1
|
Harter TS, Dichiera AM, Esbaugh AJ. The physiological significance of plasma-accessible carbonic anhydrase in the respiratory systems of fishes. J Comp Physiol B 2024; 194:717-737. [PMID: 38842596 DOI: 10.1007/s00360-024-01562-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/26/2024] [Accepted: 05/13/2024] [Indexed: 06/07/2024]
Abstract
Carbonic anhydrase (CA) activity is ubiquitously found in all vertebrate species, tissues and cellular compartments. Most species have plasma-accessible CA (paCA) isoforms at the respiratory surfaces, where the enzyme catalyzes the conversion of plasma bicarbonate to carbon dioxide (CO2) that can be excreted by diffusion. A notable exception are the teleost fishes that appear to lack paCA at their gills. The present review: (i) recapitulates the significance of CA activity and distribution in vertebrates; (ii) summarizes the current evidence for the presence or absence of paCA at the gills of fishes, from the basal cyclostomes to the derived teleosts and extremophiles such as the Antarctic icefishes; (iii) explores the contribution of paCA to organismal CO2 excretion in fishes; and (iv) the functional significance of its absence at the gills, for the specialized system of O2 transport in most teleosts; (v) outlines the multiplicity and isoform distribution of membrane-associated CAs in fishes and methodologies to determine their plasma-accessible orientation; and (vi) sketches a tentative time line for the evolutionary dynamics of branchial paCA distribution in the major groups of fishes. Finally, this review highlights current gaps in the knowledge on branchial paCA function and provides recommendations for future work.
Collapse
Affiliation(s)
- Till S Harter
- Department of Biology, McMaster University, Hamilton, ON, L8S 4K1, Canada.
| | - Angelina M Dichiera
- College of William and Mary, Virginia Institute of Marine Science, Gloucester Point, VA, 23062, USA
| | - Andrew J Esbaugh
- Marine Science Institute, University of Texas at Austin, Port Aransas, TX, 78373, USA
| |
Collapse
|
2
|
Youssef M, Sundaram ANE, Veitch M, Aziz A, Gurges P, Bingeliene A, Tyndel F, Kendzerska T, Murray BJ, Boulos MI. Obstructive sleep apnea in those with idiopathic intracranial hypertension undergoing diagnostic in-laboratory polysomnography. Sleep Med 2024; 114:279-289. [PMID: 38245928 DOI: 10.1016/j.sleep.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/27/2023] [Accepted: 01/08/2024] [Indexed: 01/23/2024]
Abstract
RATIONALE The association of obstructive sleep apnea (OSA) with idiopathic intracranial hypertension (IIH) remains unclear, and few studies have used objective in-laboratory polysomnography (PSG) data. Thus, we used PSG data to examine the: 1) association between OSA, and its severity, with IIH and 2) sex differences in OSA severity in those with and without IIH. METHODS We retrospectively analyzed diagnostic PSG data from January 2015 to August 2023 for patients who were diagnosed with IIH by a neuro-ophthalmologist using the modified Dandy criteria. We selected three age, sex, and body mass index (BMI) matched controls for each IIH patient. We examined potential associations of IIH with OSA using regression. Sex differences were analyzed using ANOVA. RESULTS Of 3482 patients who underwent PSG, we analyzed 78 IIH patients (16 males) and 234 matched controls (48 males). Five (6.4 %) IIH and 39 (16.7 %) control patients had OSA, defined as AHI≥15. After adjusting for age, sex, BMI, and comorbidities, IIH was negatively associated with the presence of OSA (OR 0.29, 95%CI 0.10-0.87, p = 0.03). However, models that adjusted for acetazolamide use, with or without comorbidities, showed no significant relationship with OSA (OR 0.31, p = 0.20). Males with IIH had a significantly higher age (p = 0.020), OSA severity (p = 0.032), and arousal index (p = 0.046) compared to females with IIH. CONCLUSIONS IIH treated with acetazolamide was not an independent risk factor for OSA presence or severity. The presence of IIH treated with acetazolamide likely does not warrant routine screening for OSA, but related risk factors may identify appropriate patients.
Collapse
Affiliation(s)
- Mark Youssef
- Department of Medicine, Division of Internal Medicine, University of Toronto, Toronto, ON, Canada
| | - Arun N E Sundaram
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada; Department of Medicine, Division of Neurology, University of Toronto, Toronto, ON, Canada
| | - Matthew Veitch
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Arpsima Aziz
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Patrick Gurges
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Arina Bingeliene
- Sleep Laboratory, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Felix Tyndel
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada; Department of Medicine, Division of Neurology, University of Toronto, Toronto, ON, Canada
| | - Tetyana Kendzerska
- Department of Medicine, Division of Respirology, University of Ottawa, Ottawa, ON, Canada; The Ottawa Hospital Sleep Center, The Ottawa Hospital, Ottawa, ON, Canada; Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Brian J Murray
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Department of Medicine, Division of Neurology, University of Toronto, Toronto, ON, Canada; Sleep Laboratory, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Mark I Boulos
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Department of Medicine, Division of Neurology, University of Toronto, Toronto, ON, Canada; Sleep Laboratory, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.
| |
Collapse
|
3
|
Gill PK, Kipp S, Beck ON, Kram R. It is time to abandon single-value oxygen uptake energy equivalents. J Appl Physiol (1985) 2023; 134:887-890. [PMID: 36825641 DOI: 10.1152/japplphysiol.00353.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Physiologists commonly use single-value energy equivalents (e.g., 20.1 kJ/LO2 and 20.9 kJ/LO2) to convert oxygen uptake (V̇o2) to energy, but doing so ignores how the substrate oxidation ratio (carbohydrate:fat) changes across aerobic intensities. Using either 20.1 kJ/LO2 or 20.9 kJ/LO2 can incur systematic errors of up to 7%. In most circumstances, the best approach for estimating energy expenditure is to measure both V̇o2 and V̇co2 and use accurate, species-appropriate stoichiometry. However, there are circumstances when V̇co2 measurements may be unreliable. In those circumstances, we recommend that the research report or compare only V̇o2.NEW & NOTEWORTHY We quantify that the common practice of using single-value oxygen uptake energy equivalents for exercising subjects can incur systematic errors of up to 7%. We argue that such errors can be greatly reduced if researchers measure both V̇o2 and V̇co2 and adopt appropriate stoichiometry equations.
Collapse
Affiliation(s)
- Pavreet K Gill
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Shalaya Kipp
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Owen N Beck
- Department of Kinesiology and Health Education, University of Texas, Austin, Texas, United States
| | - Rodger Kram
- Integrative Physiology Department, University of Colorado, Boulder, Colorado, United States
| |
Collapse
|
4
|
Doherty CJ, Chang JC, Thompson BP, Swenson ER, Foster GE, Dominelli PB. The Impact of Acetazolamide and Methazolamide on Exercise Performance in Normoxia and Hypoxia. High Alt Med Biol 2023; 24:7-18. [PMID: 36802203 DOI: 10.1089/ham.2022.0134] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Doherty, Connor J., Jou-Chung Chang, Benjamin P. Thompson, Erik R. Swenson, Glen E. Foster, and Paolo B. Dominelli. The impact of acetazolamide and methazolamide on exercise performance in normoxia and hypoxia. High Alt Med Biol. 24:7-18, 2023.-Carbonic anhydrase (CA) inhibitors are commonly prescribed for acute mountain sickness (AMS). In this review, we sought to examine how two CA inhibitors, acetazolamide (AZ) and methazolamide (MZ), affect exercise performance in normoxia and hypoxia. First, we briefly describe the role of CA inhibition in facilitating the increase in ventilation and arterial oxygenation in preventing and treating AMS. Next, we detail how AZ affects exercise performance in normoxia and hypoxia and this is followed by a discussion on MZ. We emphasize that the overarching focus of the review is how the two drugs potentially affect exercise performance, rather than their ability to prevent/treat AMS per se, their interrelationship will be discussed. Overall, we suggest that AZ hinders exercise performance in normoxia, but may be beneficial in hypoxia. Based upon head-to-head studies of AZ and MZ in humans on diaphragmatic and locomotor strength in normoxia, MZ may be a better CA inhibitor when exercise performance is crucial at high altitude.
Collapse
Affiliation(s)
- Connor J Doherty
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - Jou-Chung Chang
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - Benjamin P Thompson
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - Erik R Swenson
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Washington, USA
- Medical Service, VA Puget Sound Health Care System, Seattle, Washington, USA
| | - Glen E Foster
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Paolo B Dominelli
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
5
|
Caldwell HG, Hoiland RL, Smith KJ, Brassard P, Bain AR, Tymko MM, Howe CA, Carr JMJR, Stacey BS, Bailey DM, Drapeau A, Sekhon MS, MacLeod DB, Ainslie PN. Trans-cerebral HCO 3- and PCO 2 exchange during acute respiratory acidosis and exercise-induced metabolic acidosis in humans. J Cereb Blood Flow Metab 2022; 42:559-571. [PMID: 34904461 PMCID: PMC8943603 DOI: 10.1177/0271678x211065924] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/03/2021] [Accepted: 11/11/2021] [Indexed: 01/06/2023]
Abstract
This study investigated trans-cerebral internal jugular venous-arterial bicarbonate ([HCO3-]) and carbon dioxide tension (PCO2) exchange utilizing two separate interventions to induce acidosis: 1) acute respiratory acidosis via elevations in arterial PCO2 (PaCO2) (n = 39); and 2) metabolic acidosis via incremental cycling exercise to exhaustion (n = 24). During respiratory acidosis, arterial [HCO3-] increased by 0.15 ± 0.05 mmol ⋅ l-1 per mmHg elevation in PaCO2 across a wide physiological range (35 to 60 mmHg PaCO2; P < 0.001). The narrowing of the venous-arterial [HCO3-] and PCO2 differences with respiratory acidosis were both related to the hypercapnia-induced elevations in cerebral blood flow (CBF) (both P < 0.001; subset n = 27); thus, trans-cerebral [HCO3-] exchange (CBF × venous-arterial [HCO3-] difference) was reduced indicating a shift from net release toward net uptake of [HCO3-] (P = 0.004). Arterial [HCO3-] was reduced by -0.48 ± 0.15 mmol ⋅ l-1 per nmol ⋅ l-1 increase in arterial [H+] with exercise-induced acidosis (P < 0.001). There was no relationship between the venous-arterial [HCO3-] difference and arterial [H+] with exercise-induced acidosis or CBF; therefore, trans-cerebral [HCO3-] exchange was unaltered throughout exercise when indexed against arterial [H+] or pH (P = 0.933 and P = 0.896, respectively). These results indicate that increases and decreases in systemic [HCO3-] - during acute respiratory/exercise-induced metabolic acidosis, respectively - differentially affect cerebrovascular acid-base balance (via trans-cerebral [HCO3-] exchange).
Collapse
Affiliation(s)
- Hannah G Caldwell
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Ryan L Hoiland
- Department of Anesthesiology, Pharmacology and Therapeutics, Vancouver General Hospital, University of British Columbia, Vancouver, BC, Canada
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Kurt J Smith
- Department of Exercise Science, Physical and Health Education, Faculty of Education, University of Victoria, Victoria, British Columbia, Canada
| | - Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada
- Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec, QC, Canada
| | - Anthony R Bain
- Faculty of Human Kinetics, Department of Kinesiology, University of Windsor, Windsor, ON, Canada
| | - Michael M Tymko
- Neurovascular Health Laboratory, Faculty of Kinesiology, Sport and Recreation, University of Alberta, Edmonton, AB, Canada
| | - Connor A Howe
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Jay MJR Carr
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Benjamin S Stacey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK
| | - Damian M Bailey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK
| | - Audrey Drapeau
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada
- Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec, QC, Canada
| | - Mypinder S Sekhon
- Division of Critical Care Medicine, Department of Medicine, Vancouver General Hospital, Vancouver General Hospital, University of British Columbia, Vancouver, BC, Canada
| | - David B MacLeod
- Human Pharmacology and Physiology Lab, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada
| |
Collapse
|
6
|
Dichiera AM, Esbaugh AJ. Red blood cell carbonic anhydrase mediates oxygen delivery via the Root effect in red drum. ACTA ACUST UNITED AC 2020; 223:223/22/jeb232991. [PMID: 33243926 DOI: 10.1242/jeb.232991] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/08/2020] [Indexed: 12/15/2022]
Abstract
Oxygen (O2) and carbon dioxide (CO2) transport are tightly coupled in many fishes as a result of the presence of Root effect hemoglobins (Hb), whereby reduced pH reduces O2 binding even at high O2 tensions. Red blood cell carbonic anhydrase (RBC CA) activity limits the rate of intracellular acidification, yet its role in O2 delivery has been downplayed. We developed an in vitro assay to manipulate RBC CA activity while measuring Hb-O2 offloading following a physiologically relevant CO2-induced acidification. RBC CA activity in red drum (Sciaenops ocellatus) was inhibited with ethoxzolamide by 53.7±0.5%, which prompted a significant reduction in O2 offloading rate by 54.3±5.4% (P=0.0206, two-tailed paired t-test; n=7). Conversely, a 2.03-fold increase in RBC CA activity prompted a 2.14-fold increase in O2 offloading rate (P<0.001, two-tailed paired t-test; n=8). This approximately 1:1 relationship between RBC CA activity and Hb-O2 offloading rate coincided with a similar allometric scaling exponent for RBC CA activity and maximum metabolic rate. Together, our data suggest that RBC CA is rate limiting for O2 delivery in red drum.
Collapse
Affiliation(s)
- Angelina M Dichiera
- The University of Texas at Austin Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, USA
| | - Andrew J Esbaugh
- The University of Texas at Austin Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, USA
| |
Collapse
|
7
|
Wang L, Sparacino-Watkins CE, Wang J, Wajih N, Varano P, Xu Q, Cecco E, Tejero J, Soleimani M, Kim-Shapiro DB, Gladwin MT. Carbonic anhydrase II does not regulate nitrite-dependent nitric oxide formation and vasodilation. Br J Pharmacol 2019; 177:898-911. [PMID: 31658361 DOI: 10.1111/bph.14887] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND AND PURPOSE Although it has been reported that bovine carbonic anhydrase CAII is capable of generating NO from nitrite, the function and mechanism of CAII in nitrite-dependent NO formation and vascular responses remain controversial. We tested the hypothesis that CAII catalyses NO formation from nitrite and contributes to nitrite-dependent inhibition of platelet activation and vasodilation. EXPERIMENT APPROACH The role of CAII in enzymatic NO generation was investigated by measuring NO formation from the reaction of isolated human and bovine CAII with nitrite using NO photolysis-chemiluminescence. A CAII-deficient mouse model was used to determine the role of CAII in red blood cell mediated nitrite reduction and vasodilation. KEY RESULTS We found that the commercially available purified bovine CAII exhibited limited and non-enzymatic NO-generating reactivity in the presence of nitrite with or without addition of the CA inhibitor dorzolamide; the NO formation was eliminated with purification of the enzyme. There was no significant detectable NO production from the reaction of nitrite with recombinant human CAII. Using a CAII-deficient mouse model, there were no measurable changes in nitrite-dependent vasodilation in isolated aorta rings and in vivo in CAII-/- , CAII+/- , and wild-type mice. Moreover, deletion of the CAII gene in mice did not block nitrite reduction by red blood cells and the nitrite-NO-dependent inhibition of platelet activation. CONCLUSION AND IMPLICATIONS These studies suggest that human, bovine and mouse CAII are not responsible for nitrite-dependent NO formation in red blood cells, aorta, or the systemic circulation.
Collapse
Affiliation(s)
- Ling Wang
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania.,Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Courtney E Sparacino-Watkins
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania.,Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jun Wang
- Hubei University of Technology, Wuhan, P. R. China
| | - Nadeem Wajih
- Department of Physics, Wake Forest University, Winston-Salem, North Carolina
| | - Paul Varano
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Qinzi Xu
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Eric Cecco
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jesús Tejero
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania.,Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Daniel B Kim-Shapiro
- Department of Physics, Wake Forest University, Winston-Salem, North Carolina.,Translational Science Center, Wake Forest University, Winston-Salem, North Carolina
| | - Mark T Gladwin
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania.,Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
8
|
El-Azab AS, Abdel-Aziz AAM, Bua S, Nocentini A, Alanazi MM, AlSaif NA, Al-Suwaidan IA, Hefnawy MM, Supuran CT. Synthesis and comparative carbonic anhydrase inhibition of new Schiff's bases incorporating benzenesulfonamide, methanesulfonamide, and methylsulfonylbenzene scaffolds. Bioorg Chem 2019; 92:103225. [PMID: 31493707 DOI: 10.1016/j.bioorg.2019.103225] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 08/25/2019] [Accepted: 08/27/2019] [Indexed: 01/07/2023]
Abstract
Herein, we report the synthesis, characterization, and carbonic anhydrase (CA) inhibition of the newly synthesized Schiff's bases 4-18 with benzenesulfonamide, methanesulfonamide, and methylsulfonylbenzene scaffolds. The compound inhibition profiles against human CA (hCA) isoforms I, II, IX, and XII were compared to those of the standard inhibitors, acetazolamide (AAZ) and SLC-0111 (a CA inhibitor in Phase II clinical trials for the treatment of hypoxic tumors). The hCA I was inhibited by compounds 4a-8a with inhibition constants (KI) in the range 93.5-428.1 nM (AAZ and SLC-0111: KI, 250.0 and 5080.0 nM, respectively). Compounds 4a-8a proved to be effective hCA II inhibitors, with KI ranging from 18.2 to 133.3 nM (AAZ and SLC-0111: KI, 12.0 and 960.0 nM, respectively). Compounds 4a-8a effectively inhibited hCA IX, with KI in the range 8.5-24.9 nM; these values are superior or equivalent to that of AAZ and SLC-0111 (KI, 25.0 and 45.0 nM, respectively). Compounds 4a-8a displayed effective hCA XII inhibitory activity with KI values ranging from 8.6 to 43.2 nM (AAZ and SLC-0111: KI, 5.7 and 4.5 nM, respectively). However, compounds 9b-13b and 14c-18c were found to be micromolar CA inhibitors. For molecular docking studies, compounds 5a, 6a, and 8a were selected.
Collapse
Affiliation(s)
- Adel S El-Azab
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.
| | - Alaa A-M Abdel-Aziz
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Silvia Bua
- Università degli Studi di Firenze, Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Alessio Nocentini
- Università degli Studi di Firenze, Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Mohammed M Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Nawaf A AlSaif
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Ibrahim A Al-Suwaidan
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohamed M Hefnawy
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Claudiu T Supuran
- Università degli Studi di Firenze, Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
9
|
Abstract
Maintenance of intracellular pH is critical for clinical homeostasis. The metabolism of glucose, fatty acids, and amino acids yielding the generation of adenosine triphosphate in the mitochondria is accompanied by the production of acid in the Krebs cycle. Both the nature of this acidosis and the mechanism of its disposal have been argued by two investigators with a long-abiding interest in acid-base physiology. They offer different interpretations and views of the molecular mechanism of this intracellular pH regulation during normal metabolism. Dr. John Severinghaus has posited that hydrogen ion and bicarbonate are the direct end products in the Krebs cycle. In the late 1960s, he showed in brain and brain homogenate experiments that acetazolamide, a carbonic anhydrase inhibitor, reduces intracellular pH. This led him to conclude that hydrogen ion and bicarbonate are the end products, and the role of intracellular carbonic anhydrase is to rapidly generate diffusible carbon dioxide to minimize acidosis. Dr. Erik Swenson posits that carbon dioxide is a direct end product in the Krebs cycle, a more widely accepted view, and that acetazolamide prevents rapid intracellular bicarbonate formation, which can then codiffuse with carbon dioxide to the cell surface and there be reconverted for exit from the cell. Loss of this "facilitated diffusion of carbon dioxide" leads to intracellular acidosis as the still appreciable uncatalyzed rate of carbon dioxide hydration generates more protons. This review summarizes the available evidence and determines that resolution of this question will require more sophisticated measurements of intracellular pH with faster temporal resolution.
Collapse
|
10
|
Brauner CJ, Shartau RB, Damsgaard C, Esbaugh AJ, Wilson RW, Grosell M. Acid-base physiology and CO2 homeostasis: Regulation and compensation in response to elevated environmental CO2. FISH PHYSIOLOGY 2019. [DOI: 10.1016/bs.fp.2019.08.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Whittamore JM, Hatch M. Oxalate transport by the mouse intestine in vitro is not affected by chronic challenges to systemic acid-base homeostasis. Urolithiasis 2018; 47:243-254. [PMID: 29947993 DOI: 10.1007/s00240-018-1067-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/10/2018] [Indexed: 12/15/2022]
Abstract
In rats, we recently showed how a chronic metabolic acidosis simultaneously reduced urinary oxalate excretion and promoted oxalate secretion by the distal colon leading to the proposition that acid-base disturbances may trigger changes to renal and intestinal oxalate handling. The present study sought to reproduce and extend these observations using the mouse model, where the availability of targeted gene knockouts (KOs) would offer future opportunities to reveal some of the underlying transporters and mechanisms involved. Mice were provided with a sustained load of acid (NH4Cl), base (NaHCO3) or the carbonic anhydrase inhibitor acetazolamide (ATZ) for 7 days after which time the impacts on urinary oxalate excretion and its transport by the intestine were evaluated. Mice consuming NH4Cl developed a metabolic acidosis but urinary oxalate was only reduced 46% and not statistically different from the control group, while provision of NaHCO3 provoked a significant 2.6-fold increase in oxalate excretion. For mice receiving ATZ, the rate of urinary oxalate excretion did not change significantly. Critically, none of these treatments altered the fluxes of oxalate (or chloride) across the distal ileum, cecum or distal colon. Hence, we were unable to produce the same effects of a metabolic acidosis in mice that we had previously found in rats, failing to find any evidence of the 'gut-kidney axis' influencing oxalate handling in response to various acid-base challenges. Despite the potential advantages offered by KO mice, this model species is not suitable for exploring how acid-base status regulates oxalate handling between the kidney and intestine.
Collapse
Affiliation(s)
- Jonathan M Whittamore
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, PO Box 100275, 1600 SW Archer Rd, Gainesville, FL, 32610, USA.
| | - Marguerite Hatch
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, PO Box 100275, 1600 SW Archer Rd, Gainesville, FL, 32610, USA
| |
Collapse
|
12
|
Dominelli PB, McNeil CJ, Vermeulen TD, Stuckless TJR, Brown CV, Dominelli GS, Swenson ER, Teppema LJ, Foster GE. Effect of acetazolamide and methazolamide on diaphragm and dorsiflexor fatigue: a randomized controlled trial. J Appl Physiol (1985) 2018; 125:770-779. [PMID: 29792554 DOI: 10.1152/japplphysiol.00256.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Acetazolamide, a carbonic anhydrase (CA) inhibitor used clinically and to prevent acute mountain sickness, worsens skeletal muscle fatigue in animals and humans. In animals, methazolamide, a methylated analog of acetazolamide and an equally potent CA inhibitor, reportedly exacerbates fatigue less than acetazolamide. Accordingly, we sought to determine, in humans, if methazolamide would attenuate diaphragm and dorsiflexor fatigue compared with acetazolamide. Healthy men (dorsiflexor: n = 12; diaphragm: n = 7) performed fatiguing exercise on three occasions, after ingesting acetazolamide (250 mg three times a day) and then in random order, methazolamide (100 mg twice a day) or placebo for 48 h. For both muscles, subjects exercised at a fixed intensity until exhaustion on acetazolamide, with subsequent iso-time and -workload trials. Diaphragm exercise was performed using a threshold-loading device, while dorsiflexor exercise was isometric. Neuromuscular function was determined pre- and postexercise by potentiated transdiaphragmatic twitch pressure and dorsiflexor torque in response to stimulation of the phrenic and fibular nerve, respectively. Diaphragm contractility 3-10 min postexercise was impaired more for acetazolamide than methazolamide or placebo (82 ± 10, 87 ± 9, and 91 ± 8% of pre-exercise value; P < 0.05). Similarly, dorsiflexor fatigue was greater for acetazolamide than methazolamide (mean twitch torque of 61 ± 11 vs. 57 ± 13% of baseline, P < 0.05). In normoxia, methazolamide leads to less neuromuscular fatigue than acetazolamide, indicating a possible benefit for clinical use or in the prophylaxis of acute mountain sickness. NEW & NOTEWORTHY Acetazolamide, a carbonic anhydrase inhibitor, may worsen diaphragm and locomotor muscle fatigue after exercise; whereas, in animals, methazolamide does not impair diaphragm function. Compared with both methazolamide and the placebo, acetazolamide significantly compromised dorsiflexor function at rest and after exhaustive exercise. Similarly, diaphragm function was most compromised on acetazolamide followed by methazolamide and placebo. Methazolamide may be preferable over acetazolamide for clinical use and altitude illness prophylaxis to avoid skeletal muscle dysfunction.
Collapse
Affiliation(s)
- Paolo B Dominelli
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Science, University of British Columbia , Kelowna , Canada
| | - Chris J McNeil
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Science, University of British Columbia , Kelowna , Canada
| | - Tyler D Vermeulen
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Science, University of British Columbia , Kelowna , Canada
| | - Troy J R Stuckless
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Science, University of British Columbia , Kelowna , Canada
| | - Courtney V Brown
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Science, University of British Columbia , Kelowna , Canada
| | - Giulio S Dominelli
- Southern Medical Program, University of British Columbia, Kelowna, Canada
| | - Erik R Swenson
- Division of Pulmonary & Critical Care Medicine, VA Puget Sound Health Care System, University of Washington , Seattle, Washington
| | - Lucas J Teppema
- Department of Anesthesiology, Leiden University Medical Center , Leiden , The Netherlands
| | - Glen E Foster
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Science, University of British Columbia , Kelowna , Canada
| |
Collapse
|
13
|
Harter TS, May AG, Federspiel WJ, Supuran CT, Brauner CJ. Time course of red blood cell intracellular pH recovery following short-circuiting in relation to venous transit times in rainbow trout, Oncorhynchus mykiss. Am J Physiol Regul Integr Comp Physiol 2018; 315:R397-R407. [PMID: 29641235 DOI: 10.1152/ajpregu.00062.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Accumulating evidence is highlighting the importance of a system of enhanced hemoglobin-oxygen (Hb-O2) unloading for cardiovascular O2 transport in teleosts. Adrenergically stimulated sodium-proton exchangers (β-NHE) create H+ gradients across the red blood cell (RBC) membrane that are short-circuited in the presence of plasma-accessible carbonic anhydrase (paCA) at the tissues; the result is a large arterial-venous pH shift that greatly enhances O2 unloading from pH-sensitive Hb. However, RBC intracellular pH (pHi) must recover during venous transit (31-90 s) to enable O2 loading at the gills. The halftimes ( t1/2) and magnitudes of RBC β-adrenergic stimulation, short-circuiting with paCA and recovery of RBC pHi, were assessed in vitro, on rainbow trout whole blood, and using changes in closed-system partial pressure of O2 as a sensitive indicator for changes in RBC pHi. In addition, the recovery rate of RBC pHi was assessed in a continuous-flow apparatus that more closely mimics RBC transit through the circulation. Results indicate that: 1) the t1/2 of β-NHE short-circuiting is likely within the residence time of blood in the capillaries, 2) the t1/2 of RBC pHi recovery is 17 s and within the time of RBC venous transit, and 3) after short-circuiting, RBCs reestablish the initial H+ gradient across the membrane and can potentially undergo repeated cycles of short-circuiting and recovery. Thus, teleosts have evolved a system that greatly enhances O2 unloading from pH-sensitive Hb at the tissues, while protecting O2 loading at the gills; the resulting increase in O2 transport per unit of blood flow may enable the tremendous athletic ability of salmonids.
Collapse
Affiliation(s)
- Till S Harter
- Department of Zoology, University of British Columbia , Vancouver, BC , Canada
| | - Alexandra G May
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - William J Federspiel
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania.,ALung Technologies, Inc. , Pittsburgh, Pennsylvania
| | - Claudiu T Supuran
- NEUROFARBA Department, Università degli Studi di Firenze , Florence , Italy
| | - Colin J Brauner
- Department of Zoology, University of British Columbia , Vancouver, BC , Canada
| |
Collapse
|
14
|
Swenson ER. Carbon dioxide elimination by cardiomyocytes: a tale of high carbonic anhydrase activity and membrane permeability. Acta Physiol (Oxf) 2017; 221:95-97. [PMID: 28742954 DOI: 10.1111/apha.12922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- E. R. Swenson
- Department of Medicine; University of Washington; Seattle WA USA
| |
Collapse
|
15
|
Arias-Hidalgo M, Al-Samir S, Weber N, Geers-Knörr C, Gros G, Endeward V. CO 2 permeability and carbonic anhydrase activity of rat cardiomyocytes. Acta Physiol (Oxf) 2017; 221:115-128. [PMID: 28429509 DOI: 10.1111/apha.12887] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 04/11/2017] [Accepted: 04/14/2017] [Indexed: 11/30/2022]
Abstract
AIM To determine the CO2 permeability (PCO2 ) of plasma membranes of cardiomyocytes. These cells were chosen because heart possesses the highest rate of O2 consumption/CO2 production in the body. METHODS Cardiomyocytes were isolated from rat hearts using the Langendorff technique. Cardiomyocyte suspensions exhibited a vitality of 2-14% and were studied by the previously described mass spectrometric 18 O-exchange technique deriving PCO2 . We showed by mass spectrometry and by carbonic anhydrase (CA) staining that non-vital cardiomyocytes are free of CA and thus do not contribute to the mass spectrometric signal, which is determined exclusively by the fully functional vital cardiomyocytes. RESULTS Lysed cardiomyocytes yielded an intracellular CA activity for vital cells of 5070; that is, the rate of CO2 hydration inside the cell is accelerated 5071-fold. Using this number, analyses of the mass spectrometric recordings from cardiomyocyte suspensions yield a PCO2 of 0.10 cm s-1 (SD ± 0.06, n = 15) at 37 °C. CONCLUSION In comparison with the PCO2 of other cells, this value is quite high and about identical to that of the human red cell membrane. As no major protein CO2 channels such as aquaporins 1 and 4 are present in rat cardiac sarcolemma, the high PCO2 of this membrane is likely due to its low cholesterol content of about 0.2 (mol cholesterol)·(mol total membrane lipids)-1 . Previous work predicted a PCO2 of ≥0.1 cm s-1 from this level of cholesterol. We conclude that the low cholesterol establishes a PCO2 high enough to render the membrane resistance to CO2 diffusion almost negligible, even under conditions of maximal O2 consumption of the heart.
Collapse
Affiliation(s)
- M. Arias-Hidalgo
- Molekular- und Zellphysiologie and AG Vegetative Physiologie; Medizinische Hochschule Hannover; Hannover Germany
| | - S. Al-Samir
- Molekular- und Zellphysiologie and AG Vegetative Physiologie; Medizinische Hochschule Hannover; Hannover Germany
| | - N. Weber
- Molekular- und Zellphysiologie and AG Vegetative Physiologie; Medizinische Hochschule Hannover; Hannover Germany
| | - C. Geers-Knörr
- Molekular- und Zellphysiologie and AG Vegetative Physiologie; Medizinische Hochschule Hannover; Hannover Germany
| | - G. Gros
- Molekular- und Zellphysiologie and AG Vegetative Physiologie; Medizinische Hochschule Hannover; Hannover Germany
| | - V. Endeward
- Molekular- und Zellphysiologie and AG Vegetative Physiologie; Medizinische Hochschule Hannover; Hannover Germany
| |
Collapse
|
16
|
Harter TS, Brauner CJ. The O 2 and CO 2 Transport System in Teleosts and the Specialized Mechanisms That Enhance Hb–O 2 Unloading to Tissues. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/bs.fp.2017.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
17
|
Wang K, Smith ZM, Buxton RB, Swenson ER, Dubowitz DJ. Acetazolamide during acute hypoxia improves tissue oxygenation in the human brain. J Appl Physiol (1985) 2015; 119:1494-500. [PMID: 26472861 PMCID: PMC4683345 DOI: 10.1152/japplphysiol.00117.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 10/09/2015] [Indexed: 01/29/2023] Open
Abstract
Low doses of the carbonic anhydrase inhibitor acetazolamide provides accelerated acclimatization to high-altitude hypoxia and prevention of cerebral and other symptoms of acute mountain sickness. We previously observed increases in cerebral O2 metabolism (CMRO2 ) during hypoxia. In this study, we investigate whether low-dose oral acetazolamide (250 mg) reduces this elevated CMRO2 and in turn might improve cerebral tissue oxygenation (PtiO2 ) during acute hypoxia. Six normal human subjects were exposed to 6 h of normobaric hypoxia with and without acetazolamide prophylaxis. We determined CMRO2 and cerebral PtiO2 from MRI measurements of cerebral blood flow (CBF) and cerebral venous O2 saturation. During normoxia, low-dose acetazolamide resulted in no significant change in CBF, CMRO2 , or PtiO2 . During hypoxia, we observed increases in CBF [48.5 (SD 12.4) (normoxia) to 65.5 (20.4) ml·100 ml(-1)·min(-1) (hypoxia), P < 0.05] and CMRO2 [1.54 (0.19) to 1.79 (0.25) μmol·ml(-1)·min(-1), P < 0.05] and a dramatic decline in PtiO2 [25.0 to 11.4 (2.7) mmHg, P < 0.05]. Acetazolamide prophylaxis mitigated these rises in CBF [53.7 (20.7) ml·100 ml(-1)·min(-1) (hypoxia + acetazolamide)] and CMRO2 [1.41 (0.09) μmol·ml(-1)·min(-1) (hypoxia + acetazolamide)] associated with acute hypoxia but also reduced O2 delivery [6.92 (1.45) (hypoxia) to 5.60 (1.14) mmol/min (hypoxia + acetazolamide), P < 0.05]. The net effect was improved cerebral tissue PtiO2 during acute hypoxia [11.4 (2.7) (hypoxia) to 16.5 (3.0) mmHg (hypoxia + acetazolamide), P < 0.05]. In addition to its renal effect, low-dose acetazolamide is effective at the capillary endothelium, and we hypothesize that local interruption in cerebral CO2 excretion accounts for the improvements in CMRO2 and ultimately in cerebral tissue oxygenation during hypoxia. This study suggests a potentially pivotal role of cerebral CO2 and pH in modulating CMRO2 and PtiO2 during acute hypoxia.
Collapse
Affiliation(s)
- Kang Wang
- Center for Functional MRI, Department of Radiology, University of California, San Diego, California; School of Medicine, University of California, San Diego, California; and
| | - Zachary M Smith
- Center for Functional MRI, Department of Radiology, University of California, San Diego, California
| | - Richard B Buxton
- Center for Functional MRI, Department of Radiology, University of California, San Diego, California
| | - Erik R Swenson
- Department of Medicine, University of Washington and Veterans Affairs Puget Sound Health Care System, Seattle, Washington
| | - David J Dubowitz
- Center for Functional MRI, Department of Radiology, University of California, San Diego, California;
| |
Collapse
|
18
|
Swenson ER. New insights into carbonic anhydrase inhibition, vasodilation, and treatment of hypertensive-related diseases. Curr Hypertens Rep 2015; 16:467. [PMID: 25079851 DOI: 10.1007/s11906-014-0467-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Carbonic anhydrase (CA) and its inhibitors are relevant to many physiological processes and diseases. The enzyme is differentially expressed throughout the body, in concentration and subcellular location, and as 13 catalytically active isoforms. Blood vessels contain small amounts of CA, but the enzyme's role in vascular physiology and blood pressure regulation is uncertain. However, considerable recent evidence points to vasodilation by CA inhibitors. CA inhibition in vascular smooth muscle, endothelium, heart, blood cells, and nervous system could all contribute. It is equally plausible that other targets besides CA for all known CA inhibitors may account for their vascular effects. I will review this knowledge and important remaining gaps relating to treatment of hypertensive-related diseases with potent sulfonamide inhibitors, such as acetazolamide; but also the possibility that CA inhibition by thiazides and loop diuretics, although generally weaker, may have antihypertensive effects beyond their inhibition of renal sodium transporters.
Collapse
Affiliation(s)
- Erik R Swenson
- Department of Veterans Affairs, Pulmonary and Critical Care Medicine, VA Puget Sound Health Care System, University of Washington, 1660 South Columbian Way, Seattle, WA, USA,
| |
Collapse
|
19
|
Robertson HT. Dead space: the physiology of wasted ventilation. Eur Respir J 2014; 45:1704-16. [PMID: 25395032 DOI: 10.1183/09031936.00137614] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 09/29/2014] [Indexed: 11/05/2022]
Abstract
An elevated physiological dead space, calculated from measurements of arterial CO2 and mixed expired CO2, has proven to be a useful clinical marker of prognosis both for patients with acute respiratory distress syndrome and for patients with severe heart failure. Although a frequently cited explanation for an elevated dead space measurement has been the development of alveolar regions receiving no perfusion, evidence for this mechanism is lacking in both of these disease settings. For the range of physiological abnormalities associated with an increased physiological dead space measurement, increased alveolar ventilation/perfusion ratio (V'A/Q') heterogeneity has been the most important pathophysiological mechanism. Depending on the disease condition, additional mechanisms that can contribute to an elevated physiological dead space measurement include shunt, a substantial increase in overall V'A/Q' ratio, diffusion impairment, and ventilation delivered to unperfused alveolar spaces.
Collapse
Affiliation(s)
- H Thomas Robertson
- Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
20
|
Apostolo A, Agostoni P, Contini M, Antonioli L, Swenson ER. Acetazolamide and inhaled carbon dioxide reduce periodic breathing during exercise in patients with chronic heart failure. J Card Fail 2014; 20:278-88. [PMID: 24418726 DOI: 10.1016/j.cardfail.2014.01.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 12/23/2013] [Accepted: 01/07/2014] [Indexed: 01/25/2023]
Abstract
BACKGROUND Periodic breathing (PB) during sleep and exercise in heart failure (HF) is related to respiratory acid-base status, CO2 chemosensitivity, and temporal dynamics of CO2 and O2 sensing. We studied inhaled CO2 and acetazolamide to alter these factors and reduce PB. METHODS AND RESULTS We measured expired and arterial gases and PB amplitude and duration in 20 HF patients during exercise before and after acetazolamide given acutely (500 mg intravenously) and prolonged (24 hours, 2 g orally), and we performed overnight polysomnography. We studied CO2 inhalation (1%-2%) during constant workload exercise. PB disappeared in 19/20 and 2/7 patients during 2% and 1% CO2. No changes in cardiorespiratory parameters were observed after acute acetazolamide. With prolonged acetazolamide at rest: ventilation +2.04 ± 4.0 L/min (P = .001), tidal volume +0.11 ± 1.13 L (P = .003), respiratory rate +1.24 ± 4.63 breaths/min (NS), end-tidal PO2 +4.62 ± 2.43 mm Hg (P = .001), and end-tidal PCO2 -2.59 ± 9.7 mm Hg (P < .001). At maximum exercise: Watts -10% (P < .02), VO2 -61 ± 109 mL/min (P = .04) and VCO2 101 ± 151 mL/min (P < .02). Among 20 patients, PB disappeared in 1 and 7 subjects after acute and prolonged acetazolamide, respectively. PB was present 80% ± 26, 65% ± 28, and 43% ± 39 of exercise time before and after acute and prolonged acetazolamide, respectively. Overnight apnea/hypopnea index decreased from 30.8 ± 83.8 to 21.1 ± 16.9 (P = .003). CONCLUSIONS In HF, inhaled CO2 and acetazolamide reduce exercise PB with additional benefits of acetazolamide on sleep PB.
Collapse
Affiliation(s)
| | - Piergiuseppe Agostoni
- Centro Cardiologico Monzino, IRCCS, Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.
| | | | | | - Erik R Swenson
- Pulmonary and Critical Care Medicine, Veterans Administration Puget Sound Health Care System, University of Washington, Seattle, Washington
| |
Collapse
|
21
|
Abstract
Carbonic anhydrase (CA) inhibitors, particularly acetazolamide, have been used at high altitude for decades to prevent or reduce acute mountain sickness (AMS), a syndrome of symptomatic intolerance to altitude characterized by headache, nausea, fatigue, anorexia and poor sleep. Principally CA inhibitors act to further augment ventilation over and above that stimulated by the hypoxia of high altitude by virtue of renal and endothelial cell CA inhibition which oppose the hypocapnic alkalosis resulting from the hypoxic ventilatory response (HVR), which acts to limit the full expression of the HVR. The result is even greater arterial oxygenation than that driven by hypoxia alone and greater altitude tolerance. The severity of several additional diseases of high attitude may also be reduced by acetazolamide, including high altitude cerebral edema (HACE), high altitude pulmonary edema (HAPE) and chronic mountain sickness (CMS), both by its CA-inhibiting action as described above, but also by more recently discovered non-CA inhibiting actions, that seem almost unique to this prototypical CA inhibitor and are of most relevance to HAPE. This chapter will relate the history of CA inhibitor use at high altitude, discuss what tissues and organs containing carbonic anhydrase play a role in adaptation and maladaptation to high altitude, explore the role of the enzyme and its inhibition at those sites for the prevention and/or treatment of the four major forms of illness at high altitude.
Collapse
Affiliation(s)
- Erik R Swenson
- VA Puget Sound Health Care System and Department of Medicine, University of Washington, Seattle, WA, USA,
| |
Collapse
|
22
|
Al-Samir S, Papadopoulos S, Scheibe RJ, Meißner JD, Cartron JP, Sly WS, Alper SL, Gros G, Endeward V. Activity and distribution of intracellular carbonic anhydrase II and their effects on the transport activity of anion exchanger AE1/SLC4A1. J Physiol 2013; 591:4963-82. [PMID: 23878365 DOI: 10.1113/jphysiol.2013.251181] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We have investigated the previously published 'metabolon hypothesis' postulating that a close association of the anion exchanger 1 (AE1) and cytosolic carbonic anhydrase II (CAII) exists that greatly increases the transport activity of AE1. We study whether there is a physical association of and direct functional interaction between CAII and AE1 in the native human red cell and in tsA201 cells coexpressing heterologous fluorescent fusion proteins CAII-CyPet and YPet-AE1. In these doubly transfected tsA201 cells, YPet-AE1 is clearly associated with the cell membrane, whereas CAII-CyPet is homogeneously distributed throughout the cell in a cytoplasmic pattern. Förster resonance energy transfer measurements fail to detect close proximity of YPet-AE1 and CAII-CyPet. The absence of an association of AE1 and CAII is supported by immunoprecipitation experiments using Flag-antibody against Flag-tagged AE1 expressed in tsA201 cells, which does not co-precipitate native CAII but co-precipitates coexpressed ankyrin. Both the CAII and the AE1 fusion proteins are fully functional in tsA201 cells as judged by CA activity and by cellular HCO3(-) permeability (P(HCO3(-))) sensitive to inhibition by 4,4-Diisothiocyano-2,2-stilbenedisulfonic acid. Expression of the non-catalytic CAII mutant V143Y leads to a drastic reduction of endogenous CAII and to a corresponding reduction of total intracellular CA activity. Overexpression of an N-terminally truncated CAII lacking the proposed site of interaction with the C-terminal cytoplasmic tail of AE1 substantially increases intracellular CA activity, as does overexpression of wild-type CAII. These variously co-transfected tsA201 cells exhibit a positive correlation between cellular P(HCO3(-)) and intracellular CA activity. The relationship reflects that expected from changes in cytoplasmic CA activity improving substrate supply to or removal from AE1, without requirement for a CAII-AE1 metabolon involving physical interaction. A functional contribution of the hypothesized CAII-AE1 metabolon to erythroid AE1-mediated HCO3(-) transport was further tested in normal red cells and red cells from CAII-deficient patients that retain substantial CA activity associated with the erythroid CAI protein lacking the proposed AE1-binding sequence. Erythroid P(HCO3(-)) was indistinguishable in these two cell types, providing no support for the proposed functional importance of the physical interaction of CAII and AE1. A theoretical model predicts that homogeneous cytoplasmic distribution of CAII is more favourable for cellular transport of HCO3(-) and CO2 than is association of CAII with the cytoplasmic surface of the plasma membrane. This is due to the fact that the relatively slow intracellular transport of H(+) makes it most efficient to place the CA in the vicinity of the haemoglobin molecules, which are homogeneously distributed over the cytoplasm.
Collapse
Affiliation(s)
- Samer Al-Samir
- G. Gros: Zentrum Physiologie, Vegetative Physiologie 4220, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625 Hannover, Germany. ; V. Endeward: Zentrum Physiologie 4220, Medizinische Hochschule Hannover, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
|
24
|
Vengust M, Staempfli H, Viel L, Swenson ER, Heigenhauser G. Acetazolamide attenuates transvascular fluid flux in equine lungs during intense exercise. J Physiol 2013; 591:4499-513. [PMID: 23818694 DOI: 10.1113/jphysiol.2013.257956] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
During intense exercise in horses the transvascular fluid flux in the pulmonary circulation (Jv-a) represents 4% of cardiac output (Q). This fluid flux has been attributed to an increase in pulmonary transmural hydrostatic forces, increases in perfused microvascular surface area, and reversible alterations in capillary permeability under conditions of high flow and pressure. Erythrocyte fluid efflux, however, accounts for a significant fraction of Jv-a. In the lung the Jacobs-Stewart cycle occurs with diffusion of CO2 into alveolar space with possible accompanying chloride (Cl-) and water movement from the erythrocyte directly into the pulmonary interstitium. We hypothesised that inhibition of carbonic anhydrase in erythrocytes inhibits the Jacobs-Stewart cycle and attenuates Jv-a. Five horses were exercised on a treadmill until fatigue without (control) and with acetazolamide treatment (30 mg kg(-1) 30 min before exercise). Erythrocyte fluid efflux, plasma fluid flux across the lung and Jv-a were calculated using haemoglobin, haematocrit, plasma protein and Q. Fluid fluxes were used to calculate erythrocyte, plasma and whole blood Cl- fluxes across the lung. Cardiac output was not different between control and acetazolamide treatment. During exercise erythrocyte fluid efflux and Jv-a increased in control (9.3±3.3 and 11.0±4.4 l min(-1), respectively) and was higher than after acetazolamide treatment (3.8±1.6 and 1.2±1.2 l min(-1), respectively) (P<0.05). Plasma fluid flux did not change from rest in control and decreased after acetazolamide treatment (-4.5±1.5 l min(-1)) (P<0.05). Erythrocyte Cl- flux increased during exercise in control and after acetazolamide treatment (P<0.05). During exercise plasma Cl- flux across the lung did not change in control; however, it increased with acetazolamide treatment (P=0.0001). During exercise whole blood Cl- flux increased across the lung in control (P<0.05) but not after acetazolamide treatment. The results indicate that Jv-a in the lung is dependent on the Jacobs-Stewart cycle and mostly independent of transmural hydrostatic forces. It also appears that Jv-a is mediated by Cl- and water egress from erythrocytes directly into the interstitium without transit through plasma.
Collapse
Affiliation(s)
- Modest Vengust
- M. Vengust: University in Ljubljana, Veterinary Faculty, Ljubljana SI-1115, PO Box 3425, Slovenia.
| | | | | | | | | |
Collapse
|
25
|
Gonzales JU, Scheuermann BW. Effect of acetazolamide on respiratory muscle fatigue in humans. Respir Physiol Neurobiol 2013; 185:386-92. [DOI: 10.1016/j.resp.2012.08.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 08/22/2012] [Accepted: 08/28/2012] [Indexed: 10/27/2022]
|
26
|
Heming N, Urien S, Faisy C. Acetazolamide: a second wind for a respiratory stimulant in the intensive care unit? CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2012; 16:318. [PMID: 22866939 PMCID: PMC3580678 DOI: 10.1186/cc11323] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Patients with chronic obstructive pulmonary disease (COPD) are affected by episodes of respiratory exacerbations, some of which can be severe and may necessitate respiratory support. Prolonged invasive mechanical ventilation is associated with increased mortality rates. Persistent failure to discontinue invasive mechanical ventilation is a major issue in patients with COPD. Pure or mixed metabolic alkalosis is a common finding in the intensive care unit (ICU) and is associated with a worse outcome. In patients with COPD, the condition is called post-hypercapnic alkalosis and is a complication of mechanical ventilation. Reversal of metabolic alkalosis may facilitate weaning from mechanical ventilation of patients with COPD. Acetazolamide, a non-specific carbonic anhydrase inhibitor, is one of the drugs employed in the ICU to reverse metabolic alkalosis. The drug is relatively safe, undesirable effects being rare. The compartmentalization of the different isoforms of the carbonic anhydrase enzyme may, in part, explain the lack of evidence of the efficacy of acetazolamide as a respiratory stimulant. Recent findings suggest that the usually employed doses of acetazolamide in the ICU may be insufficient to significantly improve respiratory parameters in mechanically ventilated patients with COPD. Randomized controlled trials using adequate doses of acetazolamide are required to address this issue.
Collapse
|
27
|
Vengust M, Stämpfli H, De Moraes AN, Teixeiro-Neto F, Viel L, Heigenhauser G. Effects of chronic acetazolamide administration on gas exchange and acid-base control in pulmonary circulation in exercising horses. Equine Vet J 2011:40-50. [PMID: 21058981 DOI: 10.1111/j.2042-3306.2010.00240.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
REASONS FOR PERFORMING STUDY Carbonic anhydrase (CA) catalyses the hydration/dehydration reaction of CO(2) and increases the rate of Cl(-) and HCO(3)(-) exchange between the erythrocytes and plasma. Therefore, chronic inhibition of CA has a potential to attenuate CO(2) output and induce greater metabolic and respiratory acidosis in exercising horses. OBJECTIVES To determine the effects of Carbonic anhydrase inhibition on CO(2) output and ionic exchange between erythrocytes and plasma and their influence on acid-base balance in the pulmonary circulation (across the lung) in exercising horses with and without CA inhibition. METHODS Six horses were exercised to exhaustion on a treadmill without (Con) and with CA inhibition (AczTr). CA inhibition was achieved with administration of acetazolamide (10 mg/kg bwt t.i.d. for 3 days and 30 mg/kg bwt before exercise). Arterial, mixed venous blood and CO(2) output were sampled at rest and during exercise. An integrated physicochemical systems approach was used to describe acid base changes. RESULTS AczTr decreased the duration of exercise by 45% (P < 0.0001). During the transition from rest to exercise CO(2) output was lower in AczTr (P < 0.0001). Arterial PCO(2) (P < 0.0001; mean ± s.e. 71 ± 2 mmHg AczTr, 46 ± 2 mmHg Con) was higher, whereas hydrogen ion (P = 0.01; 12.8 ± 0.6 nEq/l AczTr, 15.5 ± 0.6 nEq/l Con) and bicarbonate (P = 0.007; 5.5 ± 0.7 mEq/l AczTr, 10.1 ± 1.3 mEq/l Con) differences across the lung were lower in AczTr compared to Con. No difference was observed in weak electrolytes across the lung. Strong ion difference across the lung was lower in AczTr (P = 0.0003; 4.9 ± 0.8 mEq AczTr, 7.5 ± 1.2 mEq Con), which was affected by strong ion changes across the lung with exception of lactate. CONCLUSIONS CO(2) and chloride changes in erythrocytes across the lung seem to be the major contributors to acid-base and ions balance in pulmonary circulation in exercising horses.
Collapse
Affiliation(s)
- M Vengust
- Firestone Equine Respiratory Research Laboratory, University of Guelph, Ontario, Canada.
| | | | | | | | | | | |
Collapse
|
28
|
MELDON JERRYH, STROEVE PIETER, GREGOIRE CATHERINEE. FACILITATED TRANSPORT OF CARBON DIOXIDE: A REVIEW. CHEM ENG COMMUN 2011. [DOI: 10.1080/00986448208911101] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- JERRY H. MELDON
- a Chemical Engineering Department , Tufts University , Medford, MA, 02155
| | - PIETER STROEVE
- b Chemical Engineering Department , University of California , Davis, CA, 95616
| | | |
Collapse
|
29
|
|
30
|
|
31
|
CARLSON GP. Interrelationships between fluid, electrolyte and acid-base balance during maximal exercise. Equine Vet J 2010. [DOI: 10.1111/j.2042-3306.1995.tb04933.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
32
|
Kiwull-Schöne HF, Li Y, Kiwull PJ, Teppema LJ. Methazolamide does not impair respiratory work performance in anesthetized rabbits. Am J Physiol Regul Integr Comp Physiol 2009; 297:R648-54. [DOI: 10.1152/ajpregu.00134.2009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In human medicine, the carbonic anhydrase (CA) inhibitor acetazolamide is used to treat irregular breathing disorders. Previously, we demonstrated in the rabbit that this substance stabilized closed-loop gain properties of the respiratory control system, but concomitantly weakened respiratory muscles. Among others, the highly diffusible CA-inhibitor methazolamide differs from acetazolamide in that it fails to activate Ca2+-dependent potassium channels in skeletal muscles. Therefore, we aimed to find out, whether or not methazolamide may exert attenuating adverse effects on respiratory muscle performance as acetazolamide. In anesthetized spontaneously breathing rabbits ( n = 7), we measured simultaneously the CO2 responses of tidal phrenic nerve activity, tidal transpulmonary pressure changes, and tidal volume before and after intravenous application of methazolamide at two mean (± SE) cumulative doses of 3.5 ± 0.1 and 20.8 ± 0.4 mg/kg. Similar to acetazolamide, low- and high-dose methazolamide enhanced baseline ventilation by 52 ± 10% and 166 ± 30%, respectively ( P < 0.01) and lowered the base excess in a dose-dependent manner by up to 8.3 ± 0.9 mmol/l ( P < 0.001). The transmission of a CO2-induced rise in phrenic nerve activity into volume and/or pressure and, hence, respiratory work performance was 0.27 ± 0.05 ml·kg−1·kPa·unit−1 under control conditions, but remained unchanged upon low- or high-dose methazolamide, at 0.30 ± 0.06 and 0.28 ± 0.07 ml·kg−1·kPa·unit−1, respectively. We conclude that methazolamide does not cause respiratory muscle weakening at elevated levels of ventilatory drive. This substance (so far not used for medication of respiratory diseases) may thus exert stabilizing influences on breathing control without adverse effects on respiratory muscle function.
Collapse
|
33
|
Development of hemodynamic responses and functional connectivity in rat somatosensory cortex. Nat Neurosci 2007; 11:72-9. [DOI: 10.1038/nn2017] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Accepted: 10/26/2007] [Indexed: 11/09/2022]
|
34
|
Faoro V, Huez S, Giltaire S, Pavelescu A, van Osta A, Moraine JJ, Guenard H, Martinot JB, Naeije R. Effects of acetazolamide on aerobic exercise capacity and pulmonary hemodynamics at high altitudes. J Appl Physiol (1985) 2007; 103:1161-5. [PMID: 17615281 DOI: 10.1152/japplphysiol.00180.2007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Aerobic exercise capacity is decreased at altitude because of combined decreases in arterial oxygenation and in cardiac output. Hypoxic pulmonary vasoconstriction could limit cardiac output in hypoxia. We tested the hypothesis that acetazolamide could improve exercise capacity at altitude by an increased arterial oxygenation and an inhibition of hypoxic pulmonary vasoconstriction. Resting and exercise pulmonary artery pressure (Ppa) and flow (Q) (Doppler echocardiography) and exercise capacity (cardiopulmonary exercise test) were determined at sea level, 10 days after arrival on the Bolivian altiplano, at Huayna Potosi (4,700 m), and again after the intake of 250 mg acetazolamide vs. a placebo three times a day for 24 h. Acetazolamide and placebo were administered double-blind and in a random sequence. Altitude shifted Ppa/Q plots to higher pressures and decreased maximum O2 consumption (V̇o2max). Acetazolamide had no effect on Ppa/Q plots but increased arterial O2 saturation at rest from 84 ± 5 to 90 ± 3% ( P < 0.05) and at exercise from 79 ± 6 to 83 ± 4% ( P < 0.05), and O2 consumption at the anaerobic threshold (V-slope method) from 21 ± 5 to 25 ± 5 ml·min−1·kg−1 ( P < 0.01). However, acetazolamide did not affect V̇o2max (from 31 ± 6 to 29 ± 7 ml·kg−1·min−1), and the maximum respiratory exchange ratio decreased from 1.2 ± 0.06 to 1.05 ± 0.03 ( P < 0.001). We conclude that acetazolamide does not affect maximum exercise capacity or pulmonary hemodynamics at high altitudes. Associated changes in the respiratory exchange ratio may be due to altered CO2 production kinetics.
Collapse
Affiliation(s)
- Vitalie Faoro
- Laboratory of Physiology, Faculty of Medicine, Free University of Brussels, Brussels, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Vengust M, Staempfli H, Viel L, Heigenhauser G. Effects of chronic acetazolamide administration on fluid flux from the pulmonary vasculature at rest and during exercise in horses. Equine Vet J 2007:508-15. [PMID: 17402475 DOI: 10.1111/j.2042-3306.2006.tb05596.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
REASONS FOR PERFORMING STUDY Horses develop high pulmonary pressures during exercise, which force fluid out of pulmonary capillaries. Specific airway diseases in horses, especially those associated with hypoxaemia, hypercapnoea and acidosis may influence pulmonary haemodynamics and pulmonary interstitial fluid equilibrium. OBJECTIVES This study was designed to determine fluid flux (J(V-A) l/min) across the lung in exercising horses treated chronically with acetazolamide. METHODS Six horses were exercised on a treadmill until fatigue without (Con) and with chronic carbonic anhydrase (CA) inhibition (AczTr) and associated hypercapnoea and acidosis. Carbonic anhydrase inhibition was achieved with administration of acetazolamide (Acz). Arterial and mixed venous blood were sampled, and VCO2 and VO2 measured. Blood volume changes across the lung (deltaBV%) were calculated from changes in plasma protein, haemoglobin and packed cell volume (PCV). Cardiac output (Q) was calculated using Fick principle. J(V-A) across the alveolar-capillary barrier was then quantified based on Q and deltaBV. Variables were analysed using 2-way repeated-measures ANOVA (P<0.05). A significant F ratio was further analysed using Tukey post hoc analysis. RESULTS Treatment had a significant effect on J(V-A) (P = 0.002). At rest there was no J(V-A) in Con (0.63 +/- 0.6 l/min) and AczTr (0.84 +/- 0.3 l/min). During exercise Con fluid moved from the pulmonary circulation into the pulmonary interstitium (mean +/- s.e. J(V-A) 9.4 +/- 2.4 l/min). This was different from AczTr (mean +/- s.e. J(V-A) 1.8 +/- 1.9 l/min), where no transvascular fluxes from pulmonary circulation were present during exercise (P = 0.008). CONCLUSIONS Chronic Acz treatment with associated hypercapnoea and acidosis affects J(V-A) in lungs of exercising horses. Lung fluid dynamics adapted to hypercapnoea and acidosis with reduction of fluid flow from the pulmonary circulation. POTENTIAL RELEVANCE The current data provide comprehensive evidence of in vivo fluid homeostasis in lungs of exercising horses without and with CA inhibition.
Collapse
Affiliation(s)
- M Vengust
- Veterinary Faculty, University of Ljubljana, Ljubljana SI- 115, PO Box 3425, Slovenia
| | | | | | | |
Collapse
|
36
|
|
37
|
Leaf DE, Goldfarb DS. Mechanisms of action of acetazolamide in the prophylaxis and treatment of acute mountain sickness. J Appl Physiol (1985) 2006; 102:1313-22. [PMID: 17023566 DOI: 10.1152/japplphysiol.01572.2005] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Acetazolamide, a potent carbonic anhydrase (CA) inhibitor, is the most commonly used and best-studied agent for the amelioration of acute mountain sickness (AMS). The actual mechanisms by which acetazolamide reduces symptoms of AMS, however, remain unclear. Traditionally, acetazolamide's efficacy has been attributed to inhibition of CA in the kidneys, resulting in bicarbonaturia and metabolic acidosis. The result is offsetting hyperventilation-induced respiratory alkalosis and allowance of chemoreceptors to respond more fully to hypoxic stimuli at altitude. Studies performed on both animals and humans, however, have shown that this explanation is unsatisfactory and that the efficacy of acetazolamide in the context of AMS is likely due to a multitude of effects. This review summarizes the known systemic effects of acetazolamide and incorporates them into a model encompassing several factors that are likely to play a key role in the drug's efficacy. Such factors include not only metabolic acidosis resulting from renal CA inhibition but also improvements in ventilation from tissue respiratory acidosis, improvements in sleep quality from carotid body CA inhibition, and effects of diuresis.
Collapse
|
38
|
Fulco CS, Muza SR, Ditzler D, Lammi E, Lewis SF, Cymerman A. Effect of acetazolamide on leg endurance exercise at sea level and simulated altitude. Clin Sci (Lond) 2006; 110:683-92. [PMID: 16499476 DOI: 10.1042/cs20050233] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Acetazolamide can be taken at sea level to prevent acute mountain sickness during subsequent altitude exposure. Acetazolamide causes metabolic acidosis at sea level and altitude, and increases SaO2 (arterial oxygen saturation) at altitude. The aim of the present study was to determine whether acetazolamide impairs muscle endurance at sea level but not simulated altitude (4300 m for <3 h). Six subjects (20+/-1 years of age; mean+/-S.E.M.) performed exhaustive constant work rate one-leg knee-extension exercise (25+/-2 W) once a week for 4 weeks, twice at sea level and twice at altitude. Each week, subjects took either acetazolamide (250 mg) or placebo orally in a double-blind fashion (three times a day) for 2 days. On day 2, all exercise bouts began approx. 2.5 h after the last dose of acetazolamide or placebo. Acetazolamide caused similar acidosis (pH) in all subjects at sea level (7.43+/-0.01 with placebo compared with 7.34+/-0.01 with acetazolamide; P<0.05) and altitude (7.48+/-0.03 with placebo compared with 7.37+/-0.01 with acetazolamide; P<0.05). However, endurance performance was impaired with acetazolamide only at sea level (48+/-4 min with placebo compared with 36+/-5 min with acetazolamide; P<0.05), but not altitude (17+/-2 min with placebo compared with 20+/-3 min with acetazolamide; P = not significant). In conclusion, lack of impairment of endurance performance by acetazolamide compared with placebo at altitude was probably due to off-setting secondary effects resulting from acidosis, e.g. ventilatory induced increase in SaO2 for acetazolamide compared with placebo (89+/-1 compared with 86+/-1% respectively; P<0.05), which resulted in an increased oxygen pressure gradient from capillary to exercising muscle.
Collapse
Affiliation(s)
- Charles S Fulco
- Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine (USARIEM), Kansas Street, Natick, MA 01760-5007, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Beekley MD, Wetzel P, Kubis HP, Gros G. Contractile properties of skeletal muscle fibre bundles from mice deficient in carbonic anhydrase II. Pflugers Arch 2006; 452:453-63. [PMID: 16601982 DOI: 10.1007/s00424-006-0048-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2005] [Revised: 10/10/2005] [Accepted: 01/19/2006] [Indexed: 10/24/2022]
Abstract
The function of cytosolic carbonic anhydrase (CA) isozyme II is largely unknown in skeletal muscle. Because of this, we compared the in vitro contractile properties of extensor digitorum longus (EDL) and soleus (SOL) fibre bundles from mice deficient in CA II (CAD) to litter mate controls (LM). Twitch rise, 1/2 relaxation time and peak twitch force at 22 degrees C of fibre bundles from CAD EDL [28.4+/-1.4 ms, 31.2+/-2.3 ms, 6.2+/-1.0 Newton/cm(2) (N/cm(2)), respectively] and CAD SOL (54.2+/-7.5 ms, 75.7+/-13.8 ms, 2.9+/-0.5 N/cm(2), respectively) were significantly higher compared to LM EDL (20.5+/-2.2 ms, 21.9+/-3.7 ms, 4.5+/-0.2 N/cm(2)) and LM SOL (42.8+/-3.5 ms, 51.4+/-2.4 ms, 2.1+/-0.4 N/cm(2)). However, in acidic Krebs-Henseleit solution, mimicking the pH, PCO(2), and HCO(3) (-) of arterial blood from CAD mice, twitch rise, 1/2 relaxation time, and peak twitch force of fibre bundles from CAD EDL (19.3+/-0.7 ms, 19.7+/-2.3 ms, 4.8+/-0.8 N/cm(2)) and CAD SOL (41.4+/-3.6 ms, 51.9+/-5.5 ms, 2.2+/-0.7 N/cm(2)) were not significantly different from LM fibre bundles in normal Krebs-Henseleit solution (EDL: 19.7+/-1.1 ms, 21.6+/-0.6 ms, 4.7+/-0.2 N/cm(2); SOL: 42.5+/-3.1 ms, 51.8+/-2.6 ms, 1.8+/-0.3 N/cm(2)). A higher pH(i) during exposure to acidic bathing solution was maintained by CAD EDL (7.37+/-0.02) and CAD SOL (7.33+/-0.05) compared to LM EDL (7.28+/-0.04) and LM SOL (7.22+/-0.02). This suggests that the skeletal muscle of CAD mice possesses an improved defense of pH(i) against elevated pCO(2). In support of this, apparent non-bicarbonate buffer capacity (in mequiv H(+) (pH unit)(-1) (kg cell H(2)O)(-1)) as determined by pH microelectrode was markedly increased in CAD EDL (75.7+/-4.1) and CAD SOL (85.9+/-3.3) compared to LM EDL (39.3+/-4.7) and LM SOL (37.5+/-3.8). Both latter phenomena may be related to the slowed rate of intracellular acidification seen in CAD SOL in comparison with LM SOL upon an increase in PCO(2) of the bath. In conclusion, skeletal muscle from mice deficient in CA II exhibits altered handling of acid-base challenges and shows normal contractile behavior at normal intracellular pH.
Collapse
Affiliation(s)
- Matthew D Beekley
- Zentrum Physiologie, Medizinische Hochschule Hannover, 30623 Hannover, Germany
| | | | | | | |
Collapse
|
40
|
Beekley MD, Brechue WF. Depression of h-reflex following carbonic anhydrase inhibition appears unrelated to changes in synaptic effectiveness. Int J Neurosci 2005; 115:1205-18. [PMID: 16040362 DOI: 10.1080/00207450590914590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Presynaptic inhibition (PI) of Ia afferents was examined as a possible contributor to the depression of the soleus H-reflex following carbonic anhydrase (CA) inhibition with Acetazolamide (ACZ). Ten males (aged 22-32) were studied in two randomized conditions, control and ACZ administration (250 mg 14, 8, and 2 h before testing) separated by at least one week. PI of soleus Ia afferents was indirectly assessed two ways: a conditioning stimulus of Ia afferents in the common peroneal nerve (N = 6), and heteronymous Ia facilitation from the quadriceps to soleus muscle (N = 4). Conditioning (C) of the soleus H-reflex (common peroneal nerve stimulation protocol) resulted in depression of the H-reflex in the supine and standing position compared to the test (T, unconditioned) H-reflex in the same position. This result was unaltered following ACZ treatment. C (heteronymous facilitation protocol) resulted in facilitation of the H-reflex in the supine, but not the standing position. This result was unaltered following ACZ treatment. It was concluded that the depression of the H-reflex following CA inhibition (present study; Brechue et al., 1997) appears to be unrelated to changes in the tonic level of PI of Ia afferents. The best hypothesis for the reduction in the H-reflex appears to be conduction block of the primary afferent fibers secondary to local increases in PCO2.
Collapse
|
41
|
Shank RP, Doose DR, Streeter AJ, Bialer M. Plasma and whole blood pharmacokinetics of topiramate: the role of carbonic anhydrase. Epilepsy Res 2005; 63:103-12. [PMID: 15715969 DOI: 10.1016/j.eplepsyres.2005.01.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2004] [Revised: 12/20/2004] [Accepted: 01/01/2005] [Indexed: 11/28/2022]
Abstract
Topiramate (TPM) is a broad-spectrum antiepileptic drug with various mechanisms of action including an inhibitory effect on some isozymes of carbonic anhydrase (CA). Binding to CA-I and CA-II, which are highly concentrated in erythrocytes, may affect drug pharmacokinetics. Consequently, the objectives of this study were: (a) to comparatively assess TPM pharmacokinetics in healthy subjects, based on plasma and whole blood data, by simultaneously measuring TPM concentrations in plasma and whole blood following different therapeutic doses; (b) to rigorously establish the affinity of TPM for CA-I and CA-II in order to gain insight into how binding to these isozymes in erythrocytes influences TPM pharmacokinetics. TPM (100, 200 and 400 mg, single dose) was given in a randomized three-way crossover design to 27 healthy subjects and the drug concentrations in plasma and whole blood were simultaneously measured for 168 h after dosing. The pharmacokinetics of TPM in plasma was linear, but TPM clearance from whole blood increased with increasing dose. At low therapeutic concentrations, the blood-to-plasma ratio for TPM decreased from 8 to 2 as its concentration increased, indicating a substantial and saturable binding of TPM to erythrocytes. The kinetics (dissociation binding constant -Kd and maximum binding rate -Bmax) of the binding of TPM to erythrocytes was determined from the measured concentrations of TPM in whole blood and plasma. This analysis indicated the existence of two binding sites with Kd values of 0.54 and 140 microM, and Bmax values of 22 and 124 micromol/L of erythrocyte volume, respectively. These Bmax values are similar to literature values for the molar concentration of human CA-II (14-25 micromol/L) and CA-I (115-125 micromol/L). TPM inhibition constant (Ki) values for the inhibition of purified human CA obtained using assays based on CO2 hydration or 4-nitrophenylacetate hydrolysis were 0.62 and 0.49 microM for CA-II, and 91 and 93 microM for CA-I. The results of these studies indicate that virtually all of the binding of TPM to erythrocytes is attributable to CA-I and CA-II. Because CA-I and CA-II are highly concentrated in erythrocytes, a large portion of TPM in whole blood is bound and serves as a depot. This contributes to the lower oral clearance (CL/F), apparent volume of distribution (Vss/F) and longer half-life (t(1/2)) that TPM has in blood compared to the CL/F, Vss/F and t(1/2), estimated from plasma data. The difference between TPM blood and plasma pharmacokinetics was more profound at low doses (< or = 100 mg/day).
Collapse
Affiliation(s)
- Richard P Shank
- Johnson & Johnson Pharmaceutical Research & Development, L.L.C., Raritan, NJ 08869-0602, USA
| | | | | | | |
Collapse
|
42
|
Höhne C, Krebs MO, Seiferheld M, Boemke W, Kaczmarczyk G, Swenson ER. Acetazolamide prevents hypoxic pulmonary vasoconstriction in conscious dogs. J Appl Physiol (1985) 2005; 97:515-21. [PMID: 15247196 DOI: 10.1152/japplphysiol.01217.2003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Acute hypoxia increases pulmonary arterial pressure and vascular resistance. Previous studies in isolated smooth muscle and perfused lungs have shown that carbonic anhydrase (CA) inhibition reduces the speed and magnitude of hypoxic pulmonary vasoconstriction (HPV). We studied whether CA inhibition by acetazolamide (Acz) is able to prevent HPV in the unanesthetized animal. Ten chronically tracheotomized, conscious dogs were investigated in three protocols. In all protocols, the dogs breathed 21% O(2) for the first hour and then 8 or 10% O(2) for the next 4 h spontaneously via a ventilator circuit. The protocols were as follows: protocol 1: controls given no Acz, inspired O(2) fraction (Fi(O(2))) = 0.10; protocol 2: Acz infused intravenously (250-mg bolus, followed by 167 microg.kg(-1).min(-1) continuously), Fi(O(2)) = 0.10; protocol 3: Acz given as above, but with Fi(O(2)) reduced to 0.08 to match the arterial Po(2) (Pa(O(2))) observed during hypoxia in controls. Pa(O(2)) was 37 Torr during hypoxia in controls, mean pulmonary arterial pressure increased from 17 +/- 1 to 23 +/- 1 mmHg, and pulmonary vascular resistance increased from 464 +/- 26 to 679 +/- 40 dyn.s(-1).cm(-5) (P < 0.05). In both Acz groups, mean pulmonary arterial pressure was 15 +/- 1 mmHg, and pulmonary vascular resistance ranged between 420 and 440 dyn.s(-1).cm(-5). These values did not change during hypoxia. In dogs given Acz at 10% O(2), the arterial Pa(O(2)) was 50 Torr owing to hyperventilation, whereas in those breathing 8% O(2) the Pa(O(2)) was 37 Torr, equivalent to controls. In conclusion, Acz prevents HPV in conscious spontaneously breathing dogs. The effect is not due to Acz-induced hyperventilation and higher alveolar Po(2), nor to changes in plasma endothelin-1, angiotensin-II, or potassium, and HPV suppression occurs despite the systemic acidosis with CA inhibition.
Collapse
Affiliation(s)
- Claudia Höhne
- Experimentelle Anaesthesie, Department of Anesthesiology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, D-13353 Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
43
|
Vaughan-Jones RD, Spitzer KW. Role of bicarbonate in the regulation of intracellular pH in the mammalian ventricular myocyte. Biochem Cell Biol 2003; 80:579-96. [PMID: 12440699 DOI: 10.1139/o02-157] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bicarbonate is important for pHi control in cardiac cells. It is a major part of the intracellular buffer apparatus, it is a substrate for sarcolemmal acid-equivalent transporters that regulate intracellular pH, and it contributes to the pHo sensitivity of steady-state pHi, a phenomenon that may form part of a whole-body response to acid/base disturbances. Both bicarbonate and H+/OH- transporters participate in the sarcolemmal regulation of pHi, namely Na(+)-HCO3-cotransport (NBC), Cl(-)-HCO3- exchange (i.e., anion exchange, AE), Na(+)-H+ exchange (NHE), and Cl(-)-OH- exchange (CHE). These transporters are coupled functionally through changes of pHi, while pHi is linked to [Ca2+]i through secondary changes in [Na+] mediated by NBC and NHE. Via such coupling, decreases of pHo and pHi can ultimately lead to an elevation of [Ca2+]i, thereby influencing cardiac contractility and electrical rhythm. Bicarbonate is also an essential component of an intracellular carbonic buffer shuttle that diffusively couples cytoplasmic pH to the sarcolemma and minimises the formation of intracellular pH microdomains. The importance of bicarbonate is closely linked to the activity of the enzyme carbonic anhydrase (CA). Without CA activity, intracellular bicarbonate-dependent buffering, membrane bicarbonate transport, and the carbonic shuttle are severely compromised. There is a functional partnership between CA and HCO3- transport. Based on our observations on intracellular acid mobility, we propose that one physiological role for CA is to act as a pH-coupling protein, linking bulk pH to the allosteric H+ control sites on sarcolemmal acid/base transporters.
Collapse
|
44
|
Garske LA, Brown MG, Morrison SC. Acetazolamide reduces exercise capacity and increases leg fatigue under hypoxic conditions. J Appl Physiol (1985) 2003; 94:991-6. [PMID: 12391068 DOI: 10.1152/japplphysiol.00746.2001] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Acetazolamide (Acz) is used at altitude to prevent acute mountain sickness, but its effect on exercise capacity under hypoxic conditions is uncertain. Nine healthy men completed this double-blind, randomized, crossover study. All subjects underwent incremental exercise to exhaustion with an inspired O(2) fraction of 0.13, hypoxic ventilatory responses, and hypercapnic ventilatory responses after Acz (500 mg twice daily for 5 doses) and placebo. Maximum power of 203 +/- 38 (SD) W on Acz was less than the placebo value of 225 +/- 40 W (P < 0.01). At peak exercise, arterialized capillary pH was lower and Po(2) higher on Acz (P < 0.01). Ventilation was 118.6 +/- 20.0 l/min at the maximal power on Acz and 102.4 +/- 20.7 l/min at the same power on placebo (P < 0.02), and Borg score for leg fatigue was increased on Acz (P < 0.02), with no difference in Borg score for dyspnea. Hypercapnic ventilatory response on Acz was greater (P < 0.02), whereas hypoxic ventilatory response was unchanged. During hypoxic exercise, Acz reduced exercise capacity associated with increased perception of leg fatigue. Despite increased ventilation, dyspnea was not increased.
Collapse
Affiliation(s)
- Luke A Garske
- Department of Thoracic Medicine, Royal Brisbane Hospital, Brisbane, Queensland 4029, Australia
| | | | | |
Collapse
|
45
|
Spitzer KW, Skolnick RL, Peercy BE, Keener JP, Vaughan-Jones RD. Facilitation of intracellular H(+) ion mobility by CO(2)/HCO(3)(-) in rabbit ventricular myocytes is regulated by carbonic anhydrase. J Physiol 2002; 541:159-67. [PMID: 12015427 PMCID: PMC2290312 DOI: 10.1113/jphysiol.2001.013268] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2001] [Accepted: 02/08/2002] [Indexed: 12/27/2022] Open
Abstract
Intracellular H(+) mobility was estimated in the rabbit isolated ventricular myocyte by diffusing HCl into the cell from a patch pipette, while imaging pH(i) confocally using intracellular ratiometric SNARF fluorescence. The delay for acid diffusion between two downstream regions approximately 40 microm apart was reduced from approximately 25 s to approximately 6 s by replacing Hepes buffer in the extracellular superfusate with a 5 % CO(2)/HCO(3)(-) buffer system (at constant pH(o) of 7.40). Thus CO(2)/HCO(3)(-) (carbonic) buffer facilitates apparent H(+)(i) mobility. The delay with carbonic buffer was increased again by adding acetazolamide (ATZ), a membrane permeant carbonic anhydrase (CA) inhibitor. Thus facilitation of apparent H(+)(i) mobility by CO(2)/HCO(3)(-) relies on the activity of intracellular CA. By using a mathematical model of diffusion, the apparent intracellular H(+) equivalent diffusion coefficient (D(H)(app)) in CO(2)/HCO(3)(-)-buffered conditions was estimated to be 21.9 x 10(-7) cm(2) s(-1), 5.8 times faster than in the absence of carbonic buffer. Facilitation of H(+)(i) mobility is discussed in terms of an intracellular carbonic buffer shuttle, catalysed by intracellular CA. Turnover of this shuttle is postulated to be faster than that of the intrinsic buffer shuttle. By regulating the carbonic shuttle, CA regulates effective H(+)(i) mobility which, in turn, regulates the spatiotemporal uniformity of pH(i). This is postulated to be a major function of CA in heart.
Collapse
Affiliation(s)
- K W Spitzer
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA.
| | | | | | | | | |
Collapse
|
46
|
Swenson ER. Respiratory and renal roles of carbonic anhydrase in gas exchange and acid-base regulation. EXS 2001:281-341. [PMID: 11268521 DOI: 10.1007/978-3-0348-8446-4_15] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- E R Swenson
- VA Puget Sound Health Care System, 1660 S Columbian Way, Seattle, WA 98108, USA
| |
Collapse
|
47
|
Abstract
CO(2) produced within skeletal muscle has to leave the body finally via ventilation by the lung. To get there, CO(2) diffuses from the intracellular space into the convective transport medium blood with the two compartments, plasma and erythrocytes. Within the body, CO(2) is transported in three different forms: physically dissolved, as HCO(3)(-), or as carbamate. The relative contribution of these three forms to overall transport is changing along this elimination pathway. Thus the kinetics of the interchange have to be considered. Carbonic anhydrase accelerates the hydration/dehydration reaction between CO(2), HCO(3)(-), and H(+). In skeletal muscle, various isozymes of carbonic anhydrase are localized within erythrocytes but are also bound to the capillary wall, thus accessible to plasma; bound to the sarcolemma, thus producing catalytic activity within the interstitial space; and associated with the sarcoplasmic reticulum. In some fiber types, carbonic anhydrase is also present in the sarcoplasm. In exercising skeletal muscle, lactic acid contributes huge amounts of H(+) and by these affects the relative contribution of the three forms of CO(2). With a theoretical model, the complex interdependence of reactions and transport processes involved in CO(2) exchange was analyzed.
Collapse
Affiliation(s)
- C Geers
- Zentrum Physiologie, Medizinische Hochschule, Hannover, Germany
| | | |
Collapse
|
48
|
Scheuermann BW, Kowalchuk JM, Paterson DH, Taylor AW, Green HJ. Muscle metabolism during heavy-intensity exercise after acute acetazolamide administration. J Appl Physiol (1985) 2000; 88:722-9. [PMID: 10658043 DOI: 10.1152/jappl.2000.88.2.722] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Carbonic anhydrase (CA) inhibition is associated with a lower plasma lactate concentration ([La(-)](pl)), but the mechanism for this association is not known. The effect of CA inhibition on muscle high-energy phosphates [ATP and phosphocreatine (PCr)], lactate ([La(-)](m)), and glycogen was examined in seven men [28 +/- 3 (SE) yr] during cycling exercise under control (Con) and acute CA inhibition with acetazolamide (Acz; 10 mg/kg body wt iv). Subjects performed 6-min step transitions in work rate from 0 W to a work rate corresponding to approximately 50% of the difference between the O(2) uptake at the ventilatory threshold and peak O(2) uptake. Muscle biopsies were taken from the vastus lateralis at rest, at 30 min postinfusion, at end exercise (EE), and at 5 and 30 min postexercise. Arterialized venous blood was sampled from a dorsal hand vein and analyzed for [La(-)](pl). ATP was unchanged from rest values; no difference between Con and Acz was observed. The fall in PCr from rest [72 +/- 3 and 73 +/- 3.6 (SE) mmol/kg dry wt for Con and Acz, respectively] to EE (51 +/- 4 and 46 +/- 5 mmol/kg dry wt for Con and Acz, respectively) was similar in Con and Acz. At EE, glycogen (mmol glucosyl units/kg dry wt) decreased to similar values in Con and Acz (307 +/- 16 and 300 +/- 19, respectively). At EE, no difference was observed in [La(-)](m) between conditions (46 +/- 6 and 43 +/- 5 mmol/kg dry wt for Con and Acz, respectively). EE [La(-)](pl) was higher during Con than during Acz (11.4 +/- 1.0 vs. 8.2 +/- 0.6 mmol/l). The similar [La(-)](m) but lower [La(-)](pl) suggests that the uptake of La(-) by other tissues is enhanced after CA inhibition.
Collapse
Affiliation(s)
- B W Scheuermann
- Centre for Activity and Ageing, School of Kinesiology, The University of Western Ontario, London, Ontario N6A 3K7
| | | | | | | | | |
Collapse
|
49
|
Scheuermann BW, Kowalchuk JM, Paterson DH, Cunningham DA. Carbonic anhydrase inhibition delays plasma lactate appearance with no effect on ventilatory threshold. J Appl Physiol (1985) 2000; 88:713-21. [PMID: 10658042 DOI: 10.1152/jappl.2000.88.2.713] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The effect of carbonic anhydrase (CA) inhibition with acetazolamide (Acz, 10 mg/kg body wt iv) on exercise performance and the ventilatory (VET) and lactate (LaT) thresholds was studied in seven men during ramp exercise (25 W/min) to exhaustion. Breath-by-breath measurements of gas exchange were obtained. Arterialized venous blood was sampled from a dorsal hand vein and analyzed for plasma pH, PCO(2), and lactate concentration ([La(-)](pl)). VET [expressed as O(2) uptake (VO(2)), ml/min] was determined using the V-slope method. LaT (expressed as VO(2), ml/min) was determined from the work rate (WR) at which [La(-)](pl) increased 1.0 mM above rest levels. Peak WR was higher in control (Con) than in Acz sutdies [339 +/- 14 vs. 315 +/- 14 (SE) W]. Submaximal exercise VO(2) was similar in Acz and Con; the lower VO(2) at exhaustion in Acz than in Con (3.824 +/- 0. 150 vs. 4.283 +/- 0.148 l/min) was appropriate for the lower WR. CO(2) output (VCO(2)) was lower in Acz than in Con at exercise intensities >/=125 W and at exhaustion (4.375 +/- 0.158 vs. 5.235 +/- 0.148 l/min). [La(-)](pl) was lower in Acz than in Con during submaximal exercise >/=150 W and at exhaustion (7.5 +/- 1.1 vs. 11.5 +/- 1.1 mmol/l). VET was similar in Acz and Con (2.483 +/- 0.086 and 2.362 +/- 0.110 l/min, respectively), whereas the LaT occurred at a higher VO(2) in Acz than in Con (2.738 +/- 0.223 vs. 2.190 +/- 0.235 l/min). CA inhibition with Acz is associated with impaired elimination of CO(2) during the non-steady-state condition of ramp exercise. The similarity in VET in Con and Acz suggests that La(-) production is similar between conditions but La(-) appearance in plasma is reduced and/or La(-) uptake by other tissues is enhanced after the Acz treatment.
Collapse
Affiliation(s)
- B W Scheuermann
- Centre for Activity and Ageing, School of Kinesiology, The University of Western Ontario, London, Ontario, Canada N6A 3K7
| | | | | | | |
Collapse
|
50
|
Abstract
This study was undertaken to evaluate the effects of frusemide on the concentration of plasma electrolytes and the relationship between changes in electrolyte concentration and the simultaneous changes in acid-base balance in arterial and venous blood during intense exercise. Five exercise-conditioned Thoroughbred horses were exercised on a high-speed treadmill at a slope of 10% at speeds known to exceed VO2max. Horses participated in 3 randomised exercise trials in which they received either placebo (control), low-dose frusemide (0.5 mg/kg bwt), or high-dose frusemide (1.0 mg/kg) 4 h prior to exercise. Arterial and mixed venous blood samples were drawn before, during and after intense exercise. Packed cell volume (PCV), plasma protein, plasma electrolyte, plasma lactate concentrations and acid-base balance were determined. Frusemide at both dosages induced a significant metabolic alkalosis associated with a decrease in plasma çhloride[ in both arterial and mixed venous blood. There was a highly significant correlation between the strong ion difference (SID) and bicarbonate[ in all blood samples. The effects of frusemide on electrolyte concentration and acid-base balance were largely due to changes in SID.
Collapse
Affiliation(s)
- G P Carlson
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis 95616, USA
| | | |
Collapse
|