1
|
Zohar N, Maguire R, Khalilieh S, Jain A, Bosykh D, Bowne WB, Lavu H, Yeo CJ, Nevler A. Gene Expression Profiling of Pancreatic Ductal Adenocarcinoma Cells in Hypercapnia Identifies SIAH3 as a Novel Prognostic Biomarker. Int J Mol Sci 2025; 26:2848. [PMID: 40243415 PMCID: PMC11988995 DOI: 10.3390/ijms26072848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/23/2025] [Accepted: 02/25/2025] [Indexed: 04/18/2025] Open
Abstract
Hypercapnia is a key feature of the respiratory microenvironment in many pathologic conditions. It occurs both as a regional and as a systemic process, and it is associated with multiple metabolic changes such as mitochondrial dysfunction, decreased ATP production, and metabolic shift from glycolytic energy production to fatty acid metabolism. In the cancer tumor microenvironment, hypercapnia has been linked at times to enhanced cell migration, invasion, and chemoresistance. Our previous work has shown that hypercapnia-associated gene signatures can be used as prognostic biomarkers. However, unlike the hypoxia-inducible factor pathway, there are no validated targets to quantify hypercapnia. In this study, we investigated the phenotypic and transcriptomic changes occurring in pancreatic ductal adenocarcinoma (PDAC) due to chronic exposure to hypercapnic atmospheres. We then identified and validated SIAH3 as a hypercapnia-affected target and explored its clinical relevance as a prognostic factor in PDAC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Avinoam Nevler
- Jefferson Pancreas, Biliary and Related Cancer Center, Department of Surgery, Thomas Jefferson University, 1015 Walnut Street, Philadelphia, PA 19107, USA; (N.Z.); (R.M.); (S.K.); (A.J.); (D.B.); (W.B.B.); (H.L.); (C.J.Y.)
| |
Collapse
|
2
|
Peng Y, Nanduri J, Wang N, Khan SA, Pamenter M, Prabhakar NR. Carotid body responses to O 2 and CO 2 in hypoxia-tolerant naked mole rats. Acta Physiol (Oxf) 2022; 236:e13851. [PMID: 35757963 PMCID: PMC9787741 DOI: 10.1111/apha.13851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 02/02/2023]
Abstract
AIM Naked mole rats (NMRs) exhibit blunted hypoxic (HVR) and hypercapnic ventilatory responses (HCVR). The mechanism(s) underlying these responses are largely unknown. We hypothesized that attenuated carotid body (CB) sensitivity to hypoxia and hypercapnia contributes to the near absence of ventilatory responses to hypoxia and CO2 in NMRs. METHODS We measured ex vivo CB sensory nerve activity, phrenic nerve activity (an estimation of ventilation), and blood gases in urethane-anesthetized NMRs and C57BL/6 mice breathing normoxic, hypoxic, or hypercapnic gases. CB morphology, carbon monoxide, and H2 S levels were also determined. RESULTS Relative to mice, NMRs had blunted CB and HVR. Morphologically, NMRs have larger CBs, which contained more glomus cells than in mice. Furthermore, NMR glomus cells form a dispersed pattern compared to a clustered pattern in mice. Hemeoxygenase (HO)-1 mRNA was elevated in NMR CBs, and an HO inhibitor increased CB sensitivity to hypoxia in NMRs. This increase was blocked by an H2 S synthesis inhibitor, suggesting that interrupted gas messenger signaling contributes to the blunted CB responses and HVR in NMRs. Regarding hypercapnia, CB and ventilatory responses to CO2 in NMRs were larger than in mice. Carbonic anhydrase (CA)-2 mRNA is elevated in NMR CBs, and a CA inhibitor blocked the augmented CB response to CO2 in NMRs, indicating CA activity regulates augmented CB response to CO2 . CONCLUSIONS Consistent with our hypothesis, impaired CB responses to hypoxia contribute in part to the blunted HVR in NMRs. Conversely, the HCVR and CB are more sensitive to CO2 in NMRs.
Collapse
Affiliation(s)
- Ying‐Jie Peng
- Institute for Integrative Physiology and Center for Systems Biology of O2 SensingUniversity of ChicagoChicagoIllinoisUSA
| | - Jayasri Nanduri
- Institute for Integrative Physiology and Center for Systems Biology of O2 SensingUniversity of ChicagoChicagoIllinoisUSA
| | - Ning Wang
- Institute for Integrative Physiology and Center for Systems Biology of O2 SensingUniversity of ChicagoChicagoIllinoisUSA
| | - Shakil A. Khan
- Institute for Integrative Physiology and Center for Systems Biology of O2 SensingUniversity of ChicagoChicagoIllinoisUSA
| | - Matthew E. Pamenter
- Department of BiologyUniversity of OttawaOttawaOntarioCanada,University of Ottawa Brain and Mind Research InstituteOttawaOntarioCanada
| | - Nanduri R. Prabhakar
- Institute for Integrative Physiology and Center for Systems Biology of O2 SensingUniversity of ChicagoChicagoIllinoisUSA
| |
Collapse
|
3
|
Desaturation and hypotension in a dog undergoing balloon valvuloplasty for pulmonic stenosis. VETERINARY RECORD CASE REPORTS 2020. [DOI: 10.1136/vetreccr-2019-001050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
4
|
Richter DW, Mironov SL, Büsselberg D, Lalley PM, Bischoff AM, Wilken B. Respiratory Rhythm Generation: Plasticity of a Neuronal Network. Neuroscientist 2016. [DOI: 10.1177/107385840000600309] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The exchange of gases between the external environment and the organism is controlled by a neural network of medullary neurons that produces rhythmic activity that ultimately leads to periodic contractions of thoracic, abdominal, and diaphragm muscles. This occurs in three neural phases: inspiration, postinspiration, and expiration. The present article deals with the mechanisms underlying respiratory rhythm generation and the processes of dynamic adjustment of respiratory activity by neuromodulation as it occurs during normoxia and hypoxia. The respiratory rhythm originates from the “pre-Bötzinger complex,” which is a morphologically defined region within the lower brainstem. There is a primary oscillating network consisting of reciprocally connected early-inspiratory and postinspiratory neurons, whereas various other subgroups of respiratory neurons shape the activity pattern. Rhythm generation and pattern formation result from neuronal interactions within the network, that is, from cooperative adjustments of intrinsic membrane properties and synaptic processes in the respiratory neurons. There is evidence that in neonatal mammals, as well as under certain pathological situations in adult mammals, the respiratory rhythm derives from early-inspiratory burster neurons that drive inspiratory output neurons. The respiratory network is influenced by a variety of neuromodulators. Stimulation of appropriate receptors mostly activates signal pathways that converge on cAMP-dependent protein kinase and protein kinase C. Both pathways exert modulatory effects on voltage- and ligand-controlled ion channels. Many neuromodulators are continuously released within the respiratory region or accumulated under pathological conditions such as hypoxia. The functional significance of such ongoing neuromodulation is seen in variations of network excitability. In this review, the authors concentrate on the modulators serotonin, adenosine, and opioids.
Collapse
Affiliation(s)
- Diethelm W. Richter
- Universität Göttingen, Physiologie II, Humboldtallee 23, D-37073 Göttingen, Germany,
| | - Sergej L. Mironov
- Universität Göttingen, Physiologie II, Humboldtallee 23, D-37073 Göttingen, Germany
| | - Dietrich Büsselberg
- Universität Göttingen, Physiologie II, Humboldtallee 23, D-37073 Göttingen, Germany
| | - Peter M. Lalley
- Universität Göttingen, Physiologie II, Humboldtallee 23, D-37073 Göttingen, Germany
| | - Anne M. Bischoff
- Universität Göttingen, Physiologie II, Humboldtallee 23, D-37073 Göttingen, Germany
| | - Bernd Wilken
- Universität Göttingen, Physiologie II, Humboldtallee 23, D-37073 Göttingen, Germany
| |
Collapse
|
5
|
Lun R, Zhang C, Fewell JE. Carotid chemoreceptors do not mediate hypoxic-induced gasping and autoresuscitation in newborn rats. Respir Physiol Neurobiol 2015; 212-214:33-8. [PMID: 25907031 DOI: 10.1016/j.resp.2015.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 04/10/2015] [Accepted: 04/10/2015] [Indexed: 11/27/2022]
Abstract
Experiments were carried out on 48, 5-6-day-old rat pups to investigate the influence of carotid denervation on their time to last gasp during a single period of hypoxia, and on their ability to autoresuscitate from primary apnea during repeated hypoxic challenge. One group of pups was studied with intact carotid chemoreceptors and one group was studied following surgical denervation of the carotid chemoreceptors. Carotid denervation eliminated the early tachypneic phase during exposure to hypoxia and delayed the time to arousal/excitement but did not alter the time to primary apnea, the time to last gasp or the total number of gasps during exposure to a single period of unrelenting hypoxia. Furthermore, carotid denervation did not alter the number of successful autoresuscitations from primary apnea during repeated hypoxic exposure. Thus, the carotid chemoreceptors are not essential for the initiation or maintenance of gasping nor are they are integral to gasping effecting successful autoresuscitation from hypoxic-induced apnea in newborn rats.
Collapse
Affiliation(s)
- Rongzhi Lun
- Alberta Children's Hospital Research Institute for Child and Maternal Health, Department of Physiology and Pharmacology, University of Calgary Health Sciences Centre, 3330 Hospital Drive NW, Calgary, Alberta T2N 4 N1, Canada
| | - Chunfen Zhang
- Alberta Children's Hospital Research Institute for Child and Maternal Health, Department of Physiology and Pharmacology, University of Calgary Health Sciences Centre, 3330 Hospital Drive NW, Calgary, Alberta T2N 4 N1, Canada
| | - James E Fewell
- Alberta Children's Hospital Research Institute for Child and Maternal Health, Department of Physiology and Pharmacology, University of Calgary Health Sciences Centre, 3330 Hospital Drive NW, Calgary, Alberta T2N 4 N1, Canada.
| |
Collapse
|
6
|
Ramirez JM, Doi A, Garcia AJ, Elsen FP, Koch H, Wei AD. The cellular building blocks of breathing. Compr Physiol 2013; 2:2683-731. [PMID: 23720262 DOI: 10.1002/cphy.c110033] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Respiratory brainstem neurons fulfill critical roles in controlling breathing: they generate the activity patterns for breathing and contribute to various sensory responses including changes in O2 and CO2. These complex sensorimotor tasks depend on the dynamic interplay between numerous cellular building blocks that consist of voltage-, calcium-, and ATP-dependent ionic conductances, various ionotropic and metabotropic synaptic mechanisms, as well as neuromodulators acting on G-protein coupled receptors and second messenger systems. As described in this review, the sensorimotor responses of the respiratory network emerge through the state-dependent integration of all these building blocks. There is no known respiratory function that involves only a small number of intrinsic, synaptic, or modulatory properties. Because of the complex integration of numerous intrinsic, synaptic, and modulatory mechanisms, the respiratory network is capable of continuously adapting to changes in the external and internal environment, which makes breathing one of the most integrated behaviors. Not surprisingly, inspiration is critical not only in the control of ventilation, but also in the context of "inspiring behaviors" such as arousal of the mind and even creativity. Far-reaching implications apply also to the underlying network mechanisms, as lessons learned from the respiratory network apply to network functions in general.
Collapse
Affiliation(s)
- J M Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institut, Seattle, Washington, USA.
| | | | | | | | | | | |
Collapse
|
7
|
Tin C, Song G, Poon CS. Hypercapnia attenuates inspiratory amplitude and expiratory time responsiveness to hypoxia in vagotomized and vagal-intact rats. Respir Physiol Neurobiol 2012; 181:79-87. [PMID: 22326640 DOI: 10.1016/j.resp.2012.01.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 01/19/2012] [Accepted: 01/24/2012] [Indexed: 10/14/2022]
Abstract
A negative influence of central chemosensitivity on peripheral chemoreflex response has been demonstrated recently in a decerebrate-vagotomized rat preparation in situ with separate carotid body and brainstem perfusions. Here, we report similar negative influences of hypercapnia on the hypoxic respiratory response in anesthetized, spontaneously breathing rats before and after vagotomy and anesthetized, artificially ventilated rats after vagotomy. Baseline breathing patterns and responsiveness to hypercapnia and hypoxia varied widely between the three respiratory modes. Despite this, the responses in inspiratory amplitude and expiratory duration (and hence respiratory frequency and neural ventilation) to hypoxia varied inversely with the background CO2 level in all three groups. Results demonstrate a hypoadditive hypercapnic-hypoxic interaction in vivo that resembles the hypoadditive central-peripheral chemoreceptor interaction in situ for these respiratory variables in the rat, regardless of differences in vagal feedback, body temperature and ventilation method. These observations stand in contrast to previous reports of hyperadditive peripheral-central chemoreceptor interaction.
Collapse
Affiliation(s)
- Chung Tin
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
8
|
Tjen-A-Looi SC, Hsiao AF, Longhurst JC. Central and peripheral mechanisms underlying gastric distention inhibitory reflex responses in hypercapnic-acidotic rats. Am J Physiol Heart Circ Physiol 2011; 300:H1003-12. [PMID: 21217073 PMCID: PMC3064299 DOI: 10.1152/ajpheart.01131.2010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 12/30/2010] [Indexed: 11/22/2022]
Abstract
We have observed that in chloralose-anesthetized animals, gastric distension (GD) typically increases blood pressure (BP) under normoxic normocapnic conditions. However, we recently noted repeatable decreases in BP and heart rate (HR) in hypercapnic-acidotic rats in response to GD. The neural pathways, central processing, and autonomic effector mechanisms involved in this cardiovascular reflex response are unknown. We hypothesized that GD-induced decrease in BP and HR reflex responses are mediated during both withdrawal of sympathetic tone and increased parasympathetic activity, involving the rostral (rVLM) and caudal ventrolateral medulla (cVLM) and the nucleus ambiguus (NA). Rats anesthetized with ketamine and xylazine or α-chloralose were ventilated and monitored for HR and BP changes. The extent of cardiovascular inhibition was related to the extent of hypercapnia and acidosis. Repeated GD with both anesthetics induced consistent falls in BP and HR. The hemodynamic inhibitory response was reduced after blockade of the celiac ganglia or the intraabdominal vagal nerves with lidocaine, suggesting that the decreased BP and HR responses were mediated by both sympathetic and parasympathetic afferents. Blockade of the NA decreased the bradycardia response. Microinjection of kainic acid into the cVLM reduced the inhibitory BP response, whereas depolarization blockade of the rVLM decreased both BP and HR inhibitory responses. Blockade of GABA(A) receptors in the rVLM also reduced the BP and HR reflex responses. Atropine methyl bromide completely blocked the reflex bradycardia, and atenolol blocked the negative chronotropic response. Finally, α(1)-adrenergic blockade with prazosin reversed the depressor. Thus, in the setting of hypercapnic-acidosis, a sympathoinhibitory cardiovascular response is mediated, in part, by splanchnic nerves and is processed through the rVLM and cVLM. Additionally, a vagal excitatory reflex, which involves the NA, facilitates the GD-induced decreases in BP and HR responses. Efferent chronotropic responses involve both increased parasympathetic and reduced sympathetic activity, whereas the decrease in BP is mediated by reduced α-adrenergic tone.
Collapse
Affiliation(s)
- Stephanie C Tjen-A-Looi
- Susan Samueli Center for Integrative Medicine, Department of Medicine, School of Medicine, University of California, Irvine, California 92697-4075, USA.
| | | | | |
Collapse
|
9
|
|
10
|
|
11
|
|
12
|
Cunningham DJC, Robbins PA, Wolff CB. Integration of Respiratory Responses to Changes in Alveolar Partial Pressures of
CO
2
and O
2
and in Arterial pH. Compr Physiol 2011. [DOI: 10.1002/cphy.cp030215] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
13
|
Teppema LJ, Dahan A. The Ventilatory Response to Hypoxia in Mammals: Mechanisms, Measurement, and Analysis. Physiol Rev 2010; 90:675-754. [DOI: 10.1152/physrev.00012.2009] [Citation(s) in RCA: 257] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The respiratory response to hypoxia in mammals develops from an inhibition of breathing movements in utero into a sustained increase in ventilation in the adult. This ventilatory response to hypoxia (HVR) in mammals is the subject of this review. The period immediately after birth contains a critical time window in which environmental factors can cause long-term changes in the structural and functional properties of the respiratory system, resulting in an altered HVR phenotype. Both neonatal chronic and chronic intermittent hypoxia, but also chronic hyperoxia, can induce such plastic changes, the nature of which depends on the time pattern and duration of the exposure (acute or chronic, episodic or not, etc.). At adult age, exposure to chronic hypoxic paradigms induces adjustments in the HVR that seem reversible when the respiratory system is fully matured. These changes are orchestrated by transcription factors of which hypoxia-inducible factor 1 has been identified as the master regulator. We discuss the mechanisms underlying the HVR and its adaptations to chronic changes in ambient oxygen concentration, with emphasis on the carotid bodies that contain oxygen sensors and initiate the response, and on the contribution of central neurotransmitters and brain stem regions. We also briefly summarize the techniques used in small animals and in humans to measure the HVR and discuss the specific difficulties encountered in its measurement and analysis.
Collapse
Affiliation(s)
- Luc J. Teppema
- Department of Anesthesiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Albert Dahan
- Department of Anesthesiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
14
|
Chowdhuri S, Shanidze I, Pierchala L, Belen D, Mateika JH, Badr MS. Effect of episodic hypoxia on the susceptibility to hypocapnic central apnea during NREM sleep. J Appl Physiol (1985) 2010; 108:369-77. [PMID: 19940101 PMCID: PMC2822673 DOI: 10.1152/japplphysiol.00308.2009] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Accepted: 11/25/2009] [Indexed: 11/22/2022] Open
Abstract
We hypothesized that episodic hypoxia (EH) leads to alterations in chemoreflex characteristics that might promote the development of central apnea in sleeping humans. We used nasal noninvasive positive pressure mechanical ventilation to induce hypocapnic central apnea in 11 healthy participants during stable nonrapid eye movement sleep before and after an exposure to EH, which consisted of fifteen 1-min episodes of isocapnic hypoxia (mean O(2) saturation/episode: 87.0 +/- 0.5%). The apneic threshold (AT) was defined as the absolute measured end-tidal PCO(2) (Pet(CO(2))) demarcating the central apnea. The difference between the AT and baseline Pet(CO(2)) measured immediately before the onset of mechanical ventilation was defined as the CO(2) reserve. The change in minute ventilation (V(I)) for a change in Pet(CO(2)) (DeltaV(I)/ DeltaPet(CO(2))) was defined as the hypocapnic ventilatory response. We studied the eupneic Pet(CO(2)), AT Pet(CO(2)), CO(2) reserve, and hypocapnic ventilatory response before and after the exposure to EH. We also measured the hypoxic ventilatory response, defined as the change in V(I) for a corresponding change in arterial O(2) saturation (DeltaV(I)/DeltaSa(O(2))) during the EH trials. V(I) increased from 6.2 +/- 0.4 l/min during the pre-EH control to 7.9 +/- 0.5 l/min during EH and remained elevated at 6.7 +/- 0.4 l/min the during post-EH recovery period (P < 0.05), indicative of long-term facilitation. The AT was unchanged after EH, but the CO(2) reserve declined significantly from -3.1 +/- 0.5 mmHg pre-EH to -2.3 +/- 0.4 mmHg post-EH (P < 0.001). In the post-EH recovery period, DeltaV(I)/DeltaPet(CO(2)) was higher compared with the baseline (3.3 +/- 0.6 vs. 1.8 +/- 0.3 l x min(-1) x mmHg(-1), P < 0.001), indicative of an increased hypocapnic ventilatory response. However, there was no significant change in the hypoxic ventilatory response (DeltaV(I)/DeltaSa(O(2))) during the EH period itself. In conclusion, despite the presence of ventilatory long-term facilitation, the increase in the hypocapnic ventilatory response after the exposure to EH induced a significant decrease in the CO(2) reserve. This form of respiratory plasticity may destabilize breathing and promote central apneas.
Collapse
Affiliation(s)
- Susmita Chowdhuri
- Medical Service, John D. Dingell Veterans Affairs Medical Center, Detroit, MI 48201, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Leiter JC, Böhm I. Mechanisms of pathogenesis in the Sudden Infant Death Syndrome. Respir Physiol Neurobiol 2007; 159:127-38. [PMID: 17644048 DOI: 10.1016/j.resp.2007.05.014] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2007] [Revised: 05/25/2007] [Accepted: 05/29/2007] [Indexed: 11/21/2022]
Abstract
The likely processes of the Sudden Infant Death Syndrome (SIDS) were identified many years ago (apnea, failed arousal, failed autoresuscitation, etc.). The neurophysiological basis of these processes and the neurophysiological reasons some infants die of SIDS and others do not are, however, only emerging now. We reviewed recent studies that have shed light on the way in which epidemiological risk factors, genetics, neurotransmitter receptor defects and neonatal cardiorespiratory reflex responses interact to lead to sudden death during sleep in a small number of normal appearing infants. As a result of this review and analysis, we hypothesize that the neurophysiological basis of SIDS resides in a persistence of fetal reflex responses into the neonatal period, amplification of inhibitory cardiorespiratory reflex responses and reduced excitatory cardiorespiratory reflex responses. The hypothesis we developed explores the ways in which multiple subtle abnormalities interact to lead to sudden death and emphasizes the difficulty of ante-mortem identification of infants at risk for SIDS, although identification of infants at risk remains an essential goal of SIDS research.
Collapse
Affiliation(s)
- J C Leiter
- Department of Physiology, Dartmouth Medical School, Lebanon, NH 03756, United States.
| | | |
Collapse
|
16
|
Macarlupú JL, Buvry A, Morel OE, León-Velarde F, Richalet JP, Favret F. Time course of ventilatory acclimatisation to hypoxia in a model of anemic transgenic mice. Respir Physiol Neurobiol 2006; 153:14-22. [PMID: 16330260 DOI: 10.1016/j.resp.2005.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2005] [Revised: 08/29/2005] [Accepted: 08/30/2005] [Indexed: 11/30/2022]
Abstract
We questioned the assumption that polycythemia is essential for adaptation to chronic hypoxia. Thus, the objective of our study was to determine if anemic Epo-TAg(h) mice could survive in hypoxia despite low oxygen carrying capacity. We explored the possibility that ventilatory acclimatisation is involved in the strategy used by anemic transgenic mice to adapt to chronic hypoxia. Epo-TAg(h) and Wild Type mice were exposed during 2 weeks at a barometric pressure of 450 Torr. After 1, 5 and 14 days of exposure, ventilation at different inspired oxygen fraction was measured in both groups. Ventilation during acclimatisation to hypoxia was significantly greater in Epo-TAg(h) than in Wild Type. The difference was mainly due to a higher tidal volume that could explain a higher arterial PO2 in Epo-TAg(h) mice. Epo-Tag(h) mice did not develop right ventricle hypertrophy after 2 weeks of exposure to hypoxia while Wild Type did. Hemoglobin concentration was 60% lower in anemic mice versus Wild Type after acclimatisation. In conclusion, ventilatory acclimatisation contributed to the adaptation of Epo-Tag(h) mice in chronic hypoxia despite low arterial oxygen carrying capacity.
Collapse
Affiliation(s)
- J L Macarlupú
- Université Paris 13, Laboratoire Réponses cellulaires et fonctionnelles à l'hypoxie, EA 2363, Bobigny, France
| | | | | | | | | | | |
Collapse
|
17
|
Macarlupú JL, Buvry A, Morel OE, León-Velarde F, Richalet JP, Favret F. Characterisation of the ventilatory response to hypoxia in a model of transgenic anemic mice. Respir Physiol Neurobiol 2006; 150:19-26. [PMID: 15878311 DOI: 10.1016/j.resp.2005.03.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2004] [Revised: 03/04/2005] [Accepted: 03/04/2005] [Indexed: 10/25/2022]
Abstract
Both polycythemia and the increase in hypoxic ventilatory response (HVR) are considered as important factors of acclimatization to hypoxia. The objective of this study was to characterise the ventilation pattern at different inspired oxygen fraction in a model of chronic anemic mice. These mice have a targeted disruption in the 5' untranslated region of the Epo gene that reduces Epo expression such that the homozygous animal is severely anemic. Ventilation in normoxia in Epo-TAg(h) mice was significantly greater than in wild type, and the difference was mainly due to a higher tidal volume. HVR was higher in Epo-TAg(h) mice at every FIO2 suggesting a higher chemosensitivity. Resting oxygen consumption was maintained in anemic mice. Maximal oxygen consumption was 30% lower while hemoglobin was 60% lower in anemic mice compared to wild type. This small decrease in maximal oxygen consumption is probably due a greater cardiac output and/or a better tissue oxygen extraction and would allow these anemic mice to acclimatize to hypoxia in spite of low oxygen carrying capacity. In conclusion, Epo-TAg(h) anemic mice showed increased ventilation and hypoxic ventilatory response. However, whether these adaptations will contribute to acclimatization in chronic hypoxia remains to be determined.
Collapse
Affiliation(s)
- J L Macarlupú
- Université Paris 13, Laboratoire Réponses cellulaires et fonctionnelles à l'hypoxie, EA 2363 Bobigny, France
| | | | | | | | | | | |
Collapse
|
18
|
Hanacek J, Tatar M, Widdicombe J. Regulation of cough by secondary sensory inputs. Respir Physiol Neurobiol 2006; 152:282-97. [PMID: 16584927 DOI: 10.1016/j.resp.2006.02.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Revised: 02/13/2006] [Accepted: 02/16/2006] [Indexed: 11/24/2022]
Abstract
We have reviewed the role of afferent inputs and blood chemical changes to the central nervous system, and the way in which they modify the cough and expiration reflexes (CR and ER). Slowly adapting pulmonary stretch receptors (SARs) augment the CR, insofar as when their activity is abolished the CRs from the tracheobronchial (TB) tree and larynx are abolished or weakened. However, stimulation of SARs by lung inflation has an inconsistent effect on the CR. Activation of SARs strongly potentiates the ER from the vocal folds, by a reflex mechanism, and inhibition of SARs weakens the ER. Bronchopulmonary C-fibre receptors inhibit the CR, as do capsaicin-sensitive afferents from the heart and splanchnic bed, cutaneous cold receptors and those that respond to chest wall vibration. Nasal receptors responsive to the irritant agent capsaicin potentiate the reflex. Acute hypoxia also augments the CR, and the reflex is down-regulated by carotid body resection. On the other hand, the CR is inhibited by prolonged hypoxia and hyperoxia, and by hypercapnia. Thus different inputs to the cough-controlling mechanism in the brainstem have very varied effects on the CR. We conclude that the sensitivities of the CR and ER can be modified in a large variety of physiological and clinical conditions, and that there is no clear relationship between the reflexes and changes in breathing caused by the interventions.
Collapse
Affiliation(s)
- Jan Hanacek
- Comenius University, Department of Pathophysiology, School of Medicine, 037 53 Martin, Slovakia
| | | | | |
Collapse
|
19
|
Young JK, Dreshaj IA, Wilson CG, Martin RJ, Zaidi SIA, Haxhiu MA. An astrocyte toxin influences the pattern of breathing and the ventilatory response to hypercapnia in neonatal rats. Respir Physiol Neurobiol 2005; 147:19-30. [PMID: 15848120 DOI: 10.1016/j.resp.2005.01.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2004] [Revised: 01/18/2005] [Accepted: 01/31/2005] [Indexed: 11/24/2022]
Abstract
Recent in vitro data suggest that astrocytes may modulate respiration. To examine this question in vivo, we treated 5-day-old rat pups with methionine sulfoximine (MS), a compound that alters carbohydrate and glutamate metabolism in astrocytes, but not neurons. MS-treated pups displayed a reduced breathing frequency (f) in baseline conditions relative to saline-treated pups. Hypercapnia (5% CO(2)) increased f in both groups, but f still remained significantly lower in the MS-treated group. No differences between treatment groups in the responses to hypoxia (8% O(2)) were observed. Also, MS-treated rats showed an enhanced accumulation of glycogen in neurons of the facial nucleus, the nucleus ambiguus, and the hypoglossal nucleus, structures that regulate respiratory activity and airway patency. An altered transfer of nutrient molecules from astrocytes to neurons may underlie these effects of MS, although direct effects of MS upon neurons or upon peripheral structures that regulate respiration cannot be completely ruled out as an explanation.
Collapse
Affiliation(s)
- John K Young
- Department of Anatomy, Howard University College of Medicine, Washington, DC 20059, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Stuhmiller JH, Stuhmiller LM. A mathematical model of ventilation response to inhaled carbon monoxide. J Appl Physiol (1985) 2005; 98:2033-44. [PMID: 15691907 DOI: 10.1152/japplphysiol.00034.2005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A comprehensive mathematical model, describing the respiration, circulation, oxygen metabolism, and ventilatory control, is assembled for the purpose of predicting acute ventilation changes from exposure to carbon monoxide in both humans and animals. This Dynamic Physiological Model is based on previously published work, reformulated, extended, and combined into a single model. Model parameters are determined from literature values, fitted to experimental data, or allometrically scaled between species. The model predictions are compared with ventilation-time history data collected in goats exposed to carbon monoxide, with quantitatively good agreement. The model reaffirms the role of brain hypoxia on hyperventilation during carbon monoxide exposures. Improvement in the estimation of total ventilation, through a more complete knowledge of ventilation control mechanisms and validated by animal data, will increase the accuracy of inhalation toxicology estimates.
Collapse
|
21
|
Taylor BE, Harris MB, Coates EL, Gdovin MJ, Leiter JC. Central CO2 chemoreception in developing bullfrogs: anomalous response to acetazolamide. J Appl Physiol (1985) 2003; 94:1204-12. [PMID: 12571143 DOI: 10.1152/japplphysiol.00558.2002] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Central CO(2) chemoreception and the role of carbonic anhydrase were assessed in brain stems from Rana catesbeiana tadpoles and frogs. Buccal and lung rhythms were recorded from cranial nerve VII and spinal nerve II during normocapnia and hypercapnia before and after treatment with 25 microM acetazolamide. The lung response to acetazolamide mimicked the hypercapnic response in early-stage and midstage metamorphic tadpoles and frogs. In late-stage tadpoles, acetazolamide actually inhibited hypercapnic responses. Acetazolamide and hypercapnia decreased the buccal frequency but had no effect on the buccal duty cycle. Carbonic anhydrase activity was present in the brain stem in every developmental stage. Thus more frequent lung ventilation and concomitantly less frequent buccal ventilation comprised the hypercapnic response, but the response to acetazolamide was not consistent during metamorphosis. Therefore, acetazolamide is not a useful tool for central CO(2) chemoreceptor studies in this species. The reversal of the effect of acetazolamide in late-stage metamorphosis may reflect reorganization of central chemosensory processes during the final transition from aquatic to aerial respiration.
Collapse
Affiliation(s)
- Barbara E Taylor
- Department of Physiology, Dartmouth Medical School, Lebanon, New Hampshire 03756-0001, USA.
| | | | | | | | | |
Collapse
|
22
|
Jansen GFA, Kagenaar DA, Basnyat B, Odoom JA. Basilar artery blood flow velocity and the ventilatory response to acute hypoxia in mountaineers. Respir Physiol Neurobiol 2002; 133:65-74. [PMID: 12385732 DOI: 10.1016/s1569-9048(02)00152-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hypoxic ventilatory response is higher in successful extreme-altitude climbers than in controls. We hypothesized that these climbers have lower brainstem blood flow secondary to hypoxia which may possibly cause retention of medullary CO(2) and greater ventilatory drive. Using transcranial Doppler, basilar artery blood flow velocity (Vba) was measured at sea level in 7 extreme-altitude climbers and 10 controls in response to 10 min sequential exposures to inspired oxygen fractions (FI(O(2))) of 0.21 (baseline), 0.13, 0.11, 0.10, 0.09, 0.08 and 0.07. Sa(O(2)) was higher in climbers at FI(O(2)) of 0.11 (P<0.05), 0.08 and 0.07 (both P<0.0001). Expired ventilation (VE) increased more (n.s.), and PET(CO(2)) decreased more (n.s.) in the climbers than in controls. Vba did not significantly change in both groups at FI(O(2)) of 0.13-0.09. At FI(O(2)) of 0.08 and 0.07, Vba decreased 21% (P<0.03) and 27% (P<0.01), respectively, in climbers, and increased 29% (P<0.01) and 27% (P<0.01), respectively, in controls. The conflicting effects of hypoxia and hypocapnia on both medullary blood flow and ventilatory drive thus balance out, giving climbers a greater drive and higher Sa(O(2)), despite lower PET(CO(2)) and lower brain stem blood flow.
Collapse
Affiliation(s)
- Gerard F A Jansen
- Department of Anesthesiology, Academic Medical Centre, University of Amsterdam, P.O. Box 22660, 1100 DD Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
23
|
Chang FCT, Hoffman BE, DeBus S. Pharmacological antagonism of lethal effects induced by O-isobutyl S-[2-(diethylamino)ethyl]methylphosphonothioate. Drug Chem Toxicol 2002; 25:321-37. [PMID: 12173252 DOI: 10.1081/dct-120005894] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
O-Isobutyl S-[2-(diethylamino)ethyl]methylphosphonothioate (VR) is a structural isomer of a more widely known chemical warfare agent O-ethyl S-[2(diisopropylamino)ethyl]methylphosphonothioate (VX). VR has the potential of being used as military threat/sabotage/terrorist agent. The development of a sound medical countermeasure will undoubtedly enhance not only our medical readiness and ability in VR casualty management, but also our defense posture against the deployment of VR in both combat and politically volatile environments. Acute exposure to a lethal dose of VR has been shown to cause cholinergic hyperfunction, incapacitation, seizures, convulsions, cardiorespiratory depression and death. In this study, pharmacological antagonism of VR-induced cardiorespiratory failure and lethality was investigated in guinea pigs chronically instrumented for concurrent recordings of electrocorticogram, diaphragmatic EMG, Lead II ECG, heart rate and neck skeletal muscle EMG. Thirty (30) min prior to intoxication with a 2 x LD50 dose of VR (22.6 micrograms/kg, s.c.), animals were pretreated with pyridostigmine (0.026 mg/kg, i.m.). Immediately after VR intoxication, animals were given pralidoxime chloride (2-PAM; 25 mg/kg, i.m.) and atropine sulfate (2, 8 or 16 mg/kg, i.m.). In animals that displayed seizures and convulsions, diazepam (5 mg/kg, i.m.) was administered 10 min following the onset of epileptiform activities. Responses to pretreatment/therapy modality were evaluated at 24 h post-VR. All animals survived the 2 x LD50 VR challenge. With the exception of an increased heart rate in response to atropine, the myocardial and diaphragmatic (respiratory) activity profiles appeared normal throughout the course of intoxication and recovery. Animals receiving 2 mg/kg atropine all developed fasciculations, seizures, signs of excessive mucoid/salivary secretion, and needed diazepam adjunct therapy. One-half (50%) of the animals receiving 8 mg/kg atropine developed seizure activities and were given diazepam, whereas the other half only showed a brief period of increase in CNS excitability. No fasciculations, seizures or convulsions were noted in animals receiving 16 mg/kg atropine. In summary, although lethality can be prevented with the pretreatment/therapy modality containing 2 mg/kg atropine and diazepam adjunct, a complete CNS and cardiorespiratory recovery from 2 x LD50 of VR requires a minimum of 8 mg/kg atropine.
Collapse
Affiliation(s)
- F C T Chang
- Applied Pharmacology Branch, Pharmacology Division, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland 21010-5400, USA
| | | | | |
Collapse
|
24
|
Tabata M, Kurosawa H, Kikuchi Y, Hida W, Ogawa H, Okabe S, Tun Y, Hattori T, Shirato K. Role of GABA within the nucleus tractus solitarii in the hypoxic ventilatory decline of awake rats. Am J Physiol Regul Integr Comp Physiol 2001; 281:R1411-9. [PMID: 11641110 DOI: 10.1152/ajpregu.2001.281.5.r1411] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The purpose of this study was to examine our hypothesis that gamma-aminobutyric acid (GABA) in the nucleus tractus solitarii (NTS) may be related to the hypoxic ventilatory decline (HVD) and that chemoreceptor stimulation was essential to activate this mechanism. We used unanesthetized, freely moving rats in this study. An in vivo microdialysis technique was used to measure the extracellular GABA concentration ([GABA]o), and an in vivo microinjection technique was used to examine the effects of the GABA agonists and antagonists on the ventilation during hypoxia. The GABA agonists injected into the NTS attenuated the ventilation during hypoxia. By hypoxic exposure, [GABA]o was increased during the HVD. However, by carotid body denervation (CBD), this GABA increase was abolished. Although GABA antagonists microinjected into the NTS during the HVD phase significantly increased the depressed ventilation, this effect on the ventilation was abolished by CBD. These results suggest that the GABA in the NTS has a pivotal role in the HVD and that this mechanism is not activated without chemoreceptor stimulation.
Collapse
Affiliation(s)
- M Tabata
- First Department of Internal Medicine, Tohoku University School of Medicine, Sendai 980-8574, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Xie A, Skatrud JB, Dempsey JA. Effect of hypoxia on the hypopnoeic and apnoeic threshold for CO(2) in sleeping humans. J Physiol 2001; 535:269-78. [PMID: 11507176 PMCID: PMC2278764 DOI: 10.1111/j.1469-7793.2001.00269.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2000] [Accepted: 04/05/2001] [Indexed: 11/27/2022] Open
Abstract
1. Rhythmic breathing during sleep requires that P(CO2) be maintained above a sensitive hypocapnic apnoeic threshold. Hypoxia causes periodic breathing during sleep that can be prevented or eliminated with supplemental CO(2). The purpose of this study was to determine the effect of hypoxia in changing the difference between the eupnoeic P(CO2) and the P(CO2) required to produce hypopnoea or apnoea (hypopnoea/apnoeic threshold) in sleeping humans. 2. The effect of hypoxia on eupnoeic end-tidal partial pressure of CO(2) (P(ET,CO2)) and hypopnoea/apnoeic threshold P(ET,CO2) was examined in seven healthy, sleeping human subjects. A bilevel pressure support ventilator in a spontaneous mode was used to reduce P(ET,CO2) in small decrements by increasing the inspiratory pressure level by 2 cmH2O every 2 min until hypopnoea (failure to trigger the ventilator) or apnoea (no breathing effort) occurred. Multiple trials were performed during both normoxia and hypoxia (arterial O(2) saturation, S(a,O2) = 80 %) in a random order. The hypopnoea/apnoeic threshold was determined by averaging P(ET,CO2) of the last three breaths prior to each hypopnoea or apnoea. 3. Hypopnoeas and apnoeas were induced in all subjects during both normoxia and hypoxia. Hypoxia reduced the eupnoeic P(ET,CO2) compared to normoxia (42.4 +/- 1.3 vs. 45.0 +/- 1.1 mmHg, P < 0.001). However, no change was observed in either the hypopnoeic threshold P(ET,CO2) (42.1 +/- 1.4 vs. 43.0 +/- 1.2 mmHg, P > 0.05) or the apnoeic threshold P(ET,CO2) (41.3 +/- 1.2 vs. 41.6 +/- 1.0 mmHg, P > 0.05). Thus, the difference in P(ET,CO2) between the eupnoeic and threshold levels was much smaller during hypoxia than during normoxia (-0.2 +/- 0.2 vs. -2.0 +/- 0.3 mmHg, P < 0.01 for the hypopnoea threshold and -1.1 +/- 0.2 vs. -3.4 +/- 0.3 mmHg, P < 0.01 for the apnoeic threshold). We concluded that hypoxia causes a narrowing of the difference between the baseline P(ET,CO2) and the hypopnoea/apnoeic threshold P(ET,CO2), which could increase the likelihood of ventilatory instability.
Collapse
Affiliation(s)
- A Xie
- University of Wisconsin, Department of Medicine, Middleton Memorial Veterans Hospital, Madison, WI 53705, USA.
| | | | | |
Collapse
|
26
|
Mironov SL, Richter DW. Oscillations and hypoxic changes of mitochondrial variables in neurons of the brainstem respiratory centre of mice. J Physiol 2001; 533:227-36. [PMID: 11351030 PMCID: PMC2278595 DOI: 10.1111/j.1469-7793.2001.0227b.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
We studied the functions of mitochondria and their hypoxic modulation in the brainstem slices of neonatal mice (postnatal day (P)6-11). The measurements were made in the preBotzinger complex (pBC), a part of the respiratory centre, and in the hypoglossal (XII) nucleus. Using a CCD camera, changes in the redox state were assessed from cell autofluorescence produced by NADH and FAD, while alterations in mitochondrial membrane potential ([Delta][psi]) and free Ca2+ concentration ([Ca2+]m) were obtained from fluorescence signals after loading the cells with Rh123 and Rhod-2, respectively. In the pBC, the cells were functionally identified by correlating the oscillations in [NADH], [FAD], [Delta][psi] and [Ca2+]m with the respiratory motor output recorded simultaneously from XII rootlets. In the inspiratory cells, NADH fluorescence showed a brief decrease followed by a slow and long-lasting increase during one oscillation period. The initial decrease in NADH fluorescence was accompanied by an increase in FAD fluorescence and coincided with [Delta][psi] depolarization. The slow secondary increase in NADH fluorescence had a time course similar to that of the Rhod-2 signal, indicating the role of Ca2+ uptake by mitochondria in NAD and FADH reduction. Brief (2-4 min) hypoxia reversibly abolished rhythmic changes in mitochondrial variables and brought them to new steady levels. In parallel, ATP-sensitive K+ (KATP) channels were activated and the respiratory output was depressed. The hypoglossal neurons showed much bigger increases in [Delta][psi] and [NADH] during hypoxia than the pBC neurons, which may explain their extreme vulnerability to hypoxia. We show here that mitochondrial function can be monitored in vitro in neurons constituting the respiratory neural network in slice preparations. Since mitochondrial variables demostrate specific, stereotypic fluctuations during a respiratory cycle, we suggest that mitochondrial function is modulated by spontaneous activity in the respiratory network. Therefore mitochondrial depolarization and Ca2+ uptake can contribute to the biphasic reaction of the respiratory network during hypoxia.
Collapse
Affiliation(s)
- S L Mironov
- II Department of Physiology, University of Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany.
| | | |
Collapse
|
27
|
Haller M, Mironov SL, Richter DW. Intrinsic optical signals in respiratory brain stem regions of mice: neurotransmitters, neuromodulators, and metabolic stress. J Neurophysiol 2001; 86:412-21. [PMID: 11431521 DOI: 10.1152/jn.2001.86.1.412] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the rhythmic brain stem slice preparation, spontaneous respiratory activity is generated endogenously and can be recorded as output activity from hypoglossal XII rootlets. Here we combine these recordings with measurements of the intrinsic optical signal (IOS) of cells in the regions of the periambigual region and nucleus hypoglossus of the rhythmic slice preparation. The IOS, which reflects changes of infrared light transmittance and scattering, has been previously employed as an indirect sensor for activity-related changes in cell metabolism. The IOS is believed to be primarily caused by cell volume changes, but it has also been associated with other morphological changes such as dendritic beading during prolonged neuronal excitation or mitochondrial swelling. An increase of the extracellular K(+) concentration from 3 to 9 mM, as well as superfusion with hypotonic solution induced a marked increase of the IOS, whereas a decrease in extracellular K(+) or superfusion with hypertonic solution had the opposite effect. During tissue anoxia, elicited by superfusion of N(2)-gassed solution, the biphasic response of the respiratory activity was accompanied by a continuous rise in the IOS. On reoxygenation, the IOS returned to control levels. Cells located at the surface of the slice were observed to swell during periods of anoxia. The region of the nucleus hypoglossus exhibited faster and larger IOS changes than the periambigual region, which presumably reflects differences in sensitivities of these neurons to metabolic stress. To analyze the components of the hypoxic IOS response, we investigated the IOS after application of neurotransmitters known to be released in increasing amounts during hypoxia. Indeed, glutamate application induced an IOS increase, whereas adenosine slightly reduced the IOS. The IOS response to hypoxia was diminished after application of glutamate uptake blockers, indicating that glutamate contributes to the hypoxic IOS. Blockade of the Na(+)/K(+)-ATPase by ouabain did not provoke a hypoxia-like IOS change. The influences of K(ATP) channels were analyzed, because they contribute significantly to the modulation of neuronal excitability during hypoxia. IOS responses obtained during manipulation of K(ATP) channel activity could be explained only by implicating mitochondrial volume changes mediated by mitochondrial K(ATP) channels. In conclusion, the hypoxic IOS response can be interpreted as a result of cell and mitochondrial swelling. Cell swelling can be attributed to hypoxic release of neurotransmitters and neuromodulators and to inhibition of Na(+)/K(+)-pump activity.
Collapse
Affiliation(s)
- M Haller
- Physiologisches Institut, Georg-August-Universität Göttingen, D-37073 Gottingen, Germany.
| | | | | |
Collapse
|
28
|
Mironov SL, Richter DW. L-type Ca2+ channels in inspiratory neurones of mice and their modulation by hypoxia. J Physiol 1998; 512 ( Pt 1):75-87. [PMID: 9729618 PMCID: PMC2231191 DOI: 10.1111/j.1469-7793.1998.075bf.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
1. Whole-cell (ICa) and single Ca2+ channel currents were measured in inspiratory neurones of neonatal mice (4-12 days old). During whole-cell recordings, ICa slowly declined and disappeared within 10-20 min. The run-down was delayed during hypoxia, indicating ICa potentiation. 2. Ca2+ channels were recorded in cell-attached patches using pipettes which contained 110 mM Ba2+. L-type Ca2+ channels exhibited a non-ohmic I-V relationship. The slope conductance was 24 pS below and 50 pS above their null potential. The open probability of the channels increased during oxygen depletion, reaching a maximum 2 min after the onset of hypoxia. Restoration of the oxygen supply brought the channel activity back to initial levels. 3. The channel activity was enhanced by 3-30 microM S(-)Bay K 8644, an agonist of L-type Ca2+ channels. The open probability was increased about 3-fold and the activation curve was shifted by 20 mV in the hyperpolarizing direction. In the presence of the agonist, channel open time increased and long openings appeared. Agonist-modulated channels were also potentiated during oxygen depletion. The effect was due to an increase in open time and a decrease in closed time. The channels were inhibited by bath application of nifedipine (10 microM) and nitrendipine (20 microM). 4. Weak bases such as NH4Cl and TMA increased and weak acids such as sodium acetate and propionate decreased activity of the channels, indicating that they are modulated by intracellular pH. Bath application of 1 microM forskolin enhanced the channel activity, whereas 500 microM NaF suppressed it. 5. L-type Ca2+ channels were modulated by an agonist for mGluR1/5 receptors, (S)-3, 5-dihydrophenylglycine (DHPG, 5 microM). In its presence, the hypoxic facilitation of channels was abolished. 6. After blockade of L-type Ca2+ channels, the respiratory response to hypoxia was modified. The transient enhancement of the respiratory rhythm (augmentation) was no longer evident and the secondary depression occurred earlier. 7. We suggest that L-type Ca2+ channels contribute to the early hypoxic response of the respiratory centre. Glutamate release during hypoxia stimulates postsynaptic metabotropic glutamate receptors, which activate the Ca2+ channels.
Collapse
Affiliation(s)
- S L Mironov
- II Department of Physiology, University of Gottingen, Humboldtallee 23, 37075 Gottingen, Germany.
| | | |
Collapse
|
29
|
Mironov SL, Langohr K, Haller M, Richter DW. Hypoxia activates ATP-dependent potassium channels in inspiratory neurones of neonatal mice. J Physiol 1998; 509 ( Pt 3):755-66. [PMID: 9596797 PMCID: PMC2230998 DOI: 10.1111/j.1469-7793.1998.755bm.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
1. The respiratory centre of neonatal mice (4 to 12 days old) was isolated in 700 micro(m) thick brainstem slices. Whole-cell K+ currents and single ATP-dependent potassium (KATP) channels were analysed in inspiratory neurones. 2. In cell-attached patches, KATP channels had a conductance of 75 pS and showed inward rectification. Their gating was voltage dependent and channel activity decreased with membrane hyperpolarization. Using Ca2+-containing pipette solutions the measured conductance was lower (50 pS at 1.5 mM Ca2+), indicating tonic inhibition by extracellular Ca2+. 3. KATP channel activity was reversibly potentiated during hypoxia. Maximal effects were attained 3-4 min after oxygen removal from the bath. Hypoxic potentiation of open probability was due to an increase in channel open times and a decrease in channel closed times. 4. In inside-out patches and symmetrical K+ concentrations, channel currents reversed at about 0 mV. Channel activity was blocked by ATP (300-600 microM), glibenclamide (10-70 microM) and tolbutamide (100-300 microM). 5. In the presence of diazoxide (10-60 microM), the activity of KATP channels was increased both in inside-out, outside-out and cell-attached patches. In outside-out patches, that remained within the slice after excision, the activity of KATP channels was enhanced by hypoxia, an effect that could be mediated by a release of endogenous neuromodulators. 6. The whole-cell K+ current (IK) was inactivated at negative membrane potentials, which resembled the voltage dependence of KATP channel gating. After 3-4 min of hypoxia, K+ currents at both hyperpolarizing and depolarizing membrane potentials increased. IK was partially blocked by tolbutamide (100-300 microM) and in its presence, hypoxic potentiation of IK was abolished. 7. We conclude that KATP channels are involved in the hypoxic depression of medullary respiratory activity.
Collapse
Affiliation(s)
- S L Mironov
- II Department of Physiology, University of Gottingen, Humboldtallee 23, Gottingen 37073, Germany
| | | | | | | |
Collapse
|
30
|
Ramirez JM, Quellmalz UJ, Wilken B, Richter DW. The hypoxic response of neurones within the in vitro mammalian respiratory network. J Physiol 1998; 507 ( Pt 2):571-82. [PMID: 9518714 PMCID: PMC2230789 DOI: 10.1111/j.1469-7793.1998.571bt.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
1. The transverse brainstem slice preparation containing the pre-Bötzinger complex (PBC) was used in mice to study developmental changes of the response of the in vitro respiratory network to hypoxia. This preparation generates at different postnatal stages (postnatal days (P) 0-22) spontaneous rhythmic activity in hypoglossal (XII) rootlets that occur in synchrony with periodic bursts of neurones in the PBC. 2. In slices from P0-4 mice, hypoxia did not significantly affect the amplitude of rhythmic synaptic drive potentials in four of five inspiratory neurones. Hypoxia reduced, but did not suppress, the amplitude of synaptic drive potentials in only one inspiratory neurone. Spike discharge and phasic 'inspiratory' hyperpolarizations of six expiratory neurones were suppressed during hypoxia revealing a phasic 'inspiratory' depolarization. 3. The coupling between rhythmic activity in PBC neurones and XII bursts occurred under control conditions in preparations from P0-4 mice in a 1:1 manner (n = 11) and from mice older than P5 in a 3:1 manner (n = 9). During hypoxia, PBC and XII activity were linked in a 1:1 manner in all slices. 4. In six of fourteen inspiratory PBC neurones, the amplitude of synaptic drive potentials of slices from mice older than P8 was increased during the period of augmentation, reduced during the period of depression and suppressed during a hypoxic response which we refer to as central apnoea. Augmentation led to a weak-to-moderate membrane depolarization which on average was 4.8 +/- 3.7 mV. This depolarization was followed by a hyperpolarization of 6.2 +/- 4.1 mV only in four inspiratory neurones. In the majority of neurones (n = 9), however, membrane depolarization remained stable and was not followed by hyperpolarization. In expiratory neurones (n = 12) from this age group hypoxia suppressed phasic hyperpolarizations that occurred in synchrony with XII bursts. As similarly seen in inspiratory neurones, membrane potentials were depolarized by 5.1 +/- 4.1 mV during the period of hypoxic augmentation. 5. The hypoxic response of respiratory neurones within the pre-Bötzinger complex resembles the response of neurones that were previously described under in vivo conditions. Thus we conclude that the 'transverse rhythmic slice' is a good model for studying the hypoxic response of the respiratory network under in vitro conditions.
Collapse
Affiliation(s)
- J M Ramirez
- Department of Organismal Biology and Anatomy, University of Chicago, IL 60637, USA.
| | | | | | | |
Collapse
|
31
|
Ramirez JM, Quellmalz UJ, Wilken B. Developmental changes in the hypoxic response of the hypoglossus respiratory motor output in vitro. J Neurophysiol 1997; 78:383-92. [PMID: 9242287 DOI: 10.1152/jn.1997.78.1.383] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The transverse brain stem slice of mice containing the pre-Bötzinger complex (PBC), a region essential for respiratory rhythm generation in vitro, was used to study developmental changes of the response of the in vitro respiratory network to severe hypoxia (anoxia). This preparation generates, at different postnatal stages [postnatal day (P)0-22], spontaneous rhythmic activity in hypoglossal (XII) rootlets that are known to occur in synchrony with periodic bursts of neurons in the PBC. It is assumed that this rhythmic activity reflects respiratory rhythmic activity. At all examined stages anoxia led to a biphasic response: the frequency of rhythmic XII activity initially increased ("primary augmentation") and then decreased ("secondary depression"). In neonates (P0-7), anoxia did not significantly affect the amplitude of integrated XII bursts. Secondary depression never led to a cessation of rhythmic activity. In mice older than P7, augmentation was accompanied by a significant increase in the amplitude of XII bursts. A significant decrease of the amplitude of XII bursts occurred during secondary depression. This depression led always to cessation of rhythmic activity in XII rootlets. The anoxia-induced response of the respiratory rhythmic XII motor output is biphasic and changes during development in a similar way to the in vivo respiratory network. Whether this biphasic response is due to a biphasic response of the respiratory rhythm generator and/or to a biphasic modulation of the XII motor nucleus remains unresolved and needs further cellular analysis. We propose that the transverse slice is a useful model system for examination of the mechanisms underlying the hypoxic response.
Collapse
Affiliation(s)
- J M Ramirez
- Department of Organismal Biology and Anatomy, The University of Chicago, Illinois 60637, USA
| | | | | |
Collapse
|
32
|
Lutz PL, Cherniack NS. Brain Hypoxia: Metabolic and Ventilatory Depression. Compr Physiol 1996. [DOI: 10.1002/cphy.cp040256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
33
|
|
34
|
Yuan SZ, Runold M, Lagercrantz H. Cerebral and ventilatory depression during hypoxia in anaesthetized newborn guinea-pigs. Acta Paediatr 1995; 84:1409-13. [PMID: 8645960 DOI: 10.1111/j.1651-2227.1995.tb13578.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The effects of hypoxia on ventilation and cerebral activity were studied in urethane-anaesthetized newborn guinea-pigs. Ventilation was measured by a pneumotachograph, and cerebral activity by a cerebral function monitor (CFM). All animals were subjected to either 9% O2 or 6% O2 in N2 for 10 minutes or until apnoea occurred. Hypoxia produced a biphasic response in ventilation, that is, an increase followed by a decrease. The initial increase was attributed to the elevation of the respiratory rate, whereas the tidal volume showed a pure decline. The respiratory rate reached its peak at 3 minutes of hypoxia (170 +/- 12% during 9% O2 and 169 +/- 12% during 6% O2). Cerebral activity during both 9 and 6% O2 breathing showed a small increase followed by a decrease. In the group subjected to 9% O2 the maximum CFM activity increased to 114 +/- 8% of the control level and the minimum activity increased to 113 +/- 7%, while in the group subjected to 6% O2 the maximum CFM activity increased to 104 +/- 5% and the minimum CFM activity to 101 +/- 3%. The depression of CFM activity was more pronounced with 6% O2 than with 9% O2. Regression analysis showed a linear correlation between ventilation and cerebral activity during both 9 and 6% O2 breathing. The results suggest that hypoxic ventilatory depression may be the consequence of cerebral depression produced by acute severe hypoxia.
Collapse
Affiliation(s)
- S Z Yuan
- Nobel Institute for Neurophysiology, Karolinska Institute, Stockholm, Sweden
| | | | | |
Collapse
|
35
|
Schmidt C, Bellingham MC, Richter DW. Adenosinergic modulation of respiratory neurones and hypoxic responses in the anaesthetized cat. J Physiol 1995; 483 ( Pt 3):769-81. [PMID: 7776257 PMCID: PMC1157817 DOI: 10.1113/jphysiol.1995.sp020621] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
1. The modulatory effects of intracellularly injected adenosine on membrane potential, input resistance and spontaneous or evoked synaptic activity were determined in respiratory neurones of the ventral respiratory group. 2. The membrane potential hyperpolarized and sometimes reached values which were beyond the equilibrium potential of Cl(-)-dependent IPSPs. At the same time, neuronal input resistance decreased. 3. Spontaneous and stimulus-evoked postsynaptic activities were decreased, as were mean respiratory drive potentials. 4. Systemic injection of the A1 adenosine receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX; 0.01-0.05 mg kg-1) resulted in an increase in mean peak phrenic nerve activity when arterial chemoreceptors were denervated. In contrast, phrenic nerve activity decreased when arterial chemoreceptors were left intact. 5. The depressant effect of adenosine on synaptic activity was abolished after systemic DPCPX administration. DPCPX caused an increase in respiratory drive potentials, increased the amplitude of stimulus-evoked IPSPs, and hyperpolarized membrane potential. 6. Administration of DPCPX blocked the early hypoxic depression of stimulus-evoked IPSPs, doubled the delay of onset of hypoxic apnoea and shortened the time necessary for recovery of the respiratory rhythm. 7. The data indicate that adenosine acts on pre- and postsynaptic A1 receptors resulting in postsynaptic membrane hyperpolarization and depression of synaptic transmission. Blockade of A1 receptors increases respiratory activity, indicating that adenosine A1 receptors are tonically activated under control conditions. Further activation contributes to the hypoxic depression of synaptic transmission in the respiratory network.
Collapse
Affiliation(s)
- C Schmidt
- II Department of Physiology, University of Göttingen, Germany
| | | | | |
Collapse
|
36
|
Ferguson GT. Respiratory failure due to altered central drive during inspiratory loading in rabbits. RESPIRATION PHYSIOLOGY 1995; 99:75-87. [PMID: 7740214 DOI: 10.1016/0034-5687(94)00073-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Mechanisms of respiratory muscle dysfunction leading to respiratory failure during incremental inspiratory threshold loading were studied in unbound spontaneously breathing rabbits during light and deeper anesthesia. Low or high frequency contractile fatigue was not found at the point of respiratory failure in any of the animals. On the other hand, alterations in central drive to the diaphragm played a dominant role in the observed respiratory failure. In animals receiving light anesthesia the intensity of central drive increased with loading, but then fell as respiratory failure approached. In all animals the intensity of central drive at peak activation and at the point of respiratory failure was submaximal, in spite of the diaphragm's ability to generate additional forces. In addition, the time tension index of the diaphragm rose in response to increasing loads to a level reported to produce contractile fatigue, at which time the index peaked and then fell in spite of increasing load demands. The fall in the time tension index as respiratory failure approached was due primarily to a fall in inspiratory time and duty cycle. Ultimately, there was an abrupt cessation in central drive resulting in apnea. These findings suggest that alterations in central drive play a major role in respiratory muscle dysfunction and respiratory failure associated with inspiratory loading in unbound spontaneously breathing rabbits.
Collapse
Affiliation(s)
- G T Ferguson
- Department of Medicine, University of Colorado Health Sciences Center, National Jewish Center for Immunology and Respiratory Medicine, Denver 80206, USA
| |
Collapse
|
37
|
MacFarlane DJ, Cunningham DJ. Dynamics of the ventilatory response in man to step changes of end-tidal carbon dioxide and of hypoxia during exercise. J Physiol 1992; 457:539-57. [PMID: 1297845 PMCID: PMC1175746 DOI: 10.1113/jphysiol.1992.sp019393] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
1. Four human subjects exercised in hypoxia (end-tidal partial pressure of O2 (P(ET),O2) ca 55 Torr; heart rate ca 100-130 beats min-1), and the contribution to the respiratory drive of the peripheral and central chemoreflex pathways have been separated on the basis of the latencies and the time courses of the responses to sudden changes of stimulus. 2. The subjects were exposed to repeated end-tidal step changes in PCO2 of ca 3-3.5 Torr (at nearly constant P(ET),O2) and PO2 (between ca 55 and 230 Torr) at three regions along the expiratory ventilation VE-P(ET),CO2 response line (hypocapnia, eucapnia, hypercapnia). The dynamics of the ventilatory responses were calculated using a two-compartment non-linear least-squares optimization method. 3. The component of the response attributable to the peripheral chemoreflex loop may in some subjects contribute up to 75% of the ventilatory drive during mild hypocapnic hypoxic exercise and ca 72% of the total gain following steps of P(ET),CO2 during hypoxic exercise. These data support the notion that the effectiveness of the peripheral chemoreceptor pathway is enhanced in moderate exercise. 4. During hypoxic exercise, the time delays and time constants attributed to the peripheral chemoreflex pathways (ca 3.5 and 9 s respectively) and to the central chemoreflex pathways (ca 9.5 and 47 s respectively) are some of the shortest reported. 5. The dynamics of the peripheral and central chemoreflex pathways appeared to be largely independent of each other. 6. There was a notable absence of systematic change of inspiratory and expiratory durations during the step-induced transients.
Collapse
|
38
|
Fukuda Y. Difference in glossopharyngeal and phrenic inspiratory activities of rats during hypocapnia and hypoxia. Neurosci Lett 1992; 137:261-4. [PMID: 1584468 DOI: 10.1016/0304-3940(92)90418-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Inspiratory (I) activities of glossopharyngeal (IX) and phrenic (Phr) nerves were compared during hypocapnia or hypoxia in the urethane anesthetized and carotid deafferented rat. Hypoxic or hypocapnic suppression of I activity was smaller in the IX than in the Phr nerve. A small ramp like rhythmic IX activity was seen even in the absence of Phr discharge during hypocapnia or hypoxia. Respiratory rhythmicity may be better recognized by IX motoneuron activity during suppression by altered chemical stimuli.
Collapse
Affiliation(s)
- Y Fukuda
- Department of Physiology II, School of Medicine, Chiba University, Japan
| |
Collapse
|
39
|
Abstract
We have reviewed evidence that hypoxic chemosensitivity is variable and that this variation may be both endowed, partly through genetic mechanisms, and acquired, and may reflect fundamental changes in carotid body function. This variation may influence the nature and effectiveness of adaptation to high altitude and to hypoxic disease states such as chronic obstructive pulmonary disease. High chemosensitivity seems to be the choice for coping with the casual exposure to hypoxia; but fundamental, highly effective adaptations, presumably at the level of peripheral tissue, seem to be the strategy of choice for professionally adapted species.
Collapse
Affiliation(s)
- J V Weil
- CVP Research Laboratory, Department of Medicine, University of Colorado Health Sciences Center, Denver
| |
Collapse
|
40
|
Gallman EA, Millhorn DE. Two long-lasting central respiratory responses following acute hypoxia in glomectomized cats. J Physiol 1988; 395:333-47. [PMID: 3411481 PMCID: PMC1191997 DOI: 10.1113/jphysiol.1988.sp016922] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
1. Central respiratory response to acute (10 min) hypoxia, as measured by phrenic nerve activity, was determined in peripheral chemo-denervated cats. 2. Hypoxia was induced by ventilating cats for 10 min at reduced inspired oxygen levels (inspired O2 fraction, FI,O2 = 0.06-0.15). The degree of hypoxaemia was determined from an arterial blood sample and ranged from 'severe' (arterial O2 pressure, Pa,O2 less than 26 Torr) to 'mild' (Pa,O2 greater than 35 Torr). The respiratory response was monitored for 1 h following return to ventilation with 100% oxygen. 3. The results confirmed the finding of prolonged (greater than 60 min) inhibition of respiration upon return to hyperoxic conditions following severe hypoxia, as reported previously (Millhorn, Eldridge, Kiley & Waldrop, 1984). A new finding was a long-lasting (greater than 60 min) facilitation of respiration following exposure to less severe (Pa,O2 greater than 35 Torr) hypoxia. 4. Medullary extracellular fluid pH was measured in six cats. Changes in pH could not explain either the prolonged inhibition following severe hypoxia or the long-lasting facilitation observed following mild hypoxia. 5. Ablation studies were performed in order to determine the locations of the neuronal substrates for the inhibitory and facilitatory mechanisms. The results of this series of experiments indicate that the mesencephalon is necessary for activation of the inhibitory mechanism, while the facilitatory mechanism requires the presence of higher brain structures, notably the diencephalon. 6. Following removal of the diencephalon, the inhibitory response was seen following even mild hypoxic insults, i.e. those shown to produce facilitation in animals with intact brains. In the absence of the mesencephalon, neither prolonged inhibition nor prolonged facilitation could be produced following hypoxia. 7. It is proposed that there are two centrally mediated long-lasting responses to acute hypoxia. Facilitation is seen following mild hypoxia. Inhibition is more likely following severe hypoxia. However, both mechanisms appear to be triggered simultaneously and the output of the central respiratory controller reflects the influence of each.
Collapse
Affiliation(s)
- E A Gallman
- Department of Physiology, University of North Carolina, Chapel Hill 27514
| | | |
Collapse
|
41
|
Fukuda Y, Kobayashi T, Kimura H, Maruyama R. Increased ventilatory response to acute hypoxia with high Hb-O2 affinity induced by Na-cyanate treatment in the rat. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1988; 222:331-9. [PMID: 3129912 DOI: 10.1007/978-1-4615-9510-6_39] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The effects on the ventilatory response to acute hypoxia of increasing the Hb-O2 affinity by NaOCN administration were studied in the halothane anesthetized spontaneously breathing rat. Increases in ventilation during the progressive hypoxia test were significantly augmented, and ventilatory depression occurring in severe hypoxia was clearly inhibited in the NaOCN-treated rat. Beneficial effects of NaOCN treatment probably result from the protection of respiratory regulating mechanism from functional deterioration in severe hypoxia.
Collapse
Affiliation(s)
- Y Fukuda
- Department of Physiology II, School of Medicine, Chiba University, Japan
| | | | | | | |
Collapse
|
42
|
Santiago TV, Edelman NH. Brain Blood Flow and Control of Breathing. Compr Physiol 1986. [DOI: 10.1002/cphy.cp030206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
43
|
Kinnear WJ, Shneerson JM. Assisted ventilation at home: is it worth considering? BRITISH JOURNAL OF DISEASES OF THE CHEST 1985; 79:313-51. [PMID: 3902072 DOI: 10.1016/0007-0971(85)90067-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
44
|
Arieli R. Do the exposure time and PCO2 affect the terminal PO2 in a confined atmosphere? RESPIRATION PHYSIOLOGY 1985; 62:105-15. [PMID: 3934725 DOI: 10.1016/0034-5687(85)90054-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The effect of exposure time and the presence of CO2 on gas exchange and the terminal PO2 of rats in a confined atmosphere where PO2 decreased due to the oxygen consumption of the rats was measured. Terminal inspired PO2 was higher (46.4 Torr) in short exposure (0.47 h) than terminal PO2 (35.3 Torr) in longer exposures (0.8-13 h). Terminal PO2 was not changed when CO2 accumulated in the sealed chamber (CO2 group) as compared with the conditions where CO2 was consistently removed (no-CO2 group). Carbon dioxide caused further depression of VO2 with developing hypoxia. Both breathing frequency and heart frequency showed no response to PO2 in short exposure, maximal response in intermediate exposure time and reduced response at the longest exposure time. The rat could regulate different physiological parameters to meet its needs in developing hypoxia down to a critical PO2 below which regulation was impaired. This critical PO2 was found to change as a function of the exposure duration. The possible early adjustment to hypoxia and the common use of critical PO2 for comparison between species are discussed.
Collapse
|
45
|
Martin-Body RL, Robson GJ, Sinclair JD. Respiratory effects of sectioning the carotid sinus glossopharyngeal and abdominal vagal nerves in the awake rat. J Physiol 1985; 361:35-45. [PMID: 3989730 PMCID: PMC1192845 DOI: 10.1113/jphysiol.1985.sp015631] [Citation(s) in RCA: 71] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Normoxic and hypoxic respiration has been measured in awake rats after denervation procedures designed to eliminate the regulatory input from the carotid bodies, from all chemosensory tissue supplied by the glossopharyngeal nerve (n. IX), and from abdominal chemoreceptors. Studies were made 1 day after section of the carotid sinus nerve (c.s.n.), n. IX (at a level including c.s.n.), the abdominal vagus (n. Xa) and combinations of these nerves. Results were compared with those found in normal controls. C.s.n. section led to hypoventilation in both normoxia and hypoxia, reductions in respiratory frequency being consistent and substantial, and reductions in tidal volume varying with the degree of hypoxia. By comparison, section of n. IX produced significantly greater reductions of both normoxic and hypoxic ventilation. Section of n. Xa produced no significant change in normoxic ventilation but in hypoxia produced a significant small reduction in ventilation, mostly from an effect on tidal volume. Denervation of all the associated chemosensory tissue by combined section of n. IX and n. Xa demonstrated a summation of effects but left two distinct residual responses, one to mild hypoxia, and one to severe hypoxia, both associated mainly with increases of tidal volume. The experiments demonstrate that glomus tissues at different sites in the rat produce significant and distinct contributions to respiratory regulation. Denervation of all known receptors shows that significant ventilatory responses to hypoxia are still produced, either by unrevealed peripheral chemoreceptors, or by central neural mechanisms.
Collapse
|
46
|
Lee LY, Morton RF. A comparison of breathing pattern between transient and steady state hypoxia in awake dogs. Lung 1984; 162:15-26. [PMID: 6708589 DOI: 10.1007/bf02715624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
47
|
Millhorn DE, Eldridge FL, Kiley JP, Waldrop TG. Prolonged inhibition of respiration following acute hypoxia in glomectomized cats. RESPIRATION PHYSIOLOGY 1984; 57:331-40. [PMID: 6522868 DOI: 10.1016/0034-5687(84)90081-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Respiratory responses to several minutes exposure to hypoxia (PaO2 less than 30 torr) were determined in anesthetized, paralyzed, vagotomized and glomectomized cats whose end-tidal PCO2 and body temperature were kept constant. Respiratory activity was quantified from phrenic nerve activity. Animals breathed 100% O2 during the control period. The study reaffirmed that in glomectomized animals hypoxia causes depression of respiratory activity. The new finding was that phrenic activity remained significantly depressed below the original control level for more than one hr after return to the hyperoxic state. Medullary ECF pH was measured in 3 cats. There was an acid shift of pH during hypoxia that persisted for more than one hour after return to hyperoxic state. We pretreated another group (n = 5) of animals with theophylline, a specific antagonist of the inhibitory neurotransmitter adenosine. Hypoxia still caused depression of respiratory activity, but it was less severe than in untreated animals. Upon return to the hyperoxic state, respiratory activity returned to the original control level within 10 min. We conclude that the long-lasting depression of respiration following hypoxia is mediated by adenosine. Furthermore, adenosine appears to be partially responsible for the acute depression of respiration during the hypoxic exposure.
Collapse
|
48
|
van Beek JH, Berkenbosch A, de Goede J, Olievier CN. Effects of brain stem hypoxaemia on the regulation of breathing. RESPIRATION PHYSIOLOGY 1984; 57:171-88. [PMID: 6436938 DOI: 10.1016/0034-5687(84)90091-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In 22 cats, anaesthetized with chloralose-urethane, the brain stem was artificially perfused with their own blood via a gas exchanger in which the central PaO2 and PaCO2 were imposed independently from the peripheral PaO2 and PaCO2 in the systemic arterial blood. The effects of brain stem hypoxaemia on ventilation and on the ventilatory responses to central and peripheral chemoreceptor stimulation were investigated. When the central PaO2 was lowered from 375 mm Hg to 100 and 50 mm Hg, keeping all other blood gas tensions constant, ventilation decreased on the average by 0.22 L X min-1 and 0.54 L X min-1, respectively. The increase in ventilation due to peripheral hypoxaemia and the sensitivities to central and peripheral CO2 (delta VE/delta PaCO2) were independent of the central PaO2, despite the depression of ventilation. The sensitivity to central CO2 was also not influenced when central hypoxaemia was combined with peripheral hypoxaemia. The linear VE-VT relation was not affected by central hypoxaemia. Our findings suggest that the functioning of respiratory neurons in the brain stem is unaltered during moderate central hypoxaemia.
Collapse
|
49
|
Cragg PA, Drysdale DB. Interaction of hypoxia and hypercapnia on ventilation, tidal volume and respiratory frequency in the anaesthetized rat. J Physiol 1983; 341:477-93. [PMID: 6413681 PMCID: PMC1195573 DOI: 10.1113/jphysiol.1983.sp014818] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
1. Ventilation ( V(E)), tidal volume (V(T)), respiratory frequency (f) and arterial and end-tidal gas tensions were measured in seventy-one tracheostomized New Zealand white rats ( approximately 405 g) anaesthetized with an initial dose of pentobarbitone followed by repeated small doses to ensure that a weak limb-withdrawal reflex remained.2. O(2) consumption (1.2 ml (s.t.p.d.) min(-1) 100 g(-1)), CO(2) production (1.0 ml (s.t.p.d.) min(-1) 100 g(-1)), heart rate (357 min(-1)), V(E) (43 ml min(-1) 100 g(-1)), P(a,CO2) (34 mmHg) and P(a,O2) (84 mmHg) in the control periods did not change significantly during the course of the experiment.3. Inspirates of 21% O(2) with 2-10% CO(2), 15, 10 or 7.5% O(2) with either no or sufficient CO(2) to maintain normocapnia and 15 or 10% O(2) with 4, 6 or 8% CO(2) were tested. Steady-state responses were measured after 2 min of exposure.4. Hypoxic-hypercapnic interaction on V(E), V(T) and f determined by a three-inspirate test ((i) hypoxia alone, (ii) hypercapnia and (iii) these hypoxic and hypercapnic levels combined) yielded various conclusions depending on the level of asphyxia examined. Essentially, the milder the asphyxia the more the interaction appeared additive or even multiplicative and the stronger the asphyxia the more the interaction appeared occlusive. However, this test is unsuitable for accurately showing interactions because the P(a,O2) achieved in asphyxia was higher than in hypoxia and the asphyxial P(a,CO2) was lower than in hypercapnia.5. For isoxic conditions (P(a,O2) = 97, 77 and 51 mmHg), V(E) and V(T) were related linearly to P(a,CO2) whilst f was related hyperbolically with convexity upwards (P(a,O2) 97 mmHg) or downwards (P(a,O2) 77 and 51 mmHg).6. For isocapnic conditions (P(a,CO2) = 33, 40 and 48 mmHg), V(E) and V(T) were inversely related to P(a,O2) with a hyperbolic curve (convexity downwards) whilst f was inversely and linearly related (P(a,CO2) 33 mmHg) or constant (P(a,CO2) 40 and 48 mmHg).7. Multivariate analyses showed that the hypoxic-hypercapnic interaction was additive for V(T) but occlusive for V(E) and f and the occlusion was more severe in the latter. This was illustrated graphically for the variable plotted against P(a,CO2) or P(a,O2) as parallel shifts in regression lines for V(T), flatter regression lines for V(E) during asphyxia and a virtually constant f during asphyxia.8. V(E) responses and sensitivities to hypoxia and hypercapnia, the shape of V(E), V(T) and f regression lines against P(a,O2) and P(a,CO2) and the type of hypoxic-hypercapnic interaction on each variable in the rat were compared with other species.9. Possible causes of the occlusive hypoxic-hypercapnic interaction in the rat were considered.
Collapse
|
50
|
|