spectral analysis, and also in the time domain measures. Approximate entropy decreased at 1 effective concentration 50 with propofol and at 2 minimal alveolar concentration with sevoflurane. In the second part of the study, the time domain variables and high-frequency spectral power were all similarly reduced by sevoflurane and propofol anaesthesia, with and without nitrous oxide. Approximate entropy tended to decrease during propofol anaesthesia. CONCLUSIONS Hypnotic levels of sevoflurane and propofol anaesthesia suppressed the heart rate variability measured using conventional analysis methods. Deeper surgical levels of anaesthesia also reduce the complexity of heart rate variability.
Collapse
Affiliation(s)
- M Mäenpää
- Turku University Hospital, Department of Surgery, Turku, Finland.
| | | | | | | | | | | | | |
Collapse
|
11
|
McQuiston AR. Effects of mu-opioid receptor modulation on GABAB receptor synaptic function in hippocampal CA1. J Neurophysiol 2007; 97:2301-11. [PMID: 17215502 DOI: 10.1152/jn.01179.2006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Activation of mu-opioid receptors (MORs) alters information coding, synaptic plasticity, and spatial memory in hippocampal CA1. In CA1, MORs act by inhibiting GABA release onto both GABA(A) and GABA(B) receptors exclusively. MOR activation can facilitate excitatory inputs in CA1 dendritic layers by inhibiting synaptic activation of GABA(A) receptors. In this study, we use voltage-sensitive dye imaging to show that MOR activation by the MOR agonist DAMGO suppressed GABA(B) inhibitory postsynaptic potentials in all layers of CA1. When stimulating excitatory input in stratum oriens (SO), stratum radiatum (SR), or stratum lacunosum-moleculare (SLM) with five pulses at 20 Hz in the presence of bicuculline (50 microM), DAMGO (1 muM) was most effective at increasing the amplitude of the last excitatory event. This effect was reversed by the MOR antagonist CTOP (1 muM) and occluded by the GABA(B) receptor agonist CGP 55845 (10 microM). DAMGO was less effective at increasing the amplitude of later excitatory events compared with the effect of CGP 55845. DAMGO was relatively ineffective at increasing the amplitude of excitatory inputs in SLM but had significantly greater effects on excitatory events as they propagated to stratum pyramidale (SP). When stimulating in SR, DAMGO was least effective at increasing excitatory amplitudes in SLM and most effective in SP and SO. Finally, DAMGO was equally effective at increasing excitatory activity amplitudes in all layers of CA1 after stimulating in SO. Therefore MOR suppresses GABA(B) synaptic hyperpolarizations in all layers of CA1 and most effectively facilitates excitatory activity in CA1 output layers.
Collapse
Affiliation(s)
- A Rory McQuiston
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Center, Richmond, Virginia 23298, USA.
| |
Collapse
|
12
|
Sanabria ERG, D'Andrea Vieira I, da Silveira Pereira MF, Faria LC, da Silva AC, Cavalheiro EA, da Silva Fernandes MJ. Pro-epileptic effect of alfentanil in rats subjected to pilocarpine-induced chronic epilepsy. Brain Res Bull 2006; 69:535-45. [PMID: 16647582 DOI: 10.1016/j.brainresbull.2006.02.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Revised: 02/24/2006] [Accepted: 02/26/2006] [Indexed: 11/20/2022]
Abstract
Pharmacological induction of epileptiform activity is a complementary method to study the epileptogenic area in drug-resistant epileptic patients. Among the different activation methods, fentanyl derivatives (e.g. alfentanil) provide one of the most efficient tools in triggering epileptiform abnormalities in surgical candidates. In this study, we tested the pro-epileptic effect of different concentrations of alfentanil in hippocampal slices obtained from control and pilocarpine-treated chronic epileptic rats. The pro-convulsant action of alfentanil was also studied in control and pilocarpine-treated epileptic rats implanted with subdural and hippocampal electrodes for electroencephalographic recordings. In 90% of slices from control animals, application of alfentanil (0.1-5 microM) induced a significant enhancement in amplitude and number of population spikes recorded in the hippocampal CA1 region. In contrast, alfentanil produced a significant reduction in the amplitude of population spikes in slices from pilocarpine-treated epileptic rats. These changes were accompanied by a significant increase in the number of population spikes in the form of epileptiform multispike responses of epileptic slices. Naloxone (20 microM) antagonized the effect of alfentanil in both control and epileptic slices, reducing the number of population spikes in slices from epileptic rats. In control rats, alfentanil induced epileptiform abnormalities in the hippocampal and cortical electroencephalographic recordings but only at concentrations higher than 200 microg/kg (e.g. 350 microg/kg). Lower doses of alfentanil (25 microg/kg) elicited epileptiform abnormalities only in chronic epileptic rats. The potent action of a minimal dose of alfentanil in inducing epileptiform activity suggests an enhancement of the pro-convulsant action of mu-receptor opioids in chronic temporal lobe epilepsy.
Collapse
|
13
|
McQuiston AR, Saggau P. Mu-opioid receptors facilitate the propagation of excitatory activity in rat hippocampal area CA1 by disinhibition of all anatomical layers. J Neurophysiol 2003; 90:1936-48. [PMID: 12750411 DOI: 10.1152/jn.01150.2002] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hippocampal mu-opioid receptors (MORs) have been implicated in memory formation associated with opiate drug abuse. MORs modulate hippocampal synaptic plasticity acutely, when chronically activated, and during drug withdrawal. At the network level, MORs increase excitability in area CA1 by disinhibiting pyramidal cells. The precise inhibitory interneuron subtypes affected by MOR activation are unknown; however, not all subtypes are inhibited, and specific interneuron subtypes have been shown to preferentially express MORs. Here we investigate, using voltage-sensitive dye imaging in brain slices, the effect of MOR activation on the patterns of inhibition and on the propagation of excitatory activity in rat hippocampal CA1. MOR activation augments excitatory activity evoked by stimulating inputs in stratum oriens [i.e., Schaffer collateral and commissural pathway (SCC) and antidromic], stratum radiatum (i.e., SCC), and stratum lacunosum-moleculare (SLM; i.e., perforant path and thalamus). The augmented excitatory activity is further facilitated as it propagates through the CA1 network. This was observed as a proportionately larger increase in amplitudes of excitatory activity at sites distal from where the activity was evoked. This facilitation was observed for excitatory activity propagating from all three stimulation sites. The augmentation and facilitation were prevented by GABAA receptor antagonists (bicuculline, 30 microM), but not by GABAB receptor antagonists (CGP 55845, 10 microM). Furthermore, MOR activation inhibited IPSPs in all layers of area CA1. These findings suggest that MOR-induced suppression of GABA release onto GABAA receptors augments all inputs to CA1 pyramidal cells and facilitates the propagation of excitatory activity through the network of area CA1.
Collapse
Affiliation(s)
- A Rory McQuiston
- Division of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
14
|
Salmanzadeh F, Fathollahi Y, Semnanian S, Shafizadeh M. Long-term potentiation as an electrophysiological assay for morphine dependence and withdrawal in rats: an in vitro study. J Neurosci Methods 2003; 124:189-96. [PMID: 12706849 DOI: 10.1016/s0165-0270(03)00016-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Using a long-term potentiation (LTP) method, we attempted to establish an electrophysiological assay for morphine dependence and withdrawal in rats in vitro. The field excitatory postsynaptic potential (fEPSP) and orthodromic population spikes (OPS) were recorded from stratums radiatum and pyramidale, respectively, of area CA1 following stimulation of Schaffer collaterals in control and morphine-dependent slices. To induce LTP, a 100 Hz primed-burst stimulation protocol was used. Although morphine exposure had excitatory effects on control slices, namely, an increase in the amplitude of primary population spikes (PSs) and appearance of extra PSs, slices taken from dependent rats demonstrated tolerance to morphine. LTP of the fEPSP was not changed in slices from dependent animals although dependent slices did show an enhanced OPS LTP compared to control ones, which was attenuated by morphine exposure. In the presence of morphine, naloxone caused a withdrawal phenomenon; apparent as a robust enhanced OPS LTP in dependent slices. So we propose morphine-naloxone withdrawn slices as a suitable in vitro withdrawal-like model. Such an in vitro preparation could provide a convenient practical experimental tool for examination of the probable molecular and cellular mechanisms involved in withdrawal states.
Collapse
Affiliation(s)
- F Salmanzadeh
- Department of Physiology, School of Medical Sciences, Tarbiat Modarres University, P.O. Box 14115-4838, Tehran, Iran
| | | | | | | |
Collapse
|
15
|
Salmanzadeh F, Fathollahi Y, Semnanian S, Shafizadeh M, Kazemnejad A. Dependence on morphine leads to a prominent sharing among the different mechanisms of long-term potentiation in the CA1 region of rat hippocampus. Brain Res 2003; 963:93-100. [PMID: 12560114 DOI: 10.1016/s0006-8993(02)03947-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Here, we examined chronic exposure to morphine to determine if this treatment shifted LTP mechanism in the CA1 field in vitro. Long-term potentiation (LTP) of population spikes induced by a 200 Hz theta pattern primed bursts (PBs) stimulation. Verapamil was used to isolate NMDA-dependent LTP. In control slices, a 200 Hz tetanus induced a compound potentiation, consisted of two pharmacologically separable components: nmdaLTP and vdccLTP. LTP in slices taken from morphine dependent rats was completely abolished by either APV or verapamil. These data suggest that morphine dependence in rats does not interfere with the induction and maintenance of hippocampal CA1 LTP. While in control rats both NMDA and voltage-dependent Ca(2+) channel (VDCC) antagonists must have been used concurrently to prevent the induction of LTP, in morphine-dependent rats, each of the antagonist could prevent the LTP induction suggesting a tighter coupling between these two calcium influx regulating processes.
Collapse
Affiliation(s)
- Fereshteh Salmanzadeh
- Department of Physiology, School of Medical Sciences, Tarbiat Modarres University, P.O. Box 14155-4838, Tehran, Iran
| | | | | | | | | |
Collapse
|
16
|
Gusev PA, Alkon DL. Intracellular correlates of spatial memory acquisition in hippocampal slices: long-term disinhibition of CA1 pyramidal cells. J Neurophysiol 2001; 86:881-99. [PMID: 11495958 DOI: 10.1152/jn.2001.86.2.881] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Despite many advances in our understanding of synaptic models of memory such as long-term potentiation and depression, cellular mechanisms that correlate with and may underlie behavioral learning and memory have not yet been conclusively determined. We used multiple intracellular recordings to study learning-specific modifications of intrinsic membrane and synaptic responses of the CA1 pyramidal cells (PCs) in slices of the rat dorsal hippocampus prepared at different stages of the Morris water maze (WM) task acquisition. Schaffer collateral stimulation evoked complex postsynaptic potentials (PSP) consisting of the excitatory and inhibitory postsynaptic potentials (EPSP and IPSP, respectively). After rats had learned the WM task, our major learning-specific findings included reduction of the mean peak amplitude of the IPSPs, delays in the mean peak latencies of the EPSPs and IPSPs, and correlation of the depolarizing-shifted IPSP reversal potentials and reduced IPSP-evoked membrane conductance. In addition, detailed isochronal analyses revealed that amplitudes of both early and late IPSP phases were reduced in a subset of the CA1 PCs after WM training was completed. These reduced IPSPs were significantly correlated with decreased IPSP conductance and with depolarizing-shifted IPSP reversal potentials. Input-output relations and initial rising slopes of the EPSP phase did not indicate learning-related facilitation as compared with the swim and naïve controls. Another subset of WM-trained CA1 PCs had enhanced amplitudes of action potentials but no learning-specific synaptic changes. There were no WM training-specific modifications of other intrinsic membrane properties. These data suggest that long-term disinhibition in a subset of CA1 PCs may facilitate cell discharges that represent and record the spatial location of a hidden platform in a Morris WM.
Collapse
Affiliation(s)
- P A Gusev
- Laboratory of Adaptive Systems, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
17
|
Wang S, Wojtowicz JM. Effect of GABA(B) receptors on synaptic interactions in dentate gyrus granule neurons of the rat. Neuroscience 1997; 79:117-27. [PMID: 9178869 DOI: 10.1016/s0306-4522(96)00638-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Dendritic arborization permits convergence of synaptic inputs and their integration in single neurons. The granule neuron in the dentate gyrus represents a relatively simple example where anatomically and functionally distinct medial and lateral perforant pathways terminate on different regions of the dendritic tree. High-frequency stimulation of either pathway alone results in the induction of long-term potentiation. However, whether the potentiated synapses in different parts of the dendrites interact is not known. In this study we have compared long-term potentiation and synaptic interactions in the lateral and medial perforant pathways in the "disinhibited" hippocampal slice preparation in the presence of the GABA(A) receptor blocker bicuculline. The data show that the magnitude of long-term potentiation induced by tetanic stimulation was similar in both pathways, but differences between the two pathways were revealed after two or more tetanizations. A significantly smaller capacity for further long-term potentiation in the lateral, as compared to the medial, perforant pathway was found and can be attributed to stronger postsynaptic GABA(B) inhibition in distal dendrites of granule neurons. Blockade of GABA(B) inhibition with CGP36742 (100 microM) unmasked additional long-term potentiation in the lateral pathway. Presynaptically, GABA(B) receptors produced a short-lasting heterosynaptic depression in the medial pathway, which was reduced by CGP36742. Coincident activation of the two pathways boosted long-term potentiation only in the medial pathway. We propose that the interactions between the two pathways are orchestrated to maximize associative long-term potentiation in the medial pathway; this may be important for types of learning attributed to the hippocampus.
Collapse
Affiliation(s)
- S Wang
- Department of Physiology, University of Toronto, Ontario, Canada
| | | |
Collapse
|
18
|
Grasing K, Bills D, Ghosh S, Schlussman SD, Patel AH, Woodward JJ. Opiate modulation of striatal dopamine and hippocampal norepinephrine release following morphine withdrawal. Neurochem Res 1997; 22:239-48. [PMID: 9051656 DOI: 10.1023/a:1022474318541] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
When opiates are abruptly withdrawn after chronic treatment, increases in hippocampal noradrenergic function are observed which are accompanied by decreases in striatal dopamine release. The latter effects have to shown to persist for several weeks following the onset of opiate withdrawal. We examined the long-term effects of opiate withdrawal on 4-aminopyridine and potassium stimulated release of striatal dopamine and hippocampal norepinephrine. Tissue samples were obtained either from rats that had been exposed to opiate withdrawal following a seven day morphine infusion or sham treated control subjects. At 48 hours after the onset of withdrawal (cessation of morphine infusions), slices were loaded with [3H] neurotransmitter, washed extensively, and exposed to different drug treatments. 4-aminopyridine induced concentration related increases in striatal dopamine release, which was 36% calcium independent. Similar values for fractional release of striatal dopamine were obtained in morphine withdrawn and control subjects, for both potassium and 4-aminopyridine induced release. In addition, thresholds for 4-aminopyridine or potassium induced release of striatal dopamine did not differ between control and morphine withdrawn subjects. Treatment with 1.0 microM morphine sulfate potentiated potassium evoked release of norepinephrine to an equal extent in both morphine withdrawn and sham treated hippocampal tissue. Exposure to a threshold concentration of potassium (8.0 mM), stimulated increased release of hippocampal norepinephrine in a significantly greater fraction of tissue samples obtained from morphine withdrawn animals. Although these results do not support changes in striatal dopamine release following opiate withdrawal, opiate mechanisms appear to be important determinants of in vitro hippocampal norepinephrine release.
Collapse
Affiliation(s)
- K Grasing
- Department of Medicine, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, New Brunswick 08903, USA
| | | | | | | | | | | |
Collapse
|
19
|
Skinner K, Fields HL, Basbaum AI, Mason P. GABA-immunoreactive boutons contact identified OFF and ON cells in the nucleus raphe magnus. J Comp Neurol 1997. [DOI: 10.1002/(sici)1096-9861(19970210)378:2<196::aid-cne4>3.0.co;2-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
20
|
Changes in hippocampal circuitry after pilocarpine-induced seizures as revealed by opioid receptor distribution and activation. J Neurosci 1997. [PMID: 8987772 DOI: 10.1523/jneurosci.17-01-00477.1997] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The pilocarpine model of temporal lobe epilepsy was used to study the time-dependent changes in dentate gyrus circuitry after seizures. Seizures caused a decrease in mu- and delta-opioid receptor immunoreactive (MOR-IR and DOR-IR, respectively) neurons in the hilus and MOR-IR neurons in the granule cell layer. Additionally, diffuse DOR-IR, MOR-IR, and GABA immunoreactivities (GABA-IR) were increased in the inner molecular layer. Using the in vitro hippocampal slice preparation to study the physiological consequences of the anatomical changes, we found that the disinhibitory effects of the mu-opioid receptor agonist [D-Ala2, MePhe4,Gly-(ol)5]-enkephalin (DAMGO) and the GABAA receptor antagonist bicuculline were greatly depressed 5-13 d after pilocarpine injection but returned to control levels within 6 weeks. The amplitudes of monosynaptic evoked IPSCs and the effects of DAMGO on this parameter were also slightly decreased 5-13 d after pilocarpine injection but significantly increased at 6 weeks. DAMGO significantly decreased the mean amplitude of spontaneous IPSCs (sIPSCs) at 6 weeks after pilocarpine injection but not in controls. The delta-opioid receptor agonist [D-Pen2,5]-enkephalin (DPDPE) principally inhibited excitatory transmission in saline-treated animals without affecting either sIPSCs or evoked IPSCs. The DPDPE-induced inhibition of excitatory transmission became more pronounced at 6 weeks after pilocarpine injection. These results illustrate the anatomical reorganization and functional changes in dentate gyrus circuitry evident in an animal model of temporal lobe epilepsy and provide evidence of compensatory changes after trauma to the hippocampal formation.
Collapse
|
21
|
Simmons ML, Chavkin C. Endogenous opioid regulation of hippocampal function. INTERNATIONAL REVIEW OF NEUROBIOLOGY 1996; 39:145-96. [PMID: 8894847 DOI: 10.1016/s0074-7742(08)60666-2] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Endogenous opioid peptides modulate neural transmission in the hippocampus. Procnkephalin-derived peptides have been demonstrated to act at mu and delta opioid receptors to inhibit GABA release from inhibitory interneurons, resulting in increased excitability of hippocampal pyramidal cells and dentate gyrus granule cells. Prodynorphin-derived peptides primarily act at presynaptic kappa opioid receptors to inhibit excitatory amino acid release from perforant path and mossy fiber terminals. Opioid receptors reduce membrane excitability by modulating ion conductances, and in this way they may decrease voltage-dependent calcium influx and transmitter release. Synaptic plasticity in the hippocampus also is modulated by endogenous opioids. Enkephalins facilitate long-term potentiation, whereas dynorphins inhibit the induction of this type of neuroplasticity. Further, opioids may play important roles in hippocampal epilepsy. Recurrent seizures induce changes in the expression of opioid peptides and receptors. Also, enkephalins have proconvulsant effects in the epileptic hippocampus, whereas dynorphins may function as endogenous anticonvulsants.
Collapse
Affiliation(s)
- M L Simmons
- Department of Pharmacology, University of Washington, Seattle 98195, USA
| | | |
Collapse
|
22
|
Lupica CR, Proctor WR, Dunwiddie TV. Dissociation of μ and δ opioid receptor-mediated reductions in evoked and spontaneous synaptic inhibition in the rat hippocampus in vitro. Brain Res 1992; 593:226-38. [PMID: 1360320 DOI: 10.1016/0006-8993(92)91312-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Modulation of gamma-aminobutyric acid (GABA)-mediated inhibition, and glutamate-mediated excitation by highly selective mu and delta opioid agonists was studied using intracellular recordings of CA1 pyramidal neuron synaptic responses in superfused hippocampal slices. Equimolar concentrations of the selective mu agonist, [Tyr-(D-Ala)-Gly-(N-Me-Phe)-Gly-ol]-enkephalin (DAGO), or the delta selective agonist, [D-Pen2,D-Pen5]-enkephalin (DPDPE), reversibly increased the amplitudes of excitatory post-synaptic potentials (EPSPs), evoked by Schaffer collateral/commissural stimulation, without altering the input resistance or resting membrane potential of these CA1 pyramidal neurons. The increased EPSP amplitudes resulting from superfusion with the enkephalin analogs were qualitatively similar to those caused by the GABAA receptor antagonist, bicuculline methiodide (BMI). Specific stimulation/recording protocols and micro-lesions of the slices were used to evoke relatively pure forms of recurrent and feed-forward GABA-mediated inhibitory post-synaptic potentials (IPSPs). The mu opioid agonist DAGO reduced both recurrent and feed-forward IPSPs, while the delta agonist DPDPE had no effect upon these responses. To test the hypothesis that the enhancement of pyramidal neuron EPSPs by delta (and mu) opioids was due to the reduction of an inhibitory potential that was coincident with the EPSP, DPDPE or the mu agonist, DAGO, were applied while recording monosynaptic IPSPs following the elimination of EPSPs by the glutamate receptor antagonists, D,L-2-amino-5-phosphonovalerate (APV) and 6,7-dinitroquinoxaline-2,3-dione (DNQX). The mu agonist, DAGO, reversibly reduced these pharmacologically isolated IPSPs, while the delta agonist, DPDPE, had no effect upon these responses. Despite the fact that the delta agonist, DPDPE, had no effect on recurrent, feed-forward or monosynaptic evoked IPSPs, this enkephalin did reversibly reduce the frequency of spontaneously occurring IPSPs, measured using whole-cell recordings with pipettes containing 65 mM KCl. The mu agonist, DAGO, and the GABAA antagonist, BMI, similarly reduced spontaneous IPSP rates. We conclude from these data that mu and delta opioid receptor activation increases EPSPs via the reduction of a form of GABAergic inhibition that is difficult to characterize, and which may be distinct from conventional feed-forward and recurrent inhibition. Furthermore, delta opioids seem to reduce this form of GABAergic inhibition selectively, while mu opioids reduced this inhibition, and conventional feed-forward and recurrent IPSPs as well.
Collapse
MESH Headings
- 2-Amino-5-phosphonovalerate/pharmacology
- Analgesics/pharmacology
- Animals
- Axons/drug effects
- Axons/physiology
- Baclofen/analogs & derivatives
- Baclofen/pharmacology
- Bicuculline/analogs & derivatives
- Bicuculline/pharmacology
- Electric Stimulation
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-
- Enkephalin, D-Penicillamine (2,5)-
- Enkephalins/pharmacology
- Evoked Potentials/drug effects
- Glutamates/pharmacology
- Glutamic Acid
- Hippocampus/physiology
- In Vitro Techniques
- Male
- Neurons/drug effects
- Neurons/physiology
- Pyramidal Tracts/physiology
- Quinoxalines/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid, delta/drug effects
- Receptors, Opioid, delta/physiology
- Receptors, Opioid, mu/drug effects
- Receptors, Opioid, mu/physiology
- Synapses/drug effects
- Synapses/physiology
- gamma-Aminobutyric Acid/pharmacology
Collapse
Affiliation(s)
- C R Lupica
- Department of Pharmacology, University of Colorado Health Sciences Center, Denver 80262
| | | | | |
Collapse
|
23
|
Wimpey TL, Chavkin C. 8-Bromo-cAMP blocks opioid activation of a voltage-gated potassium current in isolated hippocampal neurons. Neurosci Lett 1992; 137:137-40. [PMID: 1320750 DOI: 10.1016/0304-3940(92)90316-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We have previously shown that mu-selective opioid agonists activate both an inward rectifying and a voltage-gated potassium conductance in acutely dissociated non-pyramidal neurons from rat hippocampus. We now report that the opioid-activated voltage-gated potassium conductance was blocked by the membrane permeable cAMP analogue 8-bromo-cAMP. In contrast, 8-bromo-cGMP failed to inhibit opioid activation of the voltage-gated potassium current. These results suggest that the opioid-activated potassium channel is regulated by cAMP-dependent phosphorylation.
Collapse
Affiliation(s)
- T L Wimpey
- Department of Pharmacology, University of Washington School of Medicine, Seattle 98195
| | | |
Collapse
|
24
|
Benoliel JJ, Mauborgne A, Bourgoin S, Legrand JC, Hamon M, Cesselin F. Opioid control of the in vitro release of cholecystokinin-like material from the rat substantia nigra. J Neurochem 1992; 58:916-22. [PMID: 1310726 DOI: 10.1111/j.1471-4159.1992.tb09344.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Possible interactions between Met-enkephalin and cholecystokinin (CCK)-containing neurons in the rat substantia nigra were investigated by looking for the effects of various opioid receptor ligands and inhibitors of enkephalin-degrading enzymes on the K(+)-evoked overflow of CCK-like material (CCKLM) from substantia nigra slices. The delta-opioid agonists D-Pen2, D-Pen5-enkephalin (50 microM) and Tyr-D-Thr-Gly-Phe-Leu-Thr (DTLET; 3 microM) enhanced, whereas the mu-opioid agonists Tyr-D-Ala-Gly-MePhe-Gly-ol (DAGO; 10 microM) and MePhe3, D-Pro4-morphiceptin (PL 017; 10 microM) decreased, the K(+)-evoked release of CCKLM. By contrast, the kappa-opioid agonist U-50488 H (5 microM) was inactive. The stimulatory effect of DTLET could be prevented by the delta antagonist ICI-154129 (50 microM), but not by the mu antagonist naloxone (1 microM). Conversely, the latter drug, but not ICI-154129, prevented the inhibitory effect of DAGO and PL 017. A significant increase in CCKLM overflow was observed upon tissue superfusion with the peptidase inhibitors kelatorphan or bestatin plus thiorphan. This effect probably resulted from the stimulation of delta-opioid receptors by endogenous enkephalins protected from degradation, because it could be prevented by ICI-154129 (50 microM). Furthermore the peptidase inhibitors did not enhance CCKLM release further when delta-opioid receptors were stimulated directly by DTLET (3 microM). These data indicate that opioids acting on delta and mu receptors may exert an opposite influence, i.e., excitatory and inhibitory, respectively, on CCK-containing neurons in the rat substantia nigra.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- J J Benoliel
- INSERM U288, Neurobiologie Cellulaire et Fonctionnelle, Faculté de Médecine Pitié-Salpêtrière, Paris, France
| | | | | | | | | | | |
Collapse
|
25
|
Xie XH, Tietz EI. Chronic benzodiazepine treatment of rats induces reduction of paired-pulse inhibition in CA1 region of in vitro hippocampus. Brain Res 1991; 561:69-76. [PMID: 1797351 DOI: 10.1016/0006-8993(91)90750-p] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Paired-pulse inhibition was studied extracellularly in in vitro hippocampal slices from rats sacrificed 48 h or 7 days after 1 week flurazepam (FZP) treatment. Population spikes and field excitatory postsynaptic potentials (EPSPs) were recorded with NaCl-containing glass micropipettes in the stratum pyramidale and stratum radiatum, respectively, of the CA1 region. Conditioning pulses were delivered by stimulating Shaffer collaterals (orthodromic) or the alveus (antidromic). Orthodromic test pulses were delivered with interpulse intervals of 10-200 ms. There was a significant reduction in paired-pulse inhibition in slices from treated vs control rats in both the orthodromic-orthodromic and antidromic-orthodromic paradigms. Reduced inhibition was evident 48 h, but not 7 days, after the end of FZP treatment. Furthermore, there was a significant prolongation of the half decay time of the field EPSP, without a significant change in the initial slope or maximum amplitude. The results may suggest an impairment of endogenous gamma-aminobutyric acid function in the hippocampus after chronic benzodiazepine (BZ) treatment and may provide a basis for a mechanism of BZ tolerance.
Collapse
Affiliation(s)
- X H Xie
- Department of Pharmacology, Medical College of Ohio, Toledo 43699
| | | |
Collapse
|
26
|
Wimpey TL, Caudle RM, Chavkin C. Chronic morphine exposure blocks opioid effects on both the early and late inhibitory postsynaptic potentials in hippocampal CA1 pyramidal cells. Neurosci Lett 1990; 110:349-55. [PMID: 2158024 DOI: 10.1016/0304-3940(90)90872-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The mu-opioid agonist, [N-MePhe3,D-Pro4]morphiceptin (PL017), significantly decreased the conductance changes measured during both the early and late inhibitory postsynaptic potentials (IPSP) in CA1 pyramidal cells. Although the conductance change during the early IPSP was much larger than that during the late IPSP, the relative decrease in conductance caused by 1 microM PL017 was similar for both. Chronic morphine treatment of rats prior to hippocampal slice preparation resulted in a loss of PL017 (1 microM) effects on both the early and late IPSPs. These results suggest that opioids have an equal ability to alter both early and late IPSPs in the CA1, that these effects are equally sensitive to chronic morphine, and that these measurements are a sensitive means of determining opioid tolerance in the hippocampus.
Collapse
Affiliation(s)
- T L Wimpey
- Department of Pharmacology, University of Washington School of Medicine, Seattle 98195
| | | | | |
Collapse
|
27
|
Wagner JJ, Caudle RM, Neumaier JF, Chavkin C. Stimulation of endogenous opioid release displaces mu receptor binding in rat hippocampus. Neuroscience 1990; 37:45-53. [PMID: 1978741 DOI: 10.1016/0306-4522(90)90190-f] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Physiological release of endogenous opioids in the rat hippocampus was detected by an in vitro radioligand displacement assay using [3H][D-Ala2,N-methyl-Phe4,glyol5]enkephalin ([3H]DAGO), a mu selective opioid agonist. In this assay, radioligand binding to opioid receptors in the in vitro hippocampal slice was reduced by competition with endogenous opioids released following tissue depolarization. Veratridine-induced opioid release caused displacement of [3H]DAGO that could be blocked by either tetrodotoxin addition or calcium removal from the incubation buffer. Maximal displacement of [3H]DAGO also required the presence of peptidase inhibitors in the incubation buffer. None of the buffer composition changes directly affected [3H]DAGO binding to rat brain membranes. Calcium-dependent displacement of [3H]DAGO binding from mu receptor sites elicited by focal electrical stimulation depended on the intensity and frequency of stimulation and positioning of the electrode in the slice. Maximal displacement of [3H]DAGO binding was observed following high intensity (150-300 microA), high frequency (10-50 Hz) stimulation of the perforant path, a major afferent fiber system to the hippocampus previously shown to contain proenkephalin-derived opioids. Low frequency stimulation (0.1-1 Hz) was ineffective. Stimulation of the mossy fibers (containing both dynorphins and enkephalins) also significantly reduced mu receptor binding, but to a lesser extent. Electrical stimulation of the hippocampal slice at sites not containing opioid peptides did not cause mu receptor displacement. These results demonstrate that under physiological conditions, the release of endogenous opioids from the major opioid containing pathways can be detected in a single hippocampal slice following high frequency stimulation.
Collapse
Affiliation(s)
- J J Wagner
- Department of Pharmacology, University of Washington School of Medicine, Seattle 98195
| | | | | | | |
Collapse
|