1
|
Zhao C, Wang X, Cong Y, Deng Y, Xu Y, Chen A, Yin Y. Effects of bile acids and the bile acid receptor FXR agonist on the respiratory rhythm in the in vitro brainstem medulla slice of neonatal Sprague-Dawley rats. PLoS One 2014; 9:e112212. [PMID: 25405617 PMCID: PMC4236123 DOI: 10.1371/journal.pone.0112212] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 10/09/2014] [Indexed: 12/27/2022] Open
Abstract
Intrahepatic cholestasis of pregnancy is always accompanied by adverse fetal outcomes such as malfunctions of respiration. Farnesoid X receptor (FXR) plays a critical role in the homeostasis of bile acids. Thus, we are determined to explore the effects of farnesoid X receptor (FXR) and five bile acids on respiratory rhythm generation and modulation of neonatal rats. Spontaneous periodic respiratory-related rhythmical discharge activity (RRDA) was recorded from hypoglossal nerves during the perfusion of modified Krebs solution. Group 1–6 was each given GW4064 and five bile acids of chenodeoxycholic acid (CDCA), deoxycholic acid (DCA), lithocholic acid (LCA), cholic acid (CA) as well as ursodeoxycholic acid (UDCA) at different concentrations to identify their specific functions on respiratory rhythm modulations. Group 7 was applied to receive FXR blocker Z-guggulsterone and Z-guggulsterone with the above bile acids separately to explore the role of FXR in the respiratory rhythm modulation. Group 8 was given dimethyl sulfoxide (DMSO) as controls. Apart from UDCA, CDCA, DCA LCA and CA all exerted effects on RRDA recorded from hypoglossal nerves in a concentration-dependent manner. Respiratory cycle (RC), Inspiratory time (TI), Expiratory Time (TE) and Integral Amplitude (IA) were influenced and such effects could be reversed by Z-guggulsterone. FXR may contribute to the effects on the modulation of respiratory rhythm exerted by bile acids.
Collapse
Affiliation(s)
- Cong Zhao
- Department of Cardiology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Xianbao Wang
- Department of Cardiology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Yuling Cong
- Joint Surgery, Central Hospital of Shengli Oil Field, Dongying, China
| | - Yi Deng
- Department of Cardiology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Yijun Xu
- Department of Physiology, Southern Medical University, Guangzhou, China
| | - Aihua Chen
- Department of Cardiology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
- * E-mail: (AC); (YY)
| | - Yanru Yin
- Department of Physiology, Southern Medical University, Guangzhou, China
- * E-mail: (AC); (YY)
| |
Collapse
|
2
|
Jiao YG, Li GC, Chen JP, Wu ZH, Zhang HT. Dopamine receptor 1 modulates the discharge activities of inspiratory and biphasic expiratory neurons via cAMP-dependent pathways. Cell Mol Neurobiol 2013; 33:155-60. [PMID: 23138234 DOI: 10.1007/s10571-012-9884-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Accepted: 10/19/2012] [Indexed: 10/27/2022]
Abstract
Dopamine receptor 1 (D(1)R) plays an essential role in regulating respiratory activity in mammals, however, little is known about how this receptor acts to modulate the basic respiratory rhythmogenesis. Here, by simultaneously recording the discharge activities of biphasic expiratory (biphasic E) neurons/inspiratory (I) neurons and the XII nerve rootlets from brainstem slices, we found that the application of D(1)R agonist cis-(±)-1-(aminomethyl)-3,4-dihydro-3-phenyl-1H-2-benzopyran-5,6-diolhydrochloride (A68930, 5 μM), or forskolin, an intracellular cAMP-increasing agent, substantially decreased respiratory cycle and expiratory time of both types of neurons, and elevated the integral amplitude and frequency of XII nerve rootlets discharge. These changes were reversed by subsequent application of their antagonists SCH-23390 and Rp-Adenosine 3',5'-cyclic monophosphorothioate triethylammonium salt hydrate (Rp-cAMPS), respectively. Importantly, after pretreatment with Rp-cAMPS, the effects of A68930 in both types of neurons were blocked, suggestive of a cAMP-dependent action of A68930. Thus, the current study indicates that D(1)R may modulate basic breathing rhythmogenesis via cAMP-dependent mechanisms.
Collapse
Affiliation(s)
- Yong-Gang Jiao
- Department of Neurology, Guangdong No. 2 Provincial People's Hospital, Guangzhou, China
| | | | | | | | | |
Collapse
|
3
|
Li GC, Zhang HT, Jiao YG, Wu ZH, Fang F, Cheng J. Glial cells are involved in the exciting effects of doxapram on brainstem slices in vitro. Cell Mol Neurobiol 2010; 30:667-70. [PMID: 20140700 DOI: 10.1007/s10571-010-9500-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2009] [Accepted: 01/21/2010] [Indexed: 10/19/2022]
Abstract
This study tested whether the glial cells are involved in the exciting effects of doxapram on brainstem slice in vitro. Experiments were performed in brainstem slice preparations from neonatal rats. The medial area of nucleus retrofacialis (mNRF) and the hypoglossal nerve (XII nerve) were contained in the preparations. The slices were perfused with modified Kreb's solution (MKS), and the rhythmical respiratory discharge activity (RRDA) was simultaneously recorded from the XII nerve by using suction electrodes, including the discharge time course of inspiratory (Ti), expiratory (Te), respiratory cycle (RC), and integrity amplitude of inspiratory discharge (IA). After applying of doxapram (5 microM) to the MKS for 10 min, Ti and IA increased significantly (85.0 +/- 25.0%, 13.2 +/- 2.5%, respectively, P < 0.05), the Te and the RC decreased significantly (19.0 +/- 1.4%, 12.8 +/- 1.4%, respectively, P < 0.05) when compared with control group. When the methionine sulfoximine (MS, 10 microM), a blockage of glutamine synthetase, was applied, all the exciting effects of doxapram on RRDA were reversed. After the glutamine (20 microM) was applied to the MKS for 10 min, the exciting effects were revealed again. Our results suggest that the normal metabolism of glial cells takes a key role in the modification of the RRDA in the slices. In conclusion, glial cells are involved in the exciting effects of doxapram on brainstem slice in vitro.
Collapse
Affiliation(s)
- Guo-cai Li
- Department of Physiology, Southern Medical University, Guangzhou 510515, People's Republic of China
| | | | | | | | | | | |
Collapse
|
4
|
Wang JL, Wu ZH, Pan BX, Li J. Adenosine A1 receptors modulate the discharge activities of inspiratory and biphasic expiratory neurons in the medial region of Nucleus Retrofacialis of neonatal rat in vitro. Neurosci Lett 2005; 379:27-31. [PMID: 15814193 DOI: 10.1016/j.neulet.2004.12.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2004] [Revised: 12/17/2004] [Accepted: 12/18/2004] [Indexed: 11/28/2022]
Abstract
This study investigated whether adenosine A1 receptors could modulate respiratory rhythm in mammals. Experiments were performed in in vitro brainstem slice preparations from neonatal rats. These preparations included the medial region of Nucleus Retrofacialis (mNRF) with the hypoglossal nerve (XII nerve) rootlets retained. The rhythmical discharges of the biphasic expiratory (biphasic E) neurons/inspiratory neurons (I neurons) and activities of the XII nerve rootlets were simultaneously recorded by using extracellular microelectrodes and suction electrodes, respectively. Roles of adenosine A1 receptors in modulation of respiratory rhythm were investigated by administration of the adenosine A1 receptor agonist R-phenylisopropyl-adenosine (R-PIA, 10 microM) and its specific antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX, 2 microM). DPCPX decreased the respiratory period (27.19%) and expiratory duration (28.27%) of biphasic E neurons and at the same time increased the peak discharge frequency (48.13%). By contrast, R-PIA produced opposite effects. On the other hand, the effects of DPCPX and R-PIA on the I neurons were similar to that on the biphasic E neurons except that R-PIA shortened the discharge duration of I neurons (34.12%) and decreased the peak discharge frequency (37.75%) in the middle phase of inspiration, but not in the initial and terminal phases. These results suggest that adenosine A1 receptors are involved in the phase-switching between expiration and inspiration by affecting biphasic E neurons. Activation of adenosine A1 receptors may modulate the inhibitory synaptic inputs from I neurons to biphasic E neurons.
Collapse
Affiliation(s)
- Jian-Li Wang
- Department of Physiology, Southern Medical University, Guangzhou 510515, PR China
| | | | | | | |
Collapse
|
5
|
Monnier A, Alheid GF, McCrimmon DR. Defining ventral medullary respiratory compartments with a glutamate receptor agonist in the rat. J Physiol 2003; 548:859-74. [PMID: 12640009 PMCID: PMC2342895 DOI: 10.1113/jphysiol.2002.038141] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2002] [Accepted: 02/24/2003] [Indexed: 11/08/2022] Open
Abstract
The regional organization of the ventral respiratory group (VRG) was examined with respect to generation of respiratory rhythm (breathing frequency) versus control of the respiratory motor pattern on individual nerves. In urethane-anaesthetized, neuromuscularly blocked and vagotomized Sprague-Dawley rats, arterial blood pressure (ABP) and respiratory motor outputs (phrenic, pharyngeal branch of the vagus, or superior laryngeal nerves) were recorded. The VRG organization was mapped systematically using injections of the excitatory amino acid DL-homocysteic acid (DLH; 5-20 mM, 2-6 nl) from single- or double-barrel pipettes at 100-200 microm intervals between the facial nucleus and the calamus scriptorius. Recording of respiratory neurons through the injection pipette ensured that the pipette was located within the VRG. At the end of each experiment, the injection pipette was used to make an electrical lesion, thereby marking the electrode position for subsequent histological reconstruction of injection sites. Four rostrocaudal regions were identified: (1) a rostral bradypnoea area, at the level of the Bötzinger complex, in which respiratory rhythm slowed and ABP increased, (2) a tachypnoea/dysrhythmia area, at the level of the preBötzinger complex, in which breathing rate either increased or became irregular, with little or no change in ABP, (3) a caudal bradypnoea area at the level of the anterior part of the rostral VRG in which ABP decreased and (4) a caudal 'no effect' region in the posterior part of the rostral VRG. The peak amplitude of phrenic nerve activity decreased with injections into all three rostral regions. Changes in respiratory rhythm were associated with opposite changes in inspiratory (TI) and expiratory (TE) durations after injections into either the Bötzinger complex or anterior rostral VRG, while both TI and TE decreased after injections into the preBötzinger complex. Effects on selected cranial nerves were similar to those on the phrenic nerve except that tonic activity was elicited on the superior larygneal nerve ipsilateral to injections in the Bötzinger complex and on the pharyngeal branch of the vagus ipsilateral to injections in the preBötzinger complex. These data reinforce the subdivision of the VRG into functionally distinct compartments and suggest that a further subdivision of the rostral VRG is warranted. They also suggest that region-specific influences, especially on the pattern of cranial motor discharge, can be used to assist the identification of recording sites within the VRG. However, the postulated clear functional separation of rhythm- versus pattern-generating regions was not supported.
Collapse
Affiliation(s)
- A Monnier
- Department of Physiology and Institute for Neuroscience, Feinberg School of Medicine, Northwestern University, 303 East Chicago Ave., Chicago, IL 60611-3008, USA
| | | | | |
Collapse
|
6
|
Tolentino-Silva FP, Russo AK, Cravo SL, Lopes OU. Respiratory effects of kynurenic acid microinjected into the ventromedullary surface of the rat. Braz J Med Biol Res 1998; 31:1339-43. [PMID: 9876307 DOI: 10.1590/s0100-879x1998001000016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Several studies demonstrate that, within the ventral medullary surface (VMS), excitatory amino acids are necessary components of the neural circuits involved in the tonic and reflex control of respiration and circulation. In the present study we investigated the cardiorespiratory effects of unilateral microinjections of the broad spectrum glutamate antagonist kynurenic acid (2 nmol/200 nl) along the VMS of urethane-anesthetized rats. Within the VMS only one region was responsive to this drug. This area includes most of the intermediate respiratory area, partially overlapping the rostral ventrolateral medulla (IA/RVL). When microinjected into the IA/RVL, kynurenic acid produced a respiratory depression, without changes in mean arterial pressure or heart rate. The respiratory depression observed was characterized by a decrease in ventilation, tidal volume and mean inspiratory flow and an increase in respiratory frequency. Therefore, the observed respiratory depression was entirely due to a reduction in the inspiratory drive. Microinjections of vehicle (200 nl of saline) into this area produced no significant changes in breathing pattern, blood pressure or heart rate. Respiratory depression in response to the blockade of glutamatergic receptors inside the rostral VMS suggests that neurons at this site have an endogenous glutamatergic input controlling the respiratory cycle duration and the inspiratory drive transmission.
Collapse
Affiliation(s)
- F P Tolentino-Silva
- Departamento de Fisiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, Brasil.
| | | | | | | |
Collapse
|
7
|
Rekling JC, Feldman JL. PreBötzinger complex and pacemaker neurons: hypothesized site and kernel for respiratory rhythm generation. Annu Rev Physiol 1998; 60:385-405. [PMID: 9558470 DOI: 10.1146/annurev.physiol.60.1.385] [Citation(s) in RCA: 451] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Identification of the sites and mechanisms underlying the generation of respiratory rhythm is of longstanding interest to physiologists and neurobiologists. Recently, with the development of novel experimental preparations, especially in vitro en bloc and slice preparations of rodent brainstem, progress has been made In particular, a site in the ventrolateral medulla, the preBötzinger Complex, is hypothesized to contain neuronal circuits generating respiratory rhythm. Lesions or disruption of synaptic transmission within the preBötzinger Complex, either in vivo or in vitro, can abolish respiratory activity. Furthermore, the persistence of respiratory rhythm following interference with postsynaptic inhibition and the subsequent discovery of neurons with endogenous bursting properties within the preBötzinger Complex have led to the hypothesis that rhythmogenesis results from synchronized activity of pacemaker or group-pacemaker neurons.
Collapse
Affiliation(s)
- J C Rekling
- Department of Neurobiology, University of California Los Angeles 90095-1527, USA
| | | |
Collapse
|
8
|
Morris KF, Arata A, Shannon R, Lindsey BG. Inspiratory drive and phase duration during carotid chemoreceptor stimulation in the cat: medullary neurone correlations. J Physiol 1996; 491 ( Pt 1):241-59. [PMID: 9011617 PMCID: PMC1158775 DOI: 10.1113/jphysiol.1996.sp021212] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
1. This study addressed the hypothesis that there is a parallel processing of input from carotid chemoreceptors to brainstem neurones involved in inspiratory phase timing and control of inspiratory motor output amplitude. Data were from fifteen anaesthetized, bilaterally vagotomized, paralysed, artificially ventilated cats. Carotid chemoreceptors were stimulated by close arterial injection of 200 microliters of CO2-saturated saline solution. 2. Planar arrays of tungsten microelectrodes were used to monitor simultaneously up to twenty-two neurones in the nucleus tractus solitarii (NTS) and ventral respiratory group (VRG). Spike trains were analysed with two statistical tests of respiratory modulation, cycle-triggered histograms, peristimulus-time histograms, cumulative sum histograms and cross-correlograms. 3. In NTS, 16 of 26 neurones with respiratory and 12 of 27 without respiratory modulation changed firing rate during carotid chemoreceptor stimulation. In the VRG 72 of 112 respiratory and 14 of 48 non-respiratory neurones changed firing rate during stimulation. 4. The spike trains of 85 of 1276 pairs (6.7%) of cells exhibited short time scale correlations indicative of paucisynaptic interactions. Ten pairs of neurones were each composed of a rostral VRG phasic inspiratory neurone that responded to carotid chemoreceptor stimulation with a decline in firing rate and a caudal VRG phasic inspiratory neurone that increased its firing rate. Cross-correlograms from two of the pairs had features consistent with excitation of the caudal neurones by the rostral cells. A decrease in the duration of activity of the rostral VRG neurones was paralleled by the decrease in inspiratory time of phrenic nerve activity. Caudal VRG inspiratory neurones increased their activity as phrenic amplitude increased. Spike-triggered averages of all four neurones indicated post-spike facilitation of phrenic motoneurones. 5. The results support the hypothesis that unilateral stimulation of carotid chemoreceptors results in parallel actions. (a) Inhibition of rostral VRG I-Driver neurones decreases inspiratory duration. (b) Concurrent excitation of premotor VRG and dorsal respiratory group inspiratory neurones increases inspiratory drive to phrenic motoneurones. Other data suggest that responsive ipsilateral neurones act to regulate contralateral neurones.
Collapse
Affiliation(s)
- K F Morris
- Department of Physiology and Biophysics, University of South Florida Medical Center, Tampa 33612-4799, USA
| | | | | | | |
Collapse
|