1
|
Tokuda S, Shimamoto C, Yoshida H, Murao H, Kishima GI, Ito S, Kubota T, Hanafusa T, Sugimoto T, Niisato N, Marunaka Y, Nakahari T. % MathType!Translator!2!1!AMS LaTeX.tdl!TeX -- AMS-LaTeX! % MathType!MTEF!2!1!+- % feaaeaart1ev0aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX % garmWu51MyVXgatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wz % aebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY-Hhbbf9v8qqaq % Fr0xc9pk0xbba9q8WqFfea0-yr0RYxir-Jbba9q8aq0-yq-He9q8qq % Q8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeWaeaaakeaaca % qGibGaae4qaiaab+eadaqhaaWcbaGaae4maaqaaiaab2caaaaaaa!3B86! $$ {\text{HCO}}^{{\text{ - }}}_{{\text{3}}}$$ -dependent pHi recovery and overacidification induced by % MathType!Translator!2!1!AMS LaTeX.tdl!TeX -- AMS-LaTeX! % MathType!MTEF!2!1!+- % feaaeaart1ev0aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX % garmWu51MyVXgatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wz % aebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY-Hhbbf9v8qqaq % Fr0xc9pk0xbba9q8WqFfea0-yr0RYxir-Jbba9q8aq0-yq-He9q8qq % Q8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeWaeaaakeaaca % qGobGaaeisamaaDaaaleaacaaI0aaabaGaey4kaScaaaaa!3AF9! $$ {\text{NH}}^{ + }_{4}$$ pulse in rat lung alveolar type II cells: % MathType!Translator!2!1!AMS LaTeX.tdl!TeX -- AMS-LaTeX! % MathType!MTEF!2!1!+- % feaaeaart1ev0aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX % garmWu51MyVXgatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wz % aebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY-Hhbbf9v8qqaq % Fr0xc9pk0xbba9q8WqFfea0-yr0RYxir-Jbba9q8aq0-yq-He9q8qq % Q8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeWaeaaakeaaca % qGibGaae4qaiaab+eadaqhaaWcbaGaaG4maaqaaiabgkHiTaaaaaa!3BCA! $$ {\text{HCO}}^{ - }_{3} $$ -dependent NH3 excretion from lungs? Pflugers Arch 2007; 455:223-39. [PMID: 17562070 DOI: 10.1007/s00424-007-0281-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Revised: 04/13/2007] [Accepted: 04/19/2007] [Indexed: 11/24/2022]
Abstract
Intracellular pH (pHi) after the NH+4 pulse addition and its removal were measured in isolated alveolar type II cells (ATII cells) using BCECF fluorescence. In the absence of HCO(-3), the NH+4 pulse addition increased pHi (alkali jump) and its removal decreased pH(i) (acid jump) to the control level (no overacidification). This pHi change was induced by reaction 1 (NH3 + H+ <--> NH+4). However, in the presence of HCO(-3), the NH+4 pulse removal decreased pHi (acid jump) with overacidification. The extent of overacidification was decreased by acetazolamide (a carbonic anhydrase inhibitor), bumetanide (an inhibitor of Na+/K+/2Cl(-) cotransporter [NKCC]), and NPPB (an inhibitor of Cl(-) channel). The NH+4 pulse addition led to the accumulation of NH+4 in ATII cells via reaction 1 and NKCC, and the NH+4 pulse removal induced reaction 2 (NH+4 + HCO(-3) --> NH3 + H+ HCO(-3)) in addition to the reversal of reaction 1. Thus, NH+4 that entered via NKCC reacts with HCO(-3) (reaction 2) to produce H+, which induces overacidification in the acid jump. After the overacidification, the pH(i) recovery consisted of a rapid recovery (first phase) followed by a slow recovery (second phase). The first phase was inhibited by NPPB, glybenclamide, amiloride, and an Na+-free solution, and the second phase was inhibited by DIDS, MIA, and an Na+-free solution. Both phases were accelerated by a high extracellular HCO(-3) concentration. These observations indicate that the first phase was induced by HCO(-3) entry via Cl(-) channels coupled with Na+ channels activities, and that the second phase was induced by H+ extrusion via Na+/H+ exchanger and by HCO(-3) entry via HCO(-3) cotransporter. Thus, in ATII cells, HCO(-3) entry via Cl(-) channels is essential for recovering pHi after overacidification during the acid jump and for removing NH+4 that entered via NKCC from ATII cells, suggesting HCO(-3)-dependent NH3 excretion from lungs.
Collapse
Affiliation(s)
- Sachiko Tokuda
- Central Research Laboratory Nakahari Project, Osaka Medical College, 2-7 Daigakucho, Takatsuki 569-8686, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Bernardo AA, Bernardo CM, Espiritu DJ, Arruda JAL. The sodium bicarbonate cotransporter: structure, function, and regulation. Semin Nephrol 2007; 26:352-60. [PMID: 17071329 DOI: 10.1016/j.semnephrol.2006.07.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The role of the Na(+)-coupled HCO(3)(-) transporter (NBC) family is indispensable in acid-base homeostasis. Almost all tissues express a member of the NBC family. NBC has been studied extensively in the kidney and plays a role in proximal tubule HCO(3)(-) reabsorption. Although the exact function of this transporter family on other tissues is not very clear, the ubiquitous expression of NBC family suggests a role in cell pH regulation. Altered NBC activity caused by mutations of the gene responsible for NBC protein expression results in pathophysiologic conditions. Mutations of NBC resulting in important clinical disorders have been reported extensively on one member of the NBC family, the kidney NBC (NBC1). These mutations have led to several structural studies to understand the mechanism of the abnormal NBC1 activity.
Collapse
Affiliation(s)
- Angelito A Bernardo
- Department of Medicine, Section of Nephrology, University of Illinois at Chicago, 820 S. Wood Street, Chicago, IL 60612, USA
| | | | | | | |
Collapse
|
3
|
Ng AW, Bidani A, Heming TA. Innate host defense of the lung: effects of lung-lining fluid pH. Lung 2005; 182:297-317. [PMID: 15742242 DOI: 10.1007/s00408-004-2511-6] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2004] [Indexed: 10/25/2022]
Abstract
Lung-lining fluid (LLF) is a primary constituent of the pulmonary host defense system. It is distributed continuously throughout the respiratory tract but is heterogeneous regarding its chemistry and physiology between the conducting airways and alveoli. The conducting airways are lined with airway surface liquid (ASL), a mucus gel-aqueous sol complex that interacts functionally with epithelial cilia as the mucociliary escalator. The alveoli are lined with alveolar subphase fluid (AVSF) and pulmonary surfactant. AVSF sterility is maintained in part by the phagocytic activity of resident alveolar macrophages. Normal ASL and AVSF are both more acidic than blood plasma. However, the details of acid-base regulation differ between the two media. Appreciable transepithelial acid-base flux is possible across the airway epithelium, whereas the alveolar epithelium is relatively impermeable to transepithelial acid-base flux. Moreover, one must consider the influence of resident macrophages on AVSF pH. Resident macrophages occupy a sizable fraction of AVSF by volume and are a substantial source of metabolic H+. The buffering capacities of ASL and AVSF probably are largely due to secreted peptides (e.g., ASL mucins and AVSF surfactant proteins). Acid-base exchange between the extracellular hydrophase and intracellular buffering systems of resident macrophages represents an additional buffer pool for AVSF. The pH of ASL and AVSF can be depressed by disease or inflammation. Low pH is predicted to suppress microbe clearance from the airways and alveoli, increase pathogen survival in both regions, and alter mediator release by resident macrophages and recruited leukocytes thereby increasing the propensity for bystander cell injury. Overall, ASL/AVSF pH is expected to be a major determinant of lung host defense responses.
Collapse
Affiliation(s)
- Amelia W Ng
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | | | | |
Collapse
|
4
|
Steimer A, Haltner E, Lehr CM. Cell culture models of the respiratory tract relevant to pulmonary drug delivery. ACTA ACUST UNITED AC 2005; 18:137-82. [PMID: 15966771 DOI: 10.1089/jam.2005.18.137] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The respiratory tract holds promise as an alternative site of drug delivery due to fast absorption and rapid onset of drug action, with avoidance of hepatic and intestinal first-pass metabolism as an additional benefit compared to oral drug delivery. At present, the pharmaceutical industry increasingly relies on appropriate in vitro models for the faster evaluation of drug absorption and metabolism as an alternative to animal testing. This article reviews the various existing cell culture systems that may be applied as in vitro models of the human air-blood barrier, for instance, in order to enable the screening of large numbers of new drug candidates at low cost with high reliability and within a short time span. Apart from such screening, cell culture-based in vitro systems may also contribute to improve our understanding of the mechanisms of drug transport across such epithelial tissues, and the mechanisms of action how advanced drug carriers, such as nanoparticles or liposomes, can help to overcome these barriers. After all, the increasing use and acceptance of such in vitro models may lead to a significant acceleration of the drug development process by facilitating the progress into clinical studies and product registration.
Collapse
Affiliation(s)
- A Steimer
- Across Barriers GmbH, Department R&D Cell & Tissue Based Systems, Science Park Saar, Saarbrücken, Germany
| | | | | |
Collapse
|
5
|
Murao H, Shimizu A, Hosoi K, Iwagaki A, Min KY, Kishima GI, Hanafusa T, Kubota T, Kato M, Yoshida H, Nakahari T. Cell shrinkage evoked by Ca2+-free solution in rat alveolar type II cells: Ca2+regulation of Na+-H+exchange. Exp Physiol 2005; 90:203-13. [PMID: 15640277 DOI: 10.1113/expphysiol.2004.028837] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The effects of intracellular Ca2+ concentration, [Ca2+]i, on the volume of rat alveolar type II cells (AT-II cells) were examined. Perfusion with a Ca2+-free solution induced shrinkage of the AT-II cell volume in the absence or presence of amiloride (1 microm, an inhibitor of Na+ channels); however, it did not in the presence of 5-(N-methyl-N-isobutyl)-amiloride (MIA, an inhibitor of Na+-H+ exchange). MIA decreased the volume of AT-II cells. Inhibitors of Cl(-)-HCO3- exchange, 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) and 4-acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic acid (SITS) also decreased the volume of AT-II cells. This indicates that the cell shrinkage induced by a Ca2+-free solution is caused by a decrease in NaCl influx via Na+-H+ exchange and Cl(-)-HCO3- exchange. Addition of ionomycin (1 microm), in contrast, induced cell swelling when AT-II cells were pretreated with quinine and amiloride. This swelling of the AT-II cells is not detected in the presence of MIA. Intracellular pH (pHi) measurements demonstrated that the Ca2+-free solution or MIA decreases pHi, and that ionomycin increases it. Ionomycin stimulated the pHi recovery after an acid loading (NH4+ pulse method), which was not noted in MIA-treated AT-II cells. Ionomycin increased [Ca2+]i in fura-2-loaded AT-II cells. In conclusion, the Na+-H+ exchange activities of AT-II cells, which maintain the volume and pHi, are regulated by [Ca2+]i.
Collapse
Affiliation(s)
- Hitoshi Murao
- Central Clinical Laboratory, Osaka Medical College, Takatsuki, 569-8686, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Xu J, Wang Z, Barone S, Petrovic M, Amlal H, Conforti L, Petrovic S, Soleimani M. Expression of the Na+-HCO-3 cotransporter NBC4 in rat kidney and characterization of a novel NBC4 variant. Am J Physiol Renal Physiol 2003; 284:F41-50. [PMID: 12388414 DOI: 10.1152/ajprenal.00055.2002] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The purpose of the present studies was to examine the renal distribution and functional properties of Na(+)-HCO(3)(-) cotransporter type 4 (NBC4), the latest NBC isoform to be identified. Zonal distribution studies in rat kidney by Northern blot hybridization and RT-PCR demonstrated that NBC4 is highly abundant in the outer medulla and cortex but is low in the inner medulla. Nephron segment distribution studies indicated that NBC4 is predominantly expressed in the medullary and cortical thick ascending limb of the loop of Henle. Using specific primers on the basis of the published sequence (GenBank accession no. AF-207661), a full-length NBC4 variant was cloned from human liver and examined. The sequence of this variant (called NBC4e) is shorter by 86 amino acids vs. the published sequence. Xenopus laevis oocytes injected with the full-length NBC4e cRNA were compared with NBC1-expressing oocytes. Although exposure of NBC1-expressing oocytes to CO(2)/HCO(3)(-) resulted in immediate hyperpolarization, the NBC4-expressing oocytes did not show any alteration in membrane potential. NBC activity in oocytes, assayed as the Na(+)-dependent, HCO(3)(-)-mediated intracellular pH recovery from acidosis, indicated that NBC4 is a DIDS-inhibitable NBC. We propose that NBC4 is expressed in the thick ascending limb of the loop of Henle and mediates cellular HCO(3)(-) uptake in this segment.
Collapse
Affiliation(s)
- Jie Xu
- Division of Nephrology, Department of Medicine, University of Cincinnati, Ohio 45267-0585, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Joseph D, Tirmizi O, Zhang XL, Crandall ED, Lubman RL. Polarity of alveolar epithelial cell acid-base permeability. Am J Physiol Lung Cell Mol Physiol 2002; 282:L675-83. [PMID: 11880292 DOI: 10.1152/ajplung.00330.2001] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated acid-base permeability properties of electrically resistive monolayers of alveolar epithelial cells (AEC) grown in primary culture. AEC monolayers were grown on tissue culture-treated polycarbonate filters. Filters were mounted in a partitioned cuvette containing two fluid compartments (apical and basolateral) separated by the adherent monolayer, cells were loaded with the pH-sensitive dye 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein, and intracellular pH was determined. Monolayers in HCO-free Na(+) buffer (140 mM Na(+), 6 mM HEPES, pH 7.4) maintained a transepithelial pH gradient between the two fluid compartments over 30 min. Replacement of apical fluid by acidic (6.4) or basic (8.0) buffer resulted in minimal changes in intracellular pH. Replacement of basolateral fluid by acidic or basic buffer resulted in transmembrane proton fluxes and intracellular acidification or alkalinization. Intracellular alkalinization was blocked > or =80% by 100 microM dimethylamiloride, an inhibitor of Na(+)/H(+) exchange, whereas acidification was not affected by a series of acid/base transport inhibitors. Additional experiments in which AEC monolayers were grown in the presence of acidic (6.4) or basic (8.0) medium revealed differential effects on bioelectric properties depending on whether extracellular pH was altered in apical or basolateral fluid compartments bathing the cells. Acid exposure reduced (and base exposure increased) short-circuit current from the basolateral side; apical exposure did not affect short-circuit current in either case. We conclude that AEC monolayers are relatively impermeable to transepithelial acid/base fluxes, primarily because of impermeability of intercellular junctions and of the apical, rather than basolateral, cell membrane. The principal basolateral acid exit pathway observed under these experimental conditions is Na(+)/H(+) exchange, whereas proton uptake into cells occurs across the basolateral cell membrane by a different, undetermined mechanism. These results are consistent with the ability of the alveolar epithelium to maintain an apical-to-basolateral (air space-to-blood) pH gradient in situ.
Collapse
Affiliation(s)
- Dilip Joseph
- Division of Pulmonary and Critical Care Medicine, Will Rogers Institute Pulmonary Research Center, University of Southern California, Keck School of Medicine, 2011 Zonal Avenue, Los Angeles, CA 90033, USA
| | | | | | | | | |
Collapse
|
8
|
Wang Z, Conforti L, Petrovic S, Amlal H, Burnham CE, Soleimani M. Mouse Na+: HCO3- cotransporter isoform NBC-3 (kNBC-3): cloning, expression, and renal distribution. Kidney Int 2001; 59:1405-14. [PMID: 11260402 DOI: 10.1046/j.1523-1755.2001.0590041405.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Na+:HCO3- cotransporters mediate the transport of HCO3- into or out of the cell. We recently reported the partial cloning and characterization of a new human Na+:HCO3- cotransporter (referred to as NBC-3 or kNBC-3). The purpose of the present studies was to clone the mouse kNBC-3 and to examine its properties and expression in the kidney. METHODS Using primers from human kNBC-3 cDNA and 5' and 3' rapid amplification cDNA end polymerase chain reaction (RACE PCR), the mouse kNBC-3 full-length cDNA was cloned from inner medullary collecting duct (mIMCD-3) cells. The tissue distribution and functional properties of NBC-3 was determined using established methods. RESULTS The coding region of the mouse kNBC-3 has 1089 amino acids and shows 73 and 56% identity to human NBC-2 and NBC-1, respectively. The renal distribution of kNBC-3 demonstrated a unique expression pattern: Whereas kNBC-1 is predominantly expressed in the cortex and is absent in the inner medulla, kNBC-3 shows an intense expression level in the inner medulla and is absent in the cortex. Expression studies in oocytes indicated that NBC-3 mediates Na-dependent HCO3- cotransport. Electrophysiological experiments demonstrated that unlike kNBC-1, which is electrogenic, kNBC-3 is electroneutral. CONCLUSIONS Based on its distribution and electroneutrality, we propose that kNBC-3 mediates the transport of HCO3- into the cells.
Collapse
Affiliation(s)
- Z Wang
- Division of Nephrology, Department of Internal Medicine, University of Cincinnati, and the Veterans Affairs Medical Center, Cincinnati, Ohio, USA
| | | | | | | | | | | |
Collapse
|
9
|
Soleimani M, Burnham CE. Physiologic and molecular aspects of the Na+:HCO3- cotransporter in health and disease processes. Kidney Int 2000; 57:371-84. [PMID: 10652014 DOI: 10.1046/j.1523-1755.2000.00857.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Approximately 80% of the filtered load of HCO3- is reabsorbed in the proximal tubule via a process of active acid secretion by the luminal membrane. The major mechanism for the transport of HCO3- across the basolateral membrane is via the electrogenic Na+:3HCO3- cotransporter (NBC). Recent molecular cloning experiments have identified the existence of three NBC isoforms (NBC-1, NBC-2, and NBC-3).1 Functional and molecular studies indicate the presence of all three NBC isoforms in the kidney. All are presumed to mediate the cotransport of Na+ and HCO3- under normal conditions and may be functionally altered in certain pathophysiologic states. Specifically, NBC-1 may be up-regulated in metabolic acidosis and potassium depletion and in response to glucocorticoid excess and may be down-regulated in response to HCO3- loading or alkalosis. Recent studies provide molecular evidence indicating the expression of NBC-1 in pancreatic duct cells. NBC is activated by cystic fibrosis transmembrane conductance regulator (CFTR) and plays an important role in HCO3- secretion in the agonist-stimulated state in pancreatic duct cells. The purpose of this review is to summarize recent functional and molecular studies on the regulation of NBCs in physiologic and pathophysiologic states. Possible signals responsible for the regulation of NBCs in these conditions are examined. Furthermore, the possible role of this transporter in acid-base disorders (such as proximal renal tubular acidosis) is discussed.
Collapse
Affiliation(s)
- M Soleimani
- Department of Medicine, University of Cincinnati, and the Veterans Affairs Medical Center, Cincinnati, Ohio 45267-0585, USA.
| | | |
Collapse
|
10
|
Pushkin A, Yip KP, Clark I, Abuladze N, Kwon TH, Tsuruoka S, Schwartz GJ, Nielsen S, Kurtz I. NBC3 expression in rabbit collecting duct: colocalization with vacuolar H+-ATPase. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:F974-81. [PMID: 10600945 DOI: 10.1152/ajprenal.1999.277.6.f974] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have recently cloned and characterized a unique sodium bicarbonate cotransporter, NBC3, which unlike other members of the NBC family, is ethylisopropylamiloride (EIPA) inhibitable, DIDS insensitive, and electroneutral (A. Pushkin, N. Abuladze, I. Lee, D. Newman, J. Hwang, and I. Kurtz. J. Biol. Chem. 274: 16569-16575, 1999). In the present study, a specific polyclonal antipeptide COOH-terminal antibody, NBC3-C1, was generated and used to determine the pattern of NBC3 protein expression in rabbit kidney. A major band of approximately 200 kDa was detected on immunoblots of rabbit kidney. Immunocytochemistry of rabbit kidney frozen sections revealed specific staining of the apical membrane of intercalated cells in both the cortical and outer medullary collecting ducts. The pattern of NBC3 protein expression in the collecting duct was nearly identical to the same sections stained with an antibody against the vacuolar H+-ATPase 31-kDa subunit. In addition, the NBC3-C1 antibody coimmunoprecipitated the vacuolar H+-ATPase 31-kDa subunit. Functional studies in outer medullary collecting ducts (inner stripe) showed that type A intercalated cells have an apical Na+-dependent base transporter that is EIPA inhibitable and DIDS insensitive. The data suggest that NBC3 participates in H+/base transport in the collecting duct. The close association of NBC3 and the vacuolar H+-ATPase in type A intercalated cells suggests a potential structural/functional interaction between the two transporters.
Collapse
Affiliation(s)
- A Pushkin
- Division of Nephrology, University of California at Los Angeles, School of Medicine, Los Angeles, California 90095, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Amlal H, Burnham CE, Soleimani M. Characterization of Na+/HCO-3 cotransporter isoform NBC-3. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:F903-13. [PMID: 10362779 DOI: 10.1152/ajprenal.1999.276.6.f903] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Na+-HCO-3 cotransporters mediate the transport of HCO-3 into or out of the cell. Two Na+-HCO-3 cotransporters (NBC) have been identified previously, which are referred to as NBC-1 and NBC-2. A cDNA library from uninduced human NT-2 cells was screened with an NBC-2 cDNA probe. Several clones were identified and isolated. Sequence analysis of these clones identified a partial coding region (2 kb) of a novel NBC (called here NBC-3), which showed 53% and 72% identity with NBC-1 and NBC-2, respectively. Northern blot analysis revealed that NBC-3 encodes a 4.4-kb mRNA with a tissue distribution pattern distinct from NBC-1 and NBC-2. NBC-3 is highly expressed in brain and spinal column, with moderate levels in trachea, thyroid, and kidney. In contrast with NBC-1, NBC-3 shows low levels of expression in pancreas and kidney cortex. In the kidney, NBC-3 expression is predominantly limited to the medulla. Cultured mouse inner medullary collecting duct (mIMCD-3) cells showed high levels of NBC-1 and low levels of NBC-3 mRNA expression. Subjecting the mutagenized mIMCD-3 cells to sublethal acid stress decreased the mRNA expression of NBC-1 by approximately 90% but increased the Na+-dependent HCO-3 cotransport activity by approximately 7-fold (as assayed by DIDS-sensitive, Na+-dependent, HCO-3-mediated intracellular pH recovery). This increase was associated with approximately 5.5-fold enhancement of NBC-3 mRNA levels. NBC showed significant affinity for Li+ in the mutant but not the parent mIMCD-3 cells. On the basis of the widespread distribution of NBC-3, we propose that this isoform is likely involved in cell pH regulation by transporting HCO-3 from blood to the cell. We further propose that enhanced expression of NBC-3 in severe acid stress could play an important role in cell survival by mediating the influx of HCO-3 into the cells.
Collapse
Affiliation(s)
- H Amlal
- Division of Nephrology, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio 45267-0585, USA
| | | | | |
Collapse
|
12
|
Abuladze N, Lee I, Newman D, Hwang J, Boorer K, Pushkin A, Kurtz I. Molecular cloning, chromosomal localization, tissue distribution, and functional expression of the human pancreatic sodium bicarbonate cotransporter. J Biol Chem 1998; 273:17689-95. [PMID: 9651366 DOI: 10.1074/jbc.273.28.17689] [Citation(s) in RCA: 217] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
We report the cloning, sequence analysis, tissue distribution, functional expression, and chromosomal localization of the human pancreatic sodium bicarbonate cotransport protein (pancreatic NBC (pNBC)). The transporter was identified by searching the human expressed sequence tag data base. An I.M.A.G.E. clone W39298 was identified, and a polymerase chain reaction probe was generated to screen a human pancreas cDNA library. pNBC encodes a 1079-residue polypeptide that differs at the N terminus from the recently cloned human sodium bicarbonate cotransporter isolated from kidney (kNBC) (Burnham, C. E., Amlal, H., Wang, Z., Shull, G. E., and Soleimani, M. (1997) J. Biol. Chem. 272, 19111-19114). Northern blot analysis using a probe specific for the N terminus of pNBC revealed an approximately 7.7-kilobase transcript expressed predominantly in pancreas, with less expression in kidney, brain, liver, prostate, colon, stomach, thyroid, and spinal chord. In contrast, a probe to the unique 5' region of kNBC detected an approximately 7.6-kilobase transcript only in the kidney. In situ hybridization studies in pancreas revealed expression in the acini and ductal cells. The gene was mapped to chromosome 4q21 using fluorescent in situ hybridization. Expression of pNBC in Xenopus laevis oocytes induced sodium bicarbonate cotransport. These data demonstrate that pNBC encodes the sodium bicarbonate cotransporter in the mammalian pancreas. pNBC is also expressed at a lower level in several other organs, whereas kNBC is expressed uniquely in kidney.
Collapse
Affiliation(s)
- N Abuladze
- Division of Nephrology, Center for Health Sciences, UCLA School of Medicine, Los Angeles, California 90095-1698, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Amlal H, Wang Z, Burnham C, Soleimani M. Functional characterization of a cloned human kidney Na+:HCO3- cotransporter. J Biol Chem 1998; 273:16810-5. [PMID: 9642239 DOI: 10.1074/jbc.273.27.16810] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Functional properties of a cloned human kidney Na+:HCO3- cotransporter (NBC-1) were studied in cultured HEK-293 cells that were transiently transfected with NBC-1 cDNA. The Na+:HCO3- cotransporter activity was assayed as the Na+ and HCO3-dependent pHi recovery from intracellular acidosis with the use of the pH-sensitive dye 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein. In acid-loaded cells and in the presence of amiloride (to block Na+/H+ exchange), switching to a Na+-containing solution (115 mM) resulted in rapid pHi recovery only in the presence of HCO3-. This recovery was completely abolished by 300 microM 4, 4'-diisothiocyanostilbene-2,2'-disulfonic acid. Replacing the Na+ with Li+ (115 mM) caused significant HCO3--dependent, DIDS-sensitive pHi recovery from intracellular acidosis, with Li+ showing lower affinity than Na+. Potassium (K+) had no affinity for the Na+:HCO3- cotransporter. The Na+-dependent HCO3- cotransport was abolished in the presence of 0.2 mM harmaline. The Na+:HCO3- cotransporter could also function in Na+:OH- cotransport mode, although only at high external pH (7.8). Based on functional similarities with the mammalian kidney experiments, we propose that NBC-1 is the proximal tubule Na+:HCO3- cotransporter.
Collapse
Affiliation(s)
- H Amlal
- Department of Medicine, University of Cincinnati School of Medicine, Cincinnati, Ohio 45267-0585, USA
| | | | | | | |
Collapse
|
14
|
Burnham CE, Amlal H, Wang Z, Shull GE, Soleimani M. Cloning and functional expression of a human kidney Na+:HCO3- cotransporter. J Biol Chem 1997; 272:19111-4. [PMID: 9235899 DOI: 10.1074/jbc.272.31.19111] [Citation(s) in RCA: 167] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Several modes of HCO3- transport occur in the kidney, including Na+-independent Cl/HCO3- exchange (mediated by the AE family of Cl-/HCO3- exchangers), sodium-dependent Cl-/HCO3- exchange, and Na+:HCO3- cotransport. The functional similarities between the Na+-coupled HCO3- transporters and the AE isoforms (i.e. transport of HCO3- and sensitivity to inhibition by 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid) suggested a strategy for cloning the other transporters based on structural similarity with the AE family. An expressed sequence tag encoding part of a protein that is related to the known anion exchangers was identified in the GenBankTM expressed sequence tag data base and used to design an oligonucleotide probe. This probe was used to screen a human kidney cDNA library. Several clones were identified, isolated, and sequenced. Two overlapping cDNA clones were spliced together to form a 7.6-kilobase cDNA that contained the entire coding region of a novel protein. Based on the deduced amino acid sequence, the cDNA encodes a protein with a Mr of 116,040. The protein has 29% identity with human brain AE3. Northern blot analysis reveals that the 7.6-kilobase mRNA is highly expressed in kidney and pancreas, with detectable levels in brain. Functional studies in transiently transfected HEK-293 cells demonstrate that the cloned transporter mediates Na+:HCO3- cotransport.
Collapse
Affiliation(s)
- C E Burnham
- Department of Internal Medicine, University of Cincinnati School of Medicine, Cincinnati, Ohio 45267-0585, USA
| | | | | | | | | |
Collapse
|
15
|
Mathias NR, Yamashita F, Lee VH. Respiratory epithelial cell culture models for evaluation of ion and drug transport. Adv Drug Deliv Rev 1996. [DOI: 10.1016/s0169-409x(96)00420-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|