1
|
Fava de Lima F, Siqueira de Nóbrega R, Cesare Biselli PJ, Takachi Moriya H. Central venous pressure waveform analysis during sleep/rest: a novel approach to enhance intensive care unit post-extubation monitoring of extubation failure. J Clin Monit Comput 2024; 38:961-979. [PMID: 38954170 DOI: 10.1007/s10877-024-01171-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 04/25/2024] [Indexed: 07/04/2024]
Abstract
This pilot study aimed to investigate the relation between cardio-respiratory parameters derived from Central Venous Pressure (CVP) waveform and Extubation Failure (EF) in mechanically ventilated ICU patients during post-extubation period. This study also proposes a new methodology for analysing these parameters during rest/sleep periods to try to improve the identification of EF. We conducted a prospective observational study, computing CVP-derived parameters including breathing effort, spectral analyses, and entropy in twenty critically ill patients post-extubation. The Dynamic Warping Index (DWi) was calculated from the respiratory component extracted from the CVP signal to identify rest/sleep states. The obtained parameters from EF patients and patients without EF were compared both during arbitrary periods and during reduced DWi (rest/sleep). We have analysed data from twenty patients of which nine experienced EF. Our findings may suggest significantly increased respiratory effort in EF patients compared to those successfully extubated. Our study also suggests the occurrence of significant change in the frequency dispersion of the cardiac signal component. We also identified a possible improvement in the differentiation between the two groups of patients when assessed during rest/sleep states. Although with caveats regarding the sample size, the results of this pilot study may suggest that CVP-derived cardio-respiratory parameters are valuable for monitoring respiratory failure during post-extubation, which could aid in managing non-invasive interventions and possibly reduce the incidence of EF. Our findings also indicate the possible importance of considering sleep/rest state when assessing cardio-respiratory parameters, which could enhance respiratory failure detection/monitoring.
Collapse
Affiliation(s)
- Felipe Fava de Lima
- Biomedical Engineering Laboratory, Escola Politécnica, University of São Paulo (USP), São Paulo, Brazil.
| | | | | | - Henrique Takachi Moriya
- Biomedical Engineering Laboratory, Escola Politécnica, University of São Paulo (USP), São Paulo, Brazil
| |
Collapse
|
2
|
Franchi F, Detti E, Fogagnolo A, Spadaro S, Cevenini G, Cataldo G, Addabbo T, Biuzzi C, Marianello D, Volta CA, Taccone FS, Scolletta S. Estimation of the transpulmonary pressure from the central venous pressure in mechanically ventilated patients. J Clin Monit Comput 2024; 38:847-858. [PMID: 38512359 PMCID: PMC11297816 DOI: 10.1007/s10877-024-01150-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 03/05/2024] [Indexed: 03/23/2024]
Abstract
Transpulmonary pressure (PL) calculation requires esophageal pressure (PES) as a surrogate of pleural pressure (Ppl), but its calibration is a cumbersome technique. Central venous pressure (CVP) swings may reflect tidal variations in Ppl and could be used instead of PES, but the interpretation of CVP waveforms could be difficult due to superposition of heartbeat-induced pressure changes. Thus, we developed a digital filter able to remove the cardiac noise to obtain a filtered CVP (f-CVP). The aim of the study was to evaluate the accuracy of CVP and filtered CVP swings (ΔCVP and Δf-CVP, respectively) in estimating esophageal respiratory swings (ΔPES) and compare PL calculated with CVP, f-CVP and PES; then we tested the diagnostic accuracy of the f-CVP method to identify unsafe high PL levels, defined as PL>10 cmH2O. Twenty patients with acute respiratory failure (defined as PaO2/FiO2 ratio below 200 mmHg) treated with invasive mechanical ventilation and monitored with an esophageal balloon and central venous catheter were enrolled prospectively. For each patient a recording session at baseline was performed, repeated if a modification in ventilatory settings occurred. PES, CVP and airway pressure during an end-inspiratory and -expiratory pause were simultaneously recorded; CVP, f-CVP and PES waveforms were analyzed off-line and used to calculate transpulmonary pressure (PLCVP, PLf-CVP, PLPES, respectively). Δf-CVP correlated better than ΔCVP with ΔPES (r = 0.8, p = 0.001 vs. r = 0.08, p = 0.73), with a lower bias in Bland Altman analysis in favor of PLf-CVP (mean bias - 0.16, Limits of Agreement (LoA) -1.31, 0.98 cmH2O vs. mean bias - 0.79, LoA - 3.14, 1.55 cmH2O). Both PLf-CVP and PLCVP correlated well with PLPES (r = 0.98, p < 0.001 vs. r = 0.94, p < 0.001), again with a lower bias in Bland Altman analysis in favor of PLf-CVP (0.15, LoA - 0.95, 1.26 cmH2O vs. 0.80, LoA - 1.51, 3.12, cmH2O). PLf-CVP discriminated high PL value with an area under the receiver operating characteristic curve 0.99 (standard deviation, SD, 0.02) (AUC difference = 0.01 [-0.024; 0.05], p = 0.48). In mechanically ventilated patients with acute respiratory failure, the digital filtered CVP estimated ΔPES and PL obtained from digital filtered CVP represented a reliable value of standard PL measured with the esophageal method and could identify patients with non-protective ventilation settings.
Collapse
Affiliation(s)
- Federico Franchi
- Department of Medicine, Surgery and Neurosciences, Anesthesia and Intensive Care Unit, University Hospital of Siena, Viale Bracci 10, Siena, 53100, Italy.
| | - Emanuele Detti
- Department of Medicine, Surgery and Neurosciences, Anesthesia and Intensive Care Unit, University Hospital of Siena, Viale Bracci 10, Siena, 53100, Italy
| | - Alberto Fogagnolo
- Intensive Care Unit, Department of Translational Medicine and for Romagna, Azienda Ospedaliera Universitaria di Ferrara, University of Ferrara, 44121, Ferrara, Italy
| | - Savino Spadaro
- Intensive Care Unit, Department of Translational Medicine and for Romagna, Azienda Ospedaliera Universitaria di Ferrara, University of Ferrara, 44121, Ferrara, Italy
| | - Gabriele Cevenini
- Department of Medical Biotechnologies, University of Siena, 53100, Siena, Italy
| | - Gennaro Cataldo
- Department of Medical Biotechnologies, University of Siena, 53100, Siena, Italy
| | - Tommaso Addabbo
- Department of Information Engineering and Mathematics, University of Siena, 53100, Siena, Italy
| | - Cesare Biuzzi
- Department of Medicine, Surgery and Neurosciences, Anesthesia and Intensive Care Unit, University Hospital of Siena, Viale Bracci 10, Siena, 53100, Italy
| | - Daniele Marianello
- Department of Medicine, Surgery and Neurosciences, Anesthesia and Intensive Care Unit, University Hospital of Siena, Viale Bracci 10, Siena, 53100, Italy
| | - Carlo Alberto Volta
- Intensive Care Unit, Department of Translational Medicine and for Romagna, Azienda Ospedaliera Universitaria di Ferrara, University of Ferrara, 44121, Ferrara, Italy
| | - Fabio Silvio Taccone
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Brussels, 1070, Belgium
| | - Sabino Scolletta
- Department of Medicine, Surgery and Neurosciences, Anesthesia and Intensive Care Unit, University Hospital of Siena, Viale Bracci 10, Siena, 53100, Italy
| |
Collapse
|
3
|
Kyogoku M, Mizuguchi S, Miyasho T, Endo Y, Inata Y, Tachibana K, Fujino Y, Yamashita K, Takeuchi M. Estimating the change in pleural pressure using the change in central venous pressure in various clinical scenarios: a pig model study. Intensive Care Med Exp 2024; 12:4. [PMID: 38224398 PMCID: PMC10789683 DOI: 10.1186/s40635-023-00590-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/21/2023] [Indexed: 01/16/2024] Open
Abstract
BACKGROUND We have previously reported a simple correction method for estimating pleural pressure (Ppl) using central venous pressure (CVP). However, it remains unclear whether this method is applicable to patients with varying levels of intravascular volumes and/or chest wall compliance. This study aimed to investigate the accuracy of our method under different conditions of intravascular volume and chest wall compliance. RESULTS Ten anesthetized and paralyzed pigs (43.2 ± 1.8 kg) were mechanically ventilated and subjected to lung injury by saline lung lavage. Each pig was subjected to three different intravascular volumes and two different intraabdominal pressures. For each condition, the changes in the esophageal pressure (ΔPes) and the estimated ΔPpl using ΔCVP (cΔCVP-derived ΔPpl) were compared to the directly measured change in pleural pressure (Δd-Ppl), which was the gold standard estimate in this study. The cΔCVP-derived ΔPpl was calculated as κ × ΔCVP, where "κ" was the ratio of the change in airway pressure to the change in CVP during the occlusion test. The means and standard deviations of the Δd-Ppl, ΔPes, and cΔCVP-derived ΔPpl for all pigs under all conditions were 7.6 ± 4.5, 7.2 ± 3.6, and 8.0 ± 4.8 cmH2O, respectively. The repeated measures correlations showed that both the ΔPes and cΔCVP-derived ΔPpl showed a strong correlation with the Δd-Ppl (ΔPes: r = 0.95, p < 0.0001; cΔCVP-derived ΔPpl: r = 0.97, p < 0.0001, respectively). In the Bland-Altman analysis to test the performance of the cΔCVP-derived ΔPpl to predict the Δd-Ppl, the ΔPes and cΔCVP-derived ΔPpl showed almost the same bias and precision (ΔPes: 0.5 and 1.7 cmH2O; cΔCVP-derived ΔPpl: - 0.3 and 1.9 cmH2O, respectively). No significant difference was found in the bias and precision depending on the intravascular volume and intraabdominal pressure in both comparisons between the ΔPes and Δd-Ppl, and cΔCVP-derived ΔPpl and Δd-Ppl. CONCLUSIONS The CVP method can estimate the ΔPpl with reasonable accuracy, similar to Pes measurement. The accuracy was not affected by the intravascular volume or chest wall compliance.
Collapse
Affiliation(s)
- Miyako Kyogoku
- Department of Intensive Care, Osaka Women's and Children's Hospital, 840 Murodo-Cho, Izumi, Osaka, 594-1101, Japan
| | - Soichi Mizuguchi
- Department of Emergency and Critical Care Center, Kyushu University, Fukuoka, Japan
| | - Taku Miyasho
- Laboratory of Animal Biological Responses, Department of Veterinary Science School of Veterinary Medicine, Rakuno Gakuen University, Hokkaido, Japan
| | - Yusuke Endo
- Laboratory of Animal Biological Responses, Department of Veterinary Science School of Veterinary Medicine, Rakuno Gakuen University, Hokkaido, Japan
- Laboratory for Critical Care, Department of Emergency Medicine-Cardio Pulmonary, Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Yu Inata
- Department of Intensive Care, Osaka Women's and Children's Hospital, 840 Murodo-Cho, Izumi, Osaka, 594-1101, Japan
| | - Kazuya Tachibana
- Department of Anesthesiology, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Yuji Fujino
- Department of Anesthesiology and Intensive Care Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kazuto Yamashita
- Department of Anesthesiology, Rakuno Gakuen University, Hokkaido, Japan
| | - Muneyuki Takeuchi
- Department of Intensive Care, Osaka Women's and Children's Hospital, 840 Murodo-Cho, Izumi, Osaka, 594-1101, Japan.
| |
Collapse
|
4
|
Umbrello M, Cereghini S, Muttini S. Respiratory Variations of Central Venous Pressure as Indices of Pleural Pressure Swings: A Narrative Review. Diagnostics (Basel) 2023; 13:diagnostics13061022. [PMID: 36980329 PMCID: PMC10047347 DOI: 10.3390/diagnostics13061022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 03/30/2023] Open
Abstract
The measurement of pleural (or intrathoracic) pressure is a key element for a proper setting of mechanical ventilator assistance as both under- and over-assistance may cause detrimental effects on both the lungs and the diaphragm. Esophageal pressure (Pes) is the gold standard tool for such measurements; however, it is invasive and seldom used in daily practice, and easier, bedside-available tools that allow for rapid and continuous monitoring are greatly needed. The tidal swing of central venous pressure (CVP) has long been proposed as a surrogate for pleural pressure (Ppl); however, despite the wide availability of central venous catheters, this variable is very often overlooked in critically ill patients. In the present narrative review, the physiological basis for the use of CVP waveforms to estimate Ppl is presented; the findings of previous and recent papers that addressed this topic are systematically reviewed, and the studies are divided into those reporting positive findings (i.e., CVP was found to be a reliable estimate of Pes or Ppl) and those reporting negative findings. Both the strength and pitfalls of this approach are highlighted, and the current knowledge gaps and direction for future research are delineated.
Collapse
Affiliation(s)
- Michele Umbrello
- SC Terapia Intensiva Neurochirurgica, ASST Santi Paolo e Carlo Polo Universitario, Ospedale San Carlo Borromeo, Via Pio II, 3, 20151 Milano, Italy
| | - Sergio Cereghini
- SC Terapia Intensiva Neurochirurgica, ASST Santi Paolo e Carlo Polo Universitario, Ospedale San Carlo Borromeo, Via Pio II, 3, 20151 Milano, Italy
| | - Stefano Muttini
- SC Terapia Intensiva Neurochirurgica, ASST Santi Paolo e Carlo Polo Universitario, Ospedale San Carlo Borromeo, Via Pio II, 3, 20151 Milano, Italy
| |
Collapse
|
5
|
Okuda N, Kyogoku M, Inata Y, Isaka K, Moon K, Hatachi T, Shimizu Y, Takeuchi M. Estimation of change in pleural pressure in assisted and unassisted spontaneous breathing pediatric patients using fluctuation of central venous pressure: A preliminary study. PLoS One 2021; 16:e0247360. [PMID: 33647041 PMCID: PMC7920368 DOI: 10.1371/journal.pone.0247360] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 02/05/2021] [Indexed: 11/18/2022] Open
Abstract
Background It is important to evaluate the size of respiratory effort to prevent patient self-inflicted lung injury and ventilator-induced diaphragmatic dysfunction. Esophageal pressure (Pes) measurement is the gold standard for estimating respiratory effort, but it is complicated by technical issues. We previously reported that a change in pleural pressure (ΔPpl) could be estimated without measuring Pes using change in CVP (ΔCVP) that has been adjusted with a simple correction among mechanically ventilated, paralyzed pediatric patients. This study aimed to determine whether our method can be used to estimate ΔPpl in assisted and unassisted spontaneous breathing patients during mechanical ventilation. Methods The study included hemodynamically stable children (aged <18 years) who were mechanically ventilated, had spontaneous breathing, and had a central venous catheter and esophageal balloon catheter in place. We measured the change in Pes (ΔPes), ΔCVP, and ΔPpl that was calculated using a corrected ΔCVP (cΔCVP-derived ΔPpl) under three pressure support levels (10, 5, and 0 cmH2O). The cΔCVP-derived ΔPpl value was calculated as follows: cΔCVP-derived ΔPpl = k × ΔCVP, where k was the ratio of the change in airway pressure (ΔPaw) to the ΔCVP during airway occlusion test. Results Of the 14 patients enrolled in the study, 6 were excluded because correct positioning of the esophageal balloon could not be confirmed, leaving eight patients for analysis (mean age, 4.8 months). Three variables that reflected ΔPpl (ΔPes, ΔCVP, and cΔCVP-derived ΔPpl) were measured and yielded the following results: -6.7 ± 4.8, − -2.6 ± 1.4, and − -7.3 ± 4.5 cmH2O, respectively. The repeated measures correlation between cΔCVP-derived ΔPpl and ΔPes showed that cΔCVP-derived ΔPpl had good correlation with ΔPes (r = 0.84, p< 0.0001). Conclusions ΔPpl can be estimated reasonably accurately by ΔCVP using our method in assisted and unassisted spontaneous breathing children during mechanical ventilation.
Collapse
Affiliation(s)
- Nao Okuda
- Center for Infectious Disease, Nara Medical University Hospital, Kashihara-shi, Nara, Japan
- Department of Intensive Care Medicine, Osaka Women’s and Children’s Hospital, Izumi-shi, Osaka, Japan
| | - Miyako Kyogoku
- Department of Intensive Care Medicine, Osaka Women’s and Children’s Hospital, Izumi-shi, Osaka, Japan
| | - Yu Inata
- Department of Intensive Care Medicine, Osaka Women’s and Children’s Hospital, Izumi-shi, Osaka, Japan
| | - Kanako Isaka
- Department of Intensive Care Medicine, Osaka Women’s and Children’s Hospital, Izumi-shi, Osaka, Japan
| | - Kazue Moon
- Department of Intensive Care Medicine, Osaka Women’s and Children’s Hospital, Izumi-shi, Osaka, Japan
| | - Takeshi Hatachi
- Department of Intensive Care Medicine, Osaka Women’s and Children’s Hospital, Izumi-shi, Osaka, Japan
| | - Yoshiyuki Shimizu
- Department of Intensive Care Medicine, Osaka Women’s and Children’s Hospital, Izumi-shi, Osaka, Japan
| | - Muneyuki Takeuchi
- Department of Intensive Care Medicine, Osaka Women’s and Children’s Hospital, Izumi-shi, Osaka, Japan
- * E-mail:
| |
Collapse
|
6
|
Kyogoku M, Takeuchi M, Inata Y, Okuda N, Shimizu Y, Hatachi T, Moon K, Tachibana K. A novel method for transpulmonary pressure estimation using fluctuation of central venous pressure. J Clin Monit Comput 2019; 34:725-731. [PMID: 31346899 DOI: 10.1007/s10877-019-00368-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/19/2019] [Indexed: 11/26/2022]
Abstract
The objective of the study is to develop a correction method for estimating the change in pleural pressure (ΔPpl) and plateau transpulmonary pressure (PL) by using the change in central venous pressure (ΔCVP). Seven children (aged < 15 years) with acute respiratory failure (PaO2/FIO2 < 300 mmHg), who were paralyzed and mechanically ventilated with a PEEP of < 10 cmH2O and had central venous catheters and esophageal balloon catheters placed for clinical purposes, were enrolled prospectively. We compared change in esophageal pressure (ΔPes), ΔCVP, and ΔPpl calculated using a corrected ΔCVP (cΔCVP-derived ΔPpl). cΔCVP-derived ΔPpl was calculated as κ × ΔCVP, where κ was the ratio of the change in airway pressure (ΔPaw) to ΔCVP during the occlusion test. cΔCVP-derived ΔPpl correlated better than ΔCVP with ΔPes (R2 = 0.48, p = 0.08 vs. R2 = 0.14, p = 0.4) with lesser bias and precision in Bland-Altman analysis. The plateau PL calculated using the cΔCVP-derived ΔPpl (17.6 ± 2.6 cmH2O) correlated well with the ΔPes-derived plateau PL (18.1 ± 2.3 cmH2O) (R2 = 0.90, p = 0.001). Our correction method can estimate ΔPpl and plateau PL from ΔCVP with a reasonable accuracy in paralyzed and mechanically ventilated pediatric patients with respiratory failure.
Collapse
Affiliation(s)
- Miyako Kyogoku
- Department of Intensive Care Medicine, Osaka Women's and Children's Hospital, 840 Murodo-cho, Izumi, Osaka, 594-1101, Japan.
| | - Muneyuki Takeuchi
- Department of Intensive Care Medicine, Osaka Women's and Children's Hospital, 840 Murodo-cho, Izumi, Osaka, 594-1101, Japan
| | - Yu Inata
- Department of Intensive Care Medicine, Osaka Women's and Children's Hospital, 840 Murodo-cho, Izumi, Osaka, 594-1101, Japan
| | - Nao Okuda
- Center for Infectious Diseases, Nara Medical University Hospital, Nara, Japan
| | - Yoshiyuki Shimizu
- Department of Intensive Care Medicine, Osaka Women's and Children's Hospital, 840 Murodo-cho, Izumi, Osaka, 594-1101, Japan
| | - Takeshi Hatachi
- Department of Intensive Care Medicine, Osaka Women's and Children's Hospital, 840 Murodo-cho, Izumi, Osaka, 594-1101, Japan
| | - Kazue Moon
- Department of Intensive Care Medicine, Osaka Women's and Children's Hospital, 840 Murodo-cho, Izumi, Osaka, 594-1101, Japan
| | - Kazuya Tachibana
- Department of Anesthesiology, Osaka Women's and Children's Hospital, Osaka, Japan
| |
Collapse
|
7
|
Chen CH, Liu TP, Chang H, Huang TS, Liu HC, Chen CH. A chest drainage system with a real-time pressure monitoring device. J Thorac Dis 2015; 7:1119-24. [PMID: 26380726 DOI: 10.3978/j.issn.2072-1439.2015.07.09] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 06/01/2015] [Indexed: 11/14/2022]
Abstract
BACKGROUND Tube thoracostomy is a common procedure. A chest bottle may be used to both collect fluids and monitor the recovery of the chest condition. The presence of the "tidaling phenomenon" in the bottle can be reflective of the extent of patient's recovery. OBJECTIVES However, current practice essentially depends on gross observation of the bottle. The device used here is designed for a real-time monitoring of change in pleural pressure to allow clinicians to objectively determine when the lung has recovered, which is crucially important in order to judge when to remove the chest tube. METHODS The device is made of a pressure sensor with an operating range between -100 to +100 cmH2O and an amplifying using the "Wheatstone bridge" concept. Recording and analysis was performed with LABview software. The data can be shown in real-time on screen and also be checked retrospectively. The device was connected to the second part of a three-bottle drain system by a three-way connector. RESULTS The test animals were two 40-kg pigs. We used a thoracoscopic procedure to create an artificial lung laceration with endoscopic scissors. Active air leaks could result in vigorous tidaling phenomenon up to 20 cmH2O. In the absence of gross tidaling phenomenon, the pressure changes were around 0.25 cmH2O. CONCLUSIONS This real-time pleural pressure monitoring device can help clinicians objectively judge the extent of recovery of the chest condition. It can be used as an effective adjunct with the current chest drain system.
Collapse
Affiliation(s)
- Chih-Hao Chen
- 1 Department of Medicine, Mackay Medical College, New Taipei City, Taiwan ; 2 Department of Thoracic Surgery, Mackay Memorial Hospital, Taipei City, Taiwan ; 3 Mackay Junior College of Medicine, Nursing and Management, Taipei City, Taiwan ; 4 Department of General Surgery, Mackay Memorial Hospital, Taipei City, Taiwan ; 5 Graduate Institute of Manufacturing Technology, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Tsang-Pai Liu
- 1 Department of Medicine, Mackay Medical College, New Taipei City, Taiwan ; 2 Department of Thoracic Surgery, Mackay Memorial Hospital, Taipei City, Taiwan ; 3 Mackay Junior College of Medicine, Nursing and Management, Taipei City, Taiwan ; 4 Department of General Surgery, Mackay Memorial Hospital, Taipei City, Taiwan ; 5 Graduate Institute of Manufacturing Technology, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Ho Chang
- 1 Department of Medicine, Mackay Medical College, New Taipei City, Taiwan ; 2 Department of Thoracic Surgery, Mackay Memorial Hospital, Taipei City, Taiwan ; 3 Mackay Junior College of Medicine, Nursing and Management, Taipei City, Taiwan ; 4 Department of General Surgery, Mackay Memorial Hospital, Taipei City, Taiwan ; 5 Graduate Institute of Manufacturing Technology, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Tung-Sung Huang
- 1 Department of Medicine, Mackay Medical College, New Taipei City, Taiwan ; 2 Department of Thoracic Surgery, Mackay Memorial Hospital, Taipei City, Taiwan ; 3 Mackay Junior College of Medicine, Nursing and Management, Taipei City, Taiwan ; 4 Department of General Surgery, Mackay Memorial Hospital, Taipei City, Taiwan ; 5 Graduate Institute of Manufacturing Technology, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Hung-Chang Liu
- 1 Department of Medicine, Mackay Medical College, New Taipei City, Taiwan ; 2 Department of Thoracic Surgery, Mackay Memorial Hospital, Taipei City, Taiwan ; 3 Mackay Junior College of Medicine, Nursing and Management, Taipei City, Taiwan ; 4 Department of General Surgery, Mackay Memorial Hospital, Taipei City, Taiwan ; 5 Graduate Institute of Manufacturing Technology, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Chao-Hung Chen
- 1 Department of Medicine, Mackay Medical College, New Taipei City, Taiwan ; 2 Department of Thoracic Surgery, Mackay Memorial Hospital, Taipei City, Taiwan ; 3 Mackay Junior College of Medicine, Nursing and Management, Taipei City, Taiwan ; 4 Department of General Surgery, Mackay Memorial Hospital, Taipei City, Taiwan ; 5 Graduate Institute of Manufacturing Technology, National Taipei University of Technology, Taipei 10608, Taiwan
| |
Collapse
|
8
|
Bellemare P, Goldberg P, Magder SA. Variations in pulmonary artery occlusion pressure to estimate changes in pleural pressure. Intensive Care Med 2007; 33:2004-8. [PMID: 17762930 DOI: 10.1007/s00134-007-0842-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Accepted: 07/25/2007] [Indexed: 11/29/2022]
Abstract
OBJECTIVE A readily available assessment of changes in pleural pressure would be useful for ventilator and fluid management in critically ill patients. We examined whether changes in pulmonary artery occlusion pressure (Ppao) adequately reflect respiratory changes in pleural pressure as assessed by changes in intraesophageal balloon pressure (Peso). We studied patients who had a pulmonary catheter and esophageal balloon surrounding a nasogastric tube as part of their care (n=24). We compared changes in Ppao (dPpao) to changes in Peso (dPeso) by Bland-Altman and regression analysis. Adequacy of balloon placement was assessed by performing Mueller maneuvers and adjusting the position to achieve a ratio of dPeso to change in tracheal pressure (dPtr) of 0.85 or higher. This was achieved in only 14 of the 24 subjects. We also compared dCVP to dPeso. The dPpao during spontaneous breaths and positive pressure breaths gave a good estimate of Peso but generally underestimated dPeso (bias=2.2 +8.2 and -3.9 cmH2O for the whole group). The dCVP was not as good a predictor (bias=2.9 +10.3 and -4.6). In patients who have a pulmonary artery catheter in place dPpao gives a lower estimate of changes in pleural pressure and may be more reliable than dPeso. The dCVP is a less reliable predictor than changes in pleural pressure.
Collapse
Affiliation(s)
- Patrick Bellemare
- Intensive Care Unit, Hôpital du Sacré Coeur de Montréal, 5400 Gouin Blvd. W, H4J 1C5 Montreal, Canada
| | | | | |
Collapse
|
9
|
Ricksten SE, Medegård A, Curelaru I, Gustavsson B, Linder LE. Estimation of central venous pressure by measurement of proximal axillary venous pressure using a "half-way" catheter. Acta Anaesthesiol Scand 1986; 30:13-7. [PMID: 3515822 DOI: 10.1111/j.1399-6576.1986.tb02358.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The pressure in the proximal axillary vein (AVP) was compared with central venous pressure (CVP) in eight patients during and after elective abdominal surgery. Both pressures were recorded from soft, elastic, polyurethane catheters inserted in the basilic or cephalic veins ("half-way" catheters), punctured at the fossa cubiti (AVP), and via the right jugular vein (CVP). The AVP and CVP were recorded simultaneously using hydrostatic, conventional disposable venous pressure measurement sets. The measurements were performed during intermittent positive pressure ventilation with positive end-expiratory pressure from 0 to 7.5 cmH2O (0-0.74 kPa), as well as during spontaneous breathing. During both controlled and spontaneous respiration, small mean differences (0.2-1.0 cmH2O) (0.02-0.1 kPa), and a highly significant (P less than 0.001) positive correlation between CVP- and AVP-values were found. An increase of 1 cmH2O (0.10 kPa) in the CVP was associated with an increment of practically identical order (0.99-1.04 cmH2O) (0.10-0.11 kPa) in the AVP. The results suggest that monitoring of the AVP by a basilic "half-way" catheter produces diagnostic information similar to that from the measurement of the CVP from subclavian, external or internal jugular, as well as "long-way" brachial catheter, with no risk of the major mechanical complications which accompany the use of the latter catheters.
Collapse
|