1
|
Shen YJ, Ou PH, Shen YC, Lai CJ. Role of endogenous nerve growth factor in laryngeal airway hyperreactivity and laryngeal inflammation induced by intermittent hypoxia in rats. Respir Physiol Neurobiol 2025; 332:104372. [PMID: 39566876 DOI: 10.1016/j.resp.2024.104372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/22/2024]
Abstract
Obstructive sleep apnea, characterized by airway exposure to intermittent hypoxia (IH), is associated with laryngeal airway hyperreactivity (LAH) and laryngeal inflammation. The sensitization of capsaicin-sensitive superior laryngeal afferents (CSSLAs) by inflammatory mediators has been implicated in the pathogenesis of LAH. Nerve growth factor (NGF) is an inflammatory mediator that acts on tropomyosin receptor kinase A (TrkA) and the p75 neurotrophin receptor (p75NTR) to induce lower airway hyperresponsiveness. In this study, we investigated the role of NGF in the development of LAH and laryngeal inflammation induced by IH in anesthetized rats. Compared with rats subjected to room air exposure for 14 days, rats with 14-day IH exposure exhibited augmented reflex apneic responses to the laryngeal provocation of three different chemical stimulants of CSSLAs, resulting in LAH. The apneic responses to laryngeal stimulants were abolished by either perineural capsaicin treatment (a procedure that selectively blocks the conduction of CSSLAs) or denervation of the superior laryngeal nerves, suggesting that the reflex was mediated through CSSLAs. The IH-induced LAH was significantly attenuated by daily treatment with anti-NGF antibody, but was unaffected by daily treatment with immunoglobulin G. IH exposure also induced laryngeal inflammation as evidenced by increases in laryngeal levels of NGF, lipid peroxidation, tumor necrosis factor-α, interleukin-1β, TrkA, and p75NTR. Similarly, IH-induced laryngeal inflammation was significantly reduced by daily treatment with anti-NGF antibody. We concluded that NGF contributes to the development of LAH and laryngeal inflammation induced by IH in rats. The LAH may result from the sensitizing effect of NGF on CSSLAs.
Collapse
Affiliation(s)
- Yan-Jhih Shen
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ping-Hsun Ou
- Master program in Medical Physiology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Yan-Cheng Shen
- Graduate Institute of Medical Sciences and Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ching Jung Lai
- Master program in Medical Physiology, School of Medicine, Tzu Chi University, Hualien, Taiwan; Department of Physiology, School of Medicine, Tzu Chi University, Hualien, Taiwan.
| |
Collapse
|
2
|
Andelman-Gur M, Snitz K, Honigstein D, Weissbrod A, Soroka T, Ravia A, Gorodisky L, Pinchover L, Ezra A, Hezi N, Gurevich T, Sobel N. Discriminating Parkinson's disease patients from healthy controls using nasal respiratory airflow. COMMUNICATIONS MEDICINE 2024; 4:233. [PMID: 39543393 PMCID: PMC11564766 DOI: 10.1038/s43856-024-00660-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Breathing patterns may inform on health. We note that the sites of earliest brain damage in Parkinson's disease (PD) house the neural pace-makers of respiration. We therefore hypothesized that ongoing long-term temporal dynamics of respiration may be altered in PD. METHODS We applied a wearable device that precisely logs nasal airflow over time in 28 PD patients (mostly H&Y stage-II) and 33 matched healthy controls. Each participant wore the device for 24 h of otherwise routine daily living. RESULTS We observe significantly altered temporal patterns of nasal airflow in PD, where inhalations are longer and less variable than in matched controls (mean PD = -1.22 ± 1.9 (combined respiratory features score), Control = 1.04 ± 2.16, Wilcoxon rank-sum test, z = -4.1, effect size Cliff's δ = -0.61, 95% confidence interval = -0.79 - (-0.34), P = 4.3 × 10-5). The extent of alteration is such that using only 30 min of recording we detect PD at 87% accuracy (AUC = 0.85, 79% sensitivity (22 of 28), 94% specificity (31 of 33), z = 5.7, p = 3.5 × 10-9), and also predict disease severity (correlation with UPDRS-Total score: r = 0.49; P = 0.008). CONCLUSIONS We conclude that breathing patterns are altered by H&Y stage-II in the disease cascade, and our methods may be further refined in the future to provide an indication with diagnostic and prognostic value.
Collapse
Affiliation(s)
- Michal Andelman-Gur
- Department for Brain Sciences, Weizmann Institute of Science, Rehovot, Israel.
| | - Kobi Snitz
- Department for Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Danielle Honigstein
- Department for Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Aharon Weissbrod
- Department for Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Timna Soroka
- Department for Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Aharon Ravia
- Department for Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Lior Gorodisky
- Department for Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Liron Pinchover
- Department for Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Adi Ezra
- Movement Disorders Unit, Neurological Institute, Tel-Aviv Sourasky Medical Center (TASMC), Tel-Aviv, Israel
| | - Neomi Hezi
- Movement Disorders Unit, Neurological Institute, Tel-Aviv Sourasky Medical Center (TASMC), Tel-Aviv, Israel
| | - Tanya Gurevich
- Movement Disorders Unit, Neurological Institute, Tel-Aviv Sourasky Medical Center (TASMC), Tel-Aviv, Israel
- Faculty of Medical & Health Sciences, Tel-Aviv University, Tel Aviv, Israel
| | - Noam Sobel
- Department for Brain Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
3
|
Sunderram J, Legard A, De Resende A, Black K, Udasin IG, Lu SE, Romero Castillo H, Ravi SS, Mullins AE, de la Hoz RE, Rapoport DM, Ayappa I. Lack of association of impaired upper airway sensation with the presence or absence of obstructive sleep apnoea or chronic rhinosinusitis in World Trade Center responders. Occup Environ Med 2024; 81:302-307. [PMID: 38871449 PMCID: PMC11239276 DOI: 10.1136/oemed-2023-109262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 05/07/2024] [Indexed: 06/15/2024]
Abstract
OBJECTIVE Examine sensory function of the upper airway in four groups of subjects recruited from the World Trade Centre General Responder Cohort (WTCGRC), with/without obstructive sleep apnoea (OSA), and with/without chronic rhinosinusitis (CRS). METHODS Upper airway sensory function was determined using 2-point discrimination (2-PD) and vibration threshold (VT) in 163 WTCGRC subjects with both OSA and CRS (cases), OSA or CRS alone and without OSA or CRS (controls). Presence of OSA was determined from clinical sleep studies or home sleep testing. Presence of CRS was determined by nasal symptom questionnaire. The relationship between the presence of OSA and CRS and upper airway sensory impairment was assessed using linear regression analysis with each of 2PD and VT sensory threshold values as the dependent variable; OSA, CRS and their interaction were the independent variables. Age, gender and body mass index were covariates in the statistical model. The primary analysis was comparison of OSA+CRS versus controls (no OSA and no CRS) evaluated by linear contrasts. RESULTS There were no differences in 2-PD or VT in those with OSA+CRS, OSA and CRS alone or controls. However, both 2-PD and VT were significantly higher in the WTCGRC controls compared with values seen in historical controls using the same methodology (median 2-PD 13.0; CI (11.0 to 13.5) vs 10.5; CI (8 to 11); VT: mean±SEM (9.3±0.6 vs 2.2±0.1)). CONCLUSION While no differences were found in upper airway sensation between cases of OSA and CRS versus controls in the WTGRC population, there was evidence of impaired upper airway sensation in the WTGRC overall.
Collapse
Affiliation(s)
- Jag Sunderram
- Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Alicia Legard
- Environmental and Occupational Health Sciences Institute, Rutgers The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Adriana De Resende
- Environmental and Occupational Health Sciences Institute, Rutgers The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Kathleen Black
- Environmental and Occupational Health Sciences Institute, Rutgers The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Iris G Udasin
- Environmental and Occupational Health Sciences Institute, Rutgers The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Shou-En Lu
- School of Public Health, Rutgers Biomedical and Health Sciences, Piscataway, New Jersey, USA
| | - Horacio Romero Castillo
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Sri Saranya Ravi
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Anna E Mullins
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Rafael E de la Hoz
- Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - David M Rapoport
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Indu Ayappa
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| |
Collapse
|
4
|
Kim D, Baek S, Kim S, Im S, Kim S. Analysis of breathing patterns to stabilize cardiovascular changes in physical stress environments : inspiration responds to rapid changes in blood pressure. Biomed Eng Lett 2024; 14:813-821. [PMID: 38946807 PMCID: PMC11208350 DOI: 10.1007/s13534-024-00379-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/24/2024] [Accepted: 03/30/2024] [Indexed: 07/02/2024] Open
Abstract
The thoracic nerves form a complex neural network that coordinates involuntary muscles such as breathing and the heart. Breathing has various patterns to maintain homeostasis in the human body. This study analyzes changes in the cardiovascular system and breathing patterns induced by stress caused by various mechanical movements performed in daily life and ultimately, the goal is to propose effective breathing patterns and breathing control methods to maintain cardiovascular homeostasis. The participants' age was 26.97 ± 3.93 years, height was 170.24 ± 8.61 cm, and weight was 65.69 ± 13.55 Kg, and there were 62 men and 38 women. Breathing and electrocardiogram were obtained using HiCard+, a biometric monitoring device. The measured electrocardiogram was analyzed for heartbeat interval, which indicates changes in the cardiovascular system, and standard deviation of normal to normal interval (SDNN) and root mean square of the successive differences (rMSSD), which indicate the activity of the autonomic and parasympathetic nervous systems. For respiration, time changes were analyzed as patterns by calculating inspiration and exhalation times. As a result of this study, rapid changes in blood pressure increased SDNN and rMSSD from 0.053 ± 0.06 and 0.056 ± 0.087 to 0.109 ± 0.114 and 0.125 ± 0.170 s, and induced an increase in spontaneous inspiratory time from 1.46 to 1.51 s (p < 0.05). Ultimately, we hope that the results of this study will be used as a breathing control training technique to prevent and manage rapid cardiovascular changes. Supplementary Information The online version contains supplementary material available at 10.1007/s13534-024-00379-y.
Collapse
Affiliation(s)
- Daechang Kim
- Department of Medical Biotechnology, Dongguk University, Bio Medi Campus, Ilsandonggu, Goyang si, Gyeonggi-do 10326 Korea
| | - Seungbin Baek
- Department of Medical Device Business, Dongguk University, 32, Dongguk ro, Ilsandonggu, Goyang si, Gyeonggi do 10326 Korea
| | - Seunghui Kim
- Department of Regulatory Science for Bio-Health Medical Device, Dongguk University, 32, Dongguk ro, Ilsandonggu, Goyang si, Gyeonggi do 10326 Korea
| | - Sanghee Im
- Department and Research Institute of Rehabilitation Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722 South Korea
| | - Sungmin Kim
- Department of Medical Biotechnology, Dongguk University, Bio Medi Campus, Ilsandonggu, Goyang si, Gyeonggi-do 10326 Korea
- Department of Medical Device Industry, Dongguk University, Seoul, 04620 Korea
| |
Collapse
|
5
|
Chan PYS, Lee LY, Davenport PW. Neural mechanisms of respiratory interoception. Auton Neurosci 2024; 253:103181. [PMID: 38696917 DOI: 10.1016/j.autneu.2024.103181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/03/2024] [Accepted: 04/22/2024] [Indexed: 05/04/2024]
Abstract
Respiratory interoception is one of the internal bodily systems that is comprised of different types of somatic and visceral sensations elicited by different patterns of afferent input and respiratory motor drive mediating multiple respiratory modalities. Respiratory interoception is a complex system, having multiple afferents grouped into afferent clusters and projecting into both discriminative and affective centers that are directly related to the behavioral assessment of breathing. The multi-afferent system provides a spectrum of input that result in the ability to interpret the different types of respiratory interceptive sensations. This can result in a response, commonly reported as breathlessness or dyspnea. Dyspnea can be differentiated into specific modalities. These respiratory sensory modalities lead to a general sensation of an Urge-to-Breathe, driven by a need to compensate for the modulation of ventilation that has occurred due to factors that have affected breathing. The multiafferent system for respiratory interoception can also lead to interpretation of the sensory signals resulting in respiratory related sensory experiences, including the Urge-to-Cough and Urge-to-Swallow. These behaviors are modalities that can be driven through the differentiation and integration of multiple afferent input into the respiratory neural comparator. Respiratory sensations require neural somatic and visceral interoceptive elements that include gated attention and detection leading to respiratory modality discrimination with subsequent cognitive decision and behavioral compensation. Studies of brain areas mediating cortical and subcortical respiratory sensory pathways are summarized and used to develop a model of an integrated respiratory neural network mediating respiratory interoception.
Collapse
Affiliation(s)
- Pei-Ying Sarah Chan
- Department of Occupational Therapy, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Psychiatry, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
| | - Lu-Yuan Lee
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Paul W Davenport
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
6
|
Xu F, Zhao L, Zhuang J, Gao X. Peripheral Neuroplasticity of Respiratory Chemoreflexes, Induced by Prenatal Nicotinic Exposure: Implication for SIDS. Respir Physiol Neurobiol 2023; 313:104053. [PMID: 37019251 DOI: 10.1016/j.resp.2023.104053] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/23/2023] [Accepted: 04/02/2023] [Indexed: 04/05/2023]
Abstract
Sudden Infant Death Syndrome (SIDS) occurs during sleep in seemingly healthy infants. Maternal cigarette smoking and hypoxemia during sleep are assumed to be the major causal factors. Depressed hypoxic ventilatory response (dHVR) is observed in infants with high risk of SIDS, and apneas (lethal ventilatory arrest) appear during the fatal episode of SIDS. Disturbance of the respiratory center has been proposed to be involved, but the pathogenesis of SIDS is still not fully understood. Peripherally, the carotid body is critical to generate HVR, and bronchopulmonary and superior laryngeal C-fibers (PCFs and SLCFs) are important for triggering central apneas; however, their roles in the pathogenesis of SIDS have not been explored until recently. There are three lines of recently accumulated evidence to show the disorders of peripheral sensory afferent-mediated respiratory chemoreflexes in rat pups with prenatal nicotinic exposure (a SIDS model) in which acute severe hypoxia leads to dHVR followed by lethal apneas. (1) The carotid body-mediated HVR is suppressed with a reduction of the number and sensitivity of glomus cells. (2) PCF-mediated apneic response is largely prolonged via increased PCF density, pulmonary IL-1β and serotonin (5-hydroxytryptamine, 5-HT) release, along with the enhanced expression of TRPV1, NK1R, IL1RI and 5-HT3R in pulmonary C-neurons to strengthen these neural responses to capsaicin, a selective stimulant to C-fibers. (3) SLCF-mediated apnea and capsaicin-induced currents in superior laryngeal C-neurons are augmented by upregulation of TRPV1 expression in these neurons. These results, along with hypoxic sensitization/stimulation of PCFs, gain insight into the mechanisms of prenatal nicotinic exposure-induced peripheral neuroplasticity responsible for dHVR and long-lasting apnea during hypoxia in rat pups. Therefore, in addition to the disturbance in the respiratory center, the disorders of peripheral sensory afferent-mediated chemoreflexes may also be involved in respiratory failure and death denoted in SIDS victims.
Collapse
|
7
|
Patros M, Ottaviani MM, Wright L, Dawood T, Macefield VG. Quantification of cardiac and respiratory modulation of axonal activity in the human vagus nerve. J Physiol 2022; 600:3113-3126. [PMID: 35524982 DOI: 10.1113/jp282994] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/28/2022] [Indexed: 01/05/2023] Open
Abstract
We recently documented the first microelectrode recordings from the cervical vagus nerve in awake humans. Here we aimed to quantify cardiac and respiratory modulation of vagal activity to assess the feasibility of targeting axons supplying the heart and airways. Multi-unit activity was recorded from 43 sites in 19 healthy participants in the left (n = 10) and right (n = 9) vagus nerves with ECG, continuous non-invasive blood pressure and respiration. Cross-correlation histograms were constructed between axonal spikes and the R-waves or the peaks of inspiration. The latencies for the peak in cardiac modulation showed a bimodal distribution: while the majority of sites (72%) had peak latencies that preceded the R-wave by up to 550 ms (mean ± SD, -300 ± 178 ms), 12 sites had latencies of up to 250 ms following the R-wave (64 ± 87 ms). Interestingly, the majority of sites with negative latencies (68%) were found in the left nerve whereas most of those with positive latencies (75%) were found in the right. Conversely, on average the peak of respiratory modulation straddled the peak of inspiration. Sites showing respiratory modulation were more prevalent and showed stronger modulation than those with cardiac modulation: calculated for sites with modulation indices ≥15%, the median cardiac and respiratory modulation indices were 23.4% (n = 17) and 44.5% (n = 35), respectively. We conclude that, despite the fact that much of the vagus nerve supplies the gut, cardiac and respiratory modulation of vagal nerve activity can be identified through invasive recordings in awake humans. KEY POINTS: Intraneural recordings from the cervical vagus were obtained in awake humans via tungsten microelectrodes inserted into the nerve through ultrasound guidance. Cross-correlation analysis of multi-unit vagal activity revealed cardiac and respiratory modulation, from which the amplitude and latency of the peaks could be computed. The magnitude of the cardiac modulation (23%) was weaker than that of the respiratory modulation (45%). The latencies for the peak in cardiac modulation showed a bimodal distribution: the majority of sites (72%) had peak latencies that preceded the R-wave, while the remainder had latencies that followed the R-wave. The majority of sites with negative latencies (68%) were found in the left nerve whereas most of those with positive latencies (75%) were found in the right. On average the peak of respiratory modulation coincided with the peak of inspiration.
Collapse
Affiliation(s)
- Mikaela Patros
- Baker Heart and Diabetes Institute, Melbourne, Australia.,Department of Anatomy and Physiology, University of Melbourne, Melbourne, Australia
| | - Matteo M Ottaviani
- Department of Neurosurgery, Università Politecnica delle Marche, Ancona, Italy
| | - Leah Wright
- Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Tye Dawood
- Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Vaughan G Macefield
- Baker Heart and Diabetes Institute, Melbourne, Australia.,Department of Anatomy and Physiology, University of Melbourne, Melbourne, Australia
| |
Collapse
|
8
|
Clarke DL, Reetz JA, Drobatz KJ, Holt DE. Severity of nasopharyngeal collapse before and after corrective upper airway surgery in brachycephalic dogs. Vet Surg 2022; 51:982-989. [PMID: 35733394 DOI: 10.1111/vsu.13841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/28/2022] [Accepted: 05/21/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To determine the severity of nasopharyngeal collapse in brachycephalic dogs before and after corrective airway surgery. ANIMALS Twenty-three brachycephalic dogs (21 with clinical signs referrable to the upper airway) and nine clinically normal nonbrachycephalic dogs (controls). METHODS Dogs were evaluated with fluoroscopy awake and standing with the head in a neutral position. The magnitude of nasopharyngeal collapse was measured as the maximum reduction in the dorsoventral dimension of the nasopharynx during respiration and expressed as a percentage. Brachycephalic dogs were anesthetized, the airway evaluated, and corrective upper airway surgery (alaplasty, staphylectomy, sacculectomy, tonsillectomy) was performed. A cohort (n = 11) of the surgically treated brachycephalic dogs had fluoroscopy repeated a minimum of 6 weeks after surgery. RESULTS Median preoperative reduction in the dorsoventral dimensions of the nasopharynx was greater in brachycephalic dogs (65%; range: 8-100%) than in controls (10%; range: 1-24%, p = .0001). Surgery did not improve the reduction in dorsoventral diameter of the nasopharynx during respiration in brachycephalic dogs (n = 11) postoperatively (p = .0505). CONCLUSION AND CLINICAL SIGNIFICANCE Nasopharyngeal collapse was a common and sometimes severe component of brachycephalic airway obstruction syndrome in the cohort of dogs evaluated. The lack of significant postoperative improvement may represent a type II error, a failure to adequately address anatomical abnormalities that increase resistance to airflow, or inadequate upper airway dilator muscle function in some brachycephalic dogs.
Collapse
Affiliation(s)
- Dana L Clarke
- From the Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
| | - Jennifer A Reetz
- From the Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
| | - Kenneth J Drobatz
- From the Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
| | - David E Holt
- From the Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
9
|
Mafa-dependent GABAergic activity promotes mouse neonatal apneas. Nat Commun 2022; 13:3284. [PMID: 35672398 PMCID: PMC9174494 DOI: 10.1038/s41467-022-30825-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 05/19/2022] [Indexed: 01/17/2023] Open
Abstract
While apneas are associated with multiple pathological and fatal conditions, the underlying molecular mechanisms remain elusive. We report that a mutated form of the transcription factor Mafa (Mafa4A) that prevents phosphorylation of the Mafa protein leads to an abnormally high incidence of breath holding apneas and death in newborn Mafa4A/4A mutant mice. This apneic breathing is phenocopied by restricting the mutation to central GABAergic inhibitory neurons and by activation of inhibitory Mafa neurons while reversed by inhibiting GABAergic transmission centrally. We find that Mafa activates the Gad2 promoter in vitro and that this activation is enhanced by the mutation that likely results in increased inhibitory drives onto target neurons. We also find that Mafa inhibitory neurons are absent from respiratory, sensory (primary and secondary) and pontine structures but are present in the vicinity of the hypoglossal motor nucleus including premotor neurons that innervate the geniohyoid muscle, to control upper airway patency. Altogether, our data reveal a role for Mafa phosphorylation in regulation of GABAergic drives and suggest a mechanism whereby reduced premotor drives to upper airway muscles may cause apneic breathing at birth. Apneas are associated with many pathological conditions. Here, the authors show in a mouse model that stabilization of the transcription factor Mafa in brainstem GABAergic neurons may contribute to apnea, by decreasing motor drive to muscles controlling the airways.
Collapse
|
10
|
Abstract
This chapter broadly reviews cardiopulmonary sympathetic and vagal sensors and their reflex functions during physiologic and pathophysiologic processes. Mechanosensory operating mechanisms, including their central projections, are described under multiple sensor theory. In addition, ways to interpret evidence surrounding several controversial issues are provided, with detailed reasoning on how conclusions are derived. Cardiopulmonary sensory roles in breathing control and the development of symptoms and signs and pathophysiologic processes in cardiopulmonary diseases (such as cough and neuroimmune interaction) also are discussed.
Collapse
Affiliation(s)
- Jerry Yu
- Department of Medicine (Pulmonary), University of Louisville, and Robley Rex VA Medical Center, Louisville, KY, United States.
| |
Collapse
|
11
|
Kubin L. Breathing during sleep. HANDBOOK OF CLINICAL NEUROLOGY 2022; 188:179-199. [PMID: 35965026 DOI: 10.1016/b978-0-323-91534-2.00005-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The depth, rate, and regularity of breathing change following transition from wakefulness to sleep. Interactions between sleep and breathing involve direct effects of the central mechanisms that generate sleep states exerted at multiple respiratory regulatory sites, such as the central respiratory pattern generator, respiratory premotor pathways, and motoneurons that innervate the respiratory pump and upper airway muscles, as well as effects secondary to sleep-related changes in metabolism. This chapter discusses respiratory effects of sleep as they occur under physiologic conditions. Breathing and central respiratory neuronal activities during nonrapid eye movement (NREM) sleep and REM sleep are characterized in relation to activity of central wake-active and sleep-active neurons. Consideration is given to the obstructive sleep apnea syndrome because in this common disorder, state-dependent control of upper airway patency by upper airway muscles attains high significance and recurrent arousals from sleep are triggered by hypercapnic and hypoxic episodes. Selected clinical trials are discussed in which pharmacological interventions targeted transmission in noradrenergic, serotonergic, cholinergic, and other state-dependent pathways identified as mediators of ventilatory changes during sleep. Central pathways for arousals elicited by chemical stimulation of breathing are given special attention for their important role in sleep loss and fragmentation in sleep-related respiratory disorders.
Collapse
Affiliation(s)
- Leszek Kubin
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
12
|
Yamamoto Y, Moriai H, Yokoyama T, Nakamuta N. Immunohistochemical distribution of proteins involved in glutamate release in subepithelial sensory nerve endings of rat epiglottis. Histochem Cell Biol 2021; 157:51-63. [PMID: 34613496 DOI: 10.1007/s00418-021-02038-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2021] [Indexed: 11/25/2022]
Abstract
To elucidate the efferent functions of sensory nerve endings, the distribution of calretinin and vesicular glutamate transporter 1 (VGLUT1) in laryngeal laminar nerve endings and the immunohistochemical distribution of proteins associated with synaptic vesicle release, i.e., t-SNARE (SNAP25 and syntaxin 1), v-SNARE (VAMP1 and VAMP2), synaptotagmin 1 (Syt1), bassoon, and piccolo, were examined. Subepithelial laminar nerve endings immunoreactive for Na+-K+-ATPase α3-subunit (NKAα3) were largely distributed in the whole-mount preparation of the epiglottic mucosa, and several endings were also immunoreactive for calretinin. VGLUT1 immunoreactivity was observed within terminal part near the outline of the small processes of NKAα3-immunoreactive nerve ending. SNAP25, syntaxin 1, and VAMP1 immunoreactivities were detected in terminal parts of calretinin-immunoreactive endings, whereas VAMP2 immunoreactivity was only observed in a few terminals. Terminal parts immunoreactive for calretinin and/or VGLUT1 also exhibited immunoreactivities for Syt1, Ca2+ sensor for membrane trafficking, and for bassoon and piccolo, presynaptic scaffold proteins. The presence of vesicular release-related proteins, including SNARE proteins, in the terminals of laryngeal laminar endings indicate that intrinsic glutamate modulates their afferent activity in an autocrine-like manner.
Collapse
Affiliation(s)
- Yoshio Yamamoto
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, 18-8, Ueda 3-chome, Morioka, Iwate, 020-8550, Japan.
| | - Hisae Moriai
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, 18-8, Ueda 3-chome, Morioka, Iwate, 020-8550, Japan
| | - Takuya Yokoyama
- Department of Anatomy (Cell Biology), Iwate Medical University, 1-1-1 Idaidori, Yahaba, Iwate, 028-3694, Japan
| | - Nobuaki Nakamuta
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, 18-8, Ueda 3-chome, Morioka, Iwate, 020-8550, Japan
| |
Collapse
|
13
|
Ni F, Ogura T, Lin W. Electronic Cigarette Liquid Constituents Induce Nasal and Tracheal Sensory Irritation in Mice in Regionally Dependent Fashion. Nicotine Tob Res 2021; 22:S35-S44. [PMID: 33320249 PMCID: PMC7737480 DOI: 10.1093/ntr/ntaa174] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 10/01/2020] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Electronic cigarettes (e-cigs) are currently used by millions of adults and adolescents worldwide. Major respiratory symptoms, such as coughing reported by e-cig users, including patients with e-cig, or vaping, product use-associated lung injury (EVALI), indicate e-cig constituent-induced sensory irritation. However, e-cig constituent-induced nociceptive activity in nasal and tracheal respiratory epithelia (RE) and neuronal activation in the trigeminal ganglia and brainstem nuclei, which receive airway chemosensory inputs have not been examined and compared. Comparisons of physiological responses between freebase nicotine and nicotine salts are also missing. AIMS AND METHODS Event-related potential (ERP) was recorded electrophysiologically to assess mouse nasal and tracheal RE chemosensory responses to various flavorings, nicotine, including freebase and nicotine salts, e-liquid mixtures, and tussigenic stimuli. Also, mice were subjected to inhalation exposure to aerosol of a vanilla-flavored e-liquid or air (control), and the activated-trigeminal nociceptive neurons and brainstem neurons were examined using immunohistochemistry. RESULTS Individual constituents and mixtures of e-liquids, capsaicin, and citric and acetic acids evoked significantly larger ERP in the nose than in the trachea with the exception of menthol. ERP responses to freebase nicotine were significantly larger than protonated nicotine. Four nicotine salts (benzoate, lactate, levulinate, and salicylate) induced similar responses. Compared with air-exposed mice, e-liquid aerosol-exposed mice showed a significant increase in numbers of activated trigeminal nociceptive neurons and brainstem neurons in the spinal trigeminal nucleus, paratrigeminal nucleus, and nucleus tractus solitarius. CONCLUSIONS E-liquid constituents region-dependently stimulate airway nociceptive chemosensory systems, and freebase nicotine is more potent than protonated nicotine. IMPLICATIONS Neural abnormalities have been implicated in the development of nasal and respiratory illnesses. The higher sensitivity of the nasal nociceptive chemosensory system to nicotine and flavorings may indicate a health risk for e-liquid aerosol-induced upper airway illnesses via neurogenic alteration and warrants further investigation.
Collapse
Affiliation(s)
- Fenge Ni
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD
| | - Tatsuya Ogura
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD
| | - Weihong Lin
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD
| |
Collapse
|
14
|
Dhingra RR, Furuya WI, Galán RF, Dutschmann M. Excitation-inhibition balance regulates the patterning of spinal and cranial inspiratory motor outputs in rats in situ. Respir Physiol Neurobiol 2019; 266:95-102. [DOI: 10.1016/j.resp.2019.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/11/2019] [Accepted: 05/02/2019] [Indexed: 11/25/2022]
|
15
|
Fogarty MJ, Sieck GC. Evolution and Functional Differentiation of the Diaphragm Muscle of Mammals. Compr Physiol 2019; 9:715-766. [PMID: 30873594 PMCID: PMC7082849 DOI: 10.1002/cphy.c180012] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Symmorphosis is a concept of economy of biological design, whereby structural properties are matched to functional demands. According to symmorphosis, biological structures are never over designed to exceed functional demands. Based on this concept, the evolution of the diaphragm muscle (DIAm) in mammals is a tale of two structures, a membrane that separates and partitions the primitive coelomic cavity into separate abdominal and thoracic cavities and a muscle that serves as a pump to generate intra-abdominal (Pab ) and intrathoracic (Pth ) pressures. The DIAm partition evolved in reptiles from folds of the pleural and peritoneal membranes that was driven by the biological advantage of separating organs in the larger coelomic cavity into separate thoracic and abdominal cavities, especially with the evolution of aspiration breathing. The DIAm pump evolved from the advantage afforded by more effective generation of both a negative Pth for ventilation of the lungs and a positive Pab for venous return of blood to the heart and expulsive behaviors such as airway clearance, defecation, micturition, and child birth. © 2019 American Physiological Society. Compr Physiol 9:715-766, 2019.
Collapse
Affiliation(s)
- Matthew J Fogarty
- Mayo Clinic, Department of Physiology & Biomedical Engineering, Rochester, Minnesota, USA
| | - Gary C Sieck
- Mayo Clinic, Department of Physiology & Biomedical Engineering, Rochester, Minnesota, USA
| |
Collapse
|
16
|
Fujita S, Zama M, Kaneko K, Murayama S, Ohtani S, Usui M, Noma D, Tsuda H, Yamamoto K, Kobayashi M. Menthol-induced facilitation of cerebrocortical excitatory propagation induced by air puff stimulation of the nasal cavity in the rat: An optical imaging study. Neurosci Lett 2018; 696:87-92. [PMID: 30553866 DOI: 10.1016/j.neulet.2018.12.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/29/2018] [Accepted: 12/12/2018] [Indexed: 11/17/2022]
Abstract
Temperature plays a critical role in the sensation of airflow in the nasal mucosa. Neural activities of the ethmoidal nerve, a trigeminal afferent, responding to airflow are suppressed by warm airflow, whereas cold airflow enhances the ethmoidal nerve activities, which is mimicked by application of menthol, a cold-sensitive TRPM8 receptor agonist. However, it has been an open issue how menthol modulates the spatiotemporal profiles of neural activities of somatosensory cortical neurons. In this study, we assessed neural responses to an air puff stimulation (100 ms) to the nasal cavity in the absence or presence of l-menthol using an optical imaging technique with a voltage-sensitive dye in the primary cortex (S1) of urethane-anesthetized rats. A weak air puff application (15 psi) without l-menthol induced neural excitation in a part of the contralateral S1. The air puff stimulation with l-menthol significantly increased the optical signal intensity, expanded the activated area, and shortened the latency, compared to those in the absence of l-menthol. These results suggest that activation of cold-sensitive TRPM8 receptors sharpens airflow sensation in the nasal cavity and expands the receptive field, especially toward the pharynx, which may contribute to enhanced flavor perception.
Collapse
Affiliation(s)
- Satoshi Fujita
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan; Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan.
| | - Manabu Zama
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan; Department of Oral and Maxillofacial Surgery, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Keisuke Kaneko
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan; Department of Anesthesiology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Shota Murayama
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan; Department of Endodontics, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Saori Ohtani
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan; Department of Oral and Maxillofacial Surgery, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Midori Usui
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan; Department of Anesthesiology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Daichi Noma
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan; Department of Orthodontics, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Hiromasa Tsuda
- Department of Biochemistry, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan; Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Kiyofumi Yamamoto
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan; Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Masayuki Kobayashi
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan; Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan; Molecular Dynamics Imaging Unit, RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
17
|
Masuda H, Nakamuta N, Yamamoto Y. Morphology of GNAT3-immunoreactive chemosensory cells in the rat larynx. J Anat 2018; 234:149-164. [PMID: 30467855 DOI: 10.1111/joa.12914] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2018] [Indexed: 01/07/2023] Open
Abstract
The upper airways play important roles in respiratory defensive reflexes. Although solitary chemosensory cells and chemosensory cell clusters have been reported in the laryngeal mucosa of mammalian species, the distribution and cellular morphology of chemosensory cells remain unclear. In the present study, the distribution and morphology of solitary chemosensory cells and chemosensory cell clusters were examined by immunofluorescence for GNAT3 on whole-mount preparations of the rat laryngeal mucosa. Electrophysiological experiments were performed to analyze the respiratory reflexes evoked by bitter stimuli to the laryngeal cavity. In the whole area of the laryngeal mucosa, the numbers of GNAT3-immunoreactive solitary chemosensory cells and chemosensory clusters were 421.0 ± 20.3 and 62.7 ± 6.9, respectively. GNAT3-immunoreactive solitary chemosensory cells were mainly distributed in the mucosa overlying epiglottic and arytenoid cartilage, and chemosensory clusters were mainly distributed on the edge of the epiglottis and aryepiglottic fold. GNAT3-immunoreactive solitary chemosensory cells were slender with elongated processes or had a flask-like/columnar shape. The number of GNAT3-immunoreactive cells in chemosensory clusters was 6.1 ± 0.4, ranging between 2 and 14 cells. GNAT3-immunoreactive cells in the cluster were variform and the tips of apical processes gathered at one point at the surface of the epithelium. The tips of apical cytoplasmic processes in solitary chemosensory cells and cells in the cluster were immunoreactive for espin, and faced the laryngeal cavity. Physiological experiments showed that the application of 10 mm quinine hydrochloride to the laryngeal cavity decreased respiratory frequency. The present results revealed the chemosensory field of the larynx and the morphological characteristics of the laryngeal chemosensory system for respiratory depression.
Collapse
Affiliation(s)
- Haruka Masuda
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Nobuaki Nakamuta
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Yoshio Yamamoto
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, Morioka, Japan
| |
Collapse
|
18
|
Pleasantness and trigeminal sensations as salient dimensions in organizing the semantic and physiological spaces of odors. Sci Rep 2018; 8:8444. [PMID: 29855500 PMCID: PMC5981304 DOI: 10.1038/s41598-018-26510-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 05/08/2018] [Indexed: 11/09/2022] Open
Abstract
A major issue in human olfaction research is to characterize the main dimensions that organize the space of odors. The present study examines this question and shows that, beside pleasantness, trigeminal sensations, and particularly irritation, play an important role. These results were consistent along two different spaces constructed using semantic description and physiological responses to 105 odorants, smelled and described by human participants. Taken together, these findings suggest that salient trigeminal features, in conjunction with pleasantness, are involved in detecting relevant emotional stimuli, and modify the way organisms categorize smells. These results shed light on the importance of trigeminal sensitivity in the well-established defensive function of olfaction.
Collapse
|
19
|
Walliczek-Dworschak U, Poncelet J, Baum D, Baki R, Sinding C, Warr J, Hummel T. The Presentation of Olfactory-Trigeminal Mixed Stimuli Increases the Response to Subsequent Olfactory Stimuli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:2312-2318. [PMID: 27951642 DOI: 10.1021/acs.jafc.6b04342] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The aim of this study was to evaluate the effect of (1) the addition of trigeminal stimuli to an olfactory stimulus and (2) the congruence in the odorous mixture after repeated odor presentation. Twenty-five normosmic volunteers were enrolled and presented stimulation blocks, consisting of three habituation stimuli (H) (orange odor), one dishabituation (DH) (control condition, orange odor; congruent condition, orange odor + CO2; incongruent condition, orange odor + l-isopulegol), and one dishabituated stimulus (D) (orange odor). Olfactory event-related potentials were analyzed. Response amplitudes differed significantly in the incongruent condition (N1P2 between H3 and D; peak to peak N1P2 at electrode positions Cz, Fz, and Pz; response amplitudes between H3 and DH). The addition of CO2 modified the perception of orange odor, pronouncing a fruity note, whereas the addition of l-isopulegol as a DH pronounced the l-isopulegol note. This study provides evidence that incongruent trigeminal-olfactory stimulants increase the response to subsequent olfactory stimulus.
Collapse
Affiliation(s)
- Ute Walliczek-Dworschak
- Smell & Taste Clinic, Department of Otorhinolaryngology , Technische Universität Dresden , Dresden , Germany
- Department of Otorhinolaryngology-Head and Neck Surgery , University Hospital of Marburg, University of Giessen and Marburg , Marburg , Germany
| | - Johan Poncelet
- Takasago Europe Perfumery Laboratory S.A.R.L. , Paris , France
| | - Daniel Baum
- Smell & Taste Clinic, Department of Otorhinolaryngology , Technische Universität Dresden , Dresden , Germany
| | - Ramona Baki
- Smell & Taste Clinic, Department of Otorhinolaryngology , Technische Universität Dresden , Dresden , Germany
| | - Charlotte Sinding
- Smell & Taste Clinic, Department of Otorhinolaryngology , Technische Universität Dresden , Dresden , Germany
| | - Jonathan Warr
- Takasago Europe Perfumery Laboratory S.A.R.L. , Paris , France
| | - Thomas Hummel
- Smell & Taste Clinic, Department of Otorhinolaryngology , Technische Universität Dresden , Dresden , Germany
| |
Collapse
|
20
|
Zama M, Hara Y, Fujita S, Kaneko T, Kobayashi M. Somatotopic Organization and Temporal Characteristics of Cerebrocortical Excitation in Response to Nasal Mucosa Stimulation With and Without an Odor in the Rat: An Optical Imaging Study. Neuroscience 2018. [PMID: 29518532 DOI: 10.1016/j.neuroscience.2018.02.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nasal mucosa has roles in warming and humidifying inspired air and is highly sensitive to mechanical stimuli. Moreover, the upper part of the nasal mucosa expresses olfactory receptors processing olfactory information. Although the somatosensory map of the face in the primary (S1) and secondary (S2) somatosensory cortices is clearly documented, the map of the nasal mucosa and the effect of odors on their activities are largely unknown. This study aimed to identify the cortical regions in S1 and their temporal features in response to somatosensory stimulation of the nasal mucosa using an optical imaging technique in urethane-anesthetized rats. An air puff application response to nasal mucosa first occurred in a part of contralateral S1 and subsequently, spread toward the rostrally and ventrally adjacent sites. Upper pharynx stimulation initially activated this rostrally expanded site and the excitatory propagation from the initially activated region toward ventral region likely represented S2. Signal intensity and activated area increased dependent on air pressure. Nasal tip stimulation initially excited S1 region caudally adjacent to that of nasal mucosa. Moreover, the amplitude of S1 excitation was similar between air puff stimulation with and without an odor, amyl acetate. In contrast to contralateral S1, air puff stimulation with the odor showed a faint optical signal increase in the ipsilateral piriform cortex. These results suggest that somatosensory information from the nasal mucosa and skin, and upper pharynx are processed in spatially continuous regions of S1, and interaction between somatosensory and olfactory systems is relatively small in contralateral S1.
Collapse
Affiliation(s)
- Manabu Zama
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan; Department of Oral and Maxillofacial Surgery, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Yaeko Hara
- Department of Oral and Maxillofacial Surgery, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Satoshi Fujita
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan; Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Tadayoshi Kaneko
- Department of Oral and Maxillofacial Surgery, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Masayuki Kobayashi
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan; Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan; Molecular Dynamics Imaging Unit, RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.
| |
Collapse
|
21
|
Fogarty MJ, Mantilla CB, Sieck GC. Breathing: Motor Control of Diaphragm Muscle. Physiology (Bethesda) 2018; 33:113-126. [PMID: 29412056 PMCID: PMC5899234 DOI: 10.1152/physiol.00002.2018] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 01/05/2018] [Indexed: 12/12/2022] Open
Abstract
Breathing occurs without thought but is controlled by a complex neural network with a final output of phrenic motor neurons activating diaphragm muscle fibers (i.e., motor units). This review considers diaphragm motor unit organization and how they are controlled during breathing as well as during expulsive behaviors.
Collapse
Affiliation(s)
- Matthew J Fogarty
- Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, Minnesota
- School of Biomedical Sciences, The University of Queensland , Brisbane , Australia
| | - Carlos B Mantilla
- Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, Minnesota
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic , Rochester, Minnesota
| | - Gary C Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, Minnesota
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic , Rochester, Minnesota
| |
Collapse
|
22
|
Gao X, Zhao L, Zhuang J, Zang N, Xu F. Prenatal nicotinic exposure prolongs superior laryngeal C-fiber-mediated apnea and bradycardia through enhancing neuronal TRPV1 expression and excitation. FASEB J 2017; 31:4325-4334. [PMID: 28615326 PMCID: PMC5602895 DOI: 10.1096/fj.201700163r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 05/30/2017] [Indexed: 02/03/2023]
Abstract
Maternal cigarette smoke, including prenatal nicotinic exposure (PNE), is responsible for sudden infant death syndrome (SIDS). The fatal events of SIDS are characterized by severe bradycardia and life-threatening apneas. Although activation of transient receptor potential vanilloid 1 (TRPV1) of superior laryngeal C fibers (SLCFs) could induce bradycardia and apnea and has been implicated in SIDS pathogenesis, how PNE affects the SLCF-mediated cardiorespiratory responses remains unexplored. Here, we tested the hypothesis that PNE would aggravate the SLCF-mediated apnea and bradycardia via up-regulating TRPV1 expression and excitation of laryngeal C neurons in the nodose/jugular (N/J) ganglia. To this end, we compared the following outcomes between control and PNE rat pups at postnatal days 11-14: 1) the cardiorespiratory responses to intralaryngeal application of capsaicin (10 µg/ml, 50 µl), a selective stimulant for TRPV1 receptors, in anesthetized preparation; 2) immunoreactivity and mRNA of TRPV1 receptors of laryngeal sensory C neurons in the N/J ganglia retrogradely traced by 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate; and 3) TRPV1 currents and electrophysiological characteristics of these neurons by using whole-cell patch-clamp technique in vitro Our results showed that PNE markedly prolonged the apneic response and exacerbated the bradycardic response to intralaryngeal perfusion of capsaicin, which was associated with up-regulation of TRPV1 expression in laryngeal C neurons. In addition, PNE increased the TRPV1 currents, depressed the slow delayed rectifier potassium currents, and increased the resting membrane potential of these neurons. Our results suggest that PNE is capable of aggravating the SLCF-mediated apnea and bradycardia through TRPV1 sensitization and neuronal excitation, which may contribute to the pathogenesis of SIDS.-Gao, X., Zhao, L., Zhuang, J., Zang, N., Xu, F. Prenatal nicotinic exposure prolongs superior laryngeal C-fiber-mediated apnea and bradycardia through enhancing neuronal TRPV1 expression and excitation.
Collapse
Affiliation(s)
- Xiuping Gao
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico, USA
| | - Lei Zhao
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico, USA
| | - Jianguo Zhuang
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico, USA
| | - Na Zang
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico, USA
| | - Fadi Xu
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico, USA
| |
Collapse
|
23
|
Kubin L. Neural Control of the Upper Airway: Respiratory and State-Dependent Mechanisms. Compr Physiol 2016; 6:1801-1850. [PMID: 27783860 DOI: 10.1002/cphy.c160002] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Upper airway muscles subserve many essential for survival orofacial behaviors, including their important role as accessory respiratory muscles. In the face of certain predisposition of craniofacial anatomy, both tonic and phasic inspiratory activation of upper airway muscles is necessary to protect the upper airway against collapse. This protective action is adequate during wakefulness, but fails during sleep which results in recurrent episodes of hypopneas and apneas, a condition known as the obstructive sleep apnea syndrome (OSA). Although OSA is almost exclusively a human disorder, animal models help unveil the basic principles governing the impact of sleep on breathing and upper airway muscle activity. This article discusses the neuroanatomy, neurochemistry, and neurophysiology of the different neuronal systems whose activity changes with sleep-wake states, such as the noradrenergic, serotonergic, cholinergic, orexinergic, histaminergic, GABAergic and glycinergic, and their impact on central respiratory neurons and upper airway motoneurons. Observations of the interactions between sleep-wake states and upper airway muscles in healthy humans and OSA patients are related to findings from animal models with normal upper airway, and various animal models of OSA, including the chronic-intermittent hypoxia model. Using a framework of upper airway motoneurons being under concurrent influence of central respiratory, reflex and state-dependent inputs, different neurotransmitters, and neuropeptides are considered as either causing a sleep-dependent withdrawal of excitation from motoneurons or mediating an active, sleep-related inhibition of motoneurons. Information about the neurochemistry of state-dependent control of upper airway muscles accumulated to date reveals fundamental principles and may help understand and treat OSA. © 2016 American Physiological Society. Compr Physiol 6:1801-1850, 2016.
Collapse
Affiliation(s)
- Leszek Kubin
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
24
|
Mizera L, Gossrau G, Hummel T, Haehner A. Effects of analgesics on olfactory function and the perception of intranasal trigeminal stimuli. Eur J Pain 2016; 21:92-100. [DOI: 10.1002/ejp.903] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2016] [Indexed: 11/08/2022]
Affiliation(s)
- L. Mizera
- Smell & Taste Clinic; Department of Otorhinolaryngology; TU Dresden; Dresden Germany
| | - G. Gossrau
- Comprehensive Pain Center; TU Dresden; Dresden Germany
| | - T. Hummel
- Smell & Taste Clinic; Department of Otorhinolaryngology; TU Dresden; Dresden Germany
| | - A. Haehner
- Smell & Taste Clinic; Department of Otorhinolaryngology; TU Dresden; Dresden Germany
| |
Collapse
|
25
|
Payne RJ, Kost KM, Frenkiel S, Zeitouni AG, Sejean G, Sweet RC, Naor N, Hernandez L, Kimoff RJ. Laryngeal Inflammation Assessed using the Reflux Finding Score in Obstructive Sleep Apnea. Otolaryngol Head Neck Surg 2016; 134:836-42. [PMID: 16647544 DOI: 10.1016/j.otohns.2006.01.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2004] [Accepted: 01/19/2006] [Indexed: 11/22/2022]
Abstract
OBJECTIVES: To evaluate the relationships between laryngeal inflammation assessed using the Reflux Finding Score (RFS), laryngeal sensory function, and apnea severity in patients with obstructive sleep apnea (OSA). METHODS: Endoscopic sensory testing (EST) was performed with subsequent blinded scoring from video of RFS. An RFS > 7 was indicative of increased inflammatory change. RESULTS: Of 34 patients evaluated, 29 had OSA (apneahypopnea index [AHI] ≥ 15 events/h) at polysomnography. Increased inflammation was present in 26/29 (90%), with changes suggestive of laryngopharyngeal reflux. There were significant correlations between: inflammation and OSA severity (eg, RFS vs AHI, r = 0.57, P < 0.001); inflammation and laryngeal sensory impairment (EST detection threshold and pressure required to elicit the laryngeal adductor reflex, LAR); and the degree of sensory impairment and OSA severity. CONCLUSIONS: Laryngeal inflammation is prevalent among OSA patients and correlates with laryngeal sensory dysfunction, attenuation of the LAR, and apnea severity. EBM rating: C-4
Collapse
Affiliation(s)
- Richard J Payne
- Department of Otolaryngology-Head and Neck Surgery, Jewish General Hospital, McGill University, Montreal, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Kim KB. How has our interest in the airway changed over 100 years? Am J Orthod Dentofacial Orthop 2016; 148:740-7. [PMID: 26522033 DOI: 10.1016/j.ajodo.2015.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 08/01/2015] [Accepted: 08/01/2015] [Indexed: 12/01/2022]
Abstract
Since the beginning of our specialty, our understanding of the link between function and facial growth and development has progressively improved. Today, we know that children with sleep-related breathing problems will often develop distinctive facial characteristics. In adults, sleep apnea can result in serious morbidity and mortality. Orthodontists can ask sleep-related questions in the health history to help identify sleep breathing disorders. Treating these patients presents unique opportunities for orthodontists to collaborate with other medical specialties to improve a patient's health and treatment outcome. Research presented in our Journal in the next century may shed new light that will help us better identify the problem and aid the specialty in developing more effective evidence-based treatment. Additional efforts are needed to understand the physiology, neurology, and genetics of sleep breathing disorders.
Collapse
Affiliation(s)
- Ki Beom Kim
- Associate professor, Department of Orthodontics, Center for Advanced Dental Education, Saint Louis University, St Louis, Mo.
| |
Collapse
|
27
|
Campos I, Chan L, Zhang H, Deziel S, Vaughn C, Meyring-Wösten A, Kotanko P. Intradialytic Hypoxemia in Chronic Hemodialysis Patients. Blood Purif 2016; 41:177-87. [PMID: 26765143 DOI: 10.1159/000441271] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
When kidney failure occurs, patients are at risk for fluid overload states, which can cause pulmonary edema, pleural effusions, and upper airway obstruction. Kidney disease is also associated with impaired respiratory function, as in central sleep apnea or chronic obstructive pulmonary disease. Hence, respiratory and renal diseases are frequently coexisting. Hypoxemia is the terminal pathway of a multitude of respiratory pathologies. The measurement of oxygen saturation (SO2) is a basic and commonly used tool in clinical practice. Both arterial oxygen saturation (SaO2) and central venous oxygen saturation (ScvO2) can be easily obtained in hemodialysis (HD) patients, SaO2 from an arteriovenous access and ScvO2 from a central catheter. Here, we give a brief overview of the anatomy and physiology of the respiratory system, and the different technologies that are currently available to measure oxygen status in dialysis patients. We then focus on literature regarding intradialytic SaO2 and ScvO2. Lastly, we present clinical vignettes of intradialytic drops in SaO2 and ScvO2 in association with different symptoms and clinical scenarios with an emphasis on the pathophysiology of these cases. Given the fact that in the general population hypoxemia is associated with adverse outcomes, including increased mortality, cardiac arrhythmias and cardiovascular events, we posit that intradialytic SO2 may serve as a potential marker to identify HD patients at increased risk for morbidity and mortality.
Collapse
|
28
|
Driessen AK, Farrell MJ, Mazzone SB, McGovern AE. The Role of the Paratrigeminal Nucleus in Vagal Afferent Evoked Respiratory Reflexes: A Neuroanatomical and Functional Study in Guinea Pigs. Front Physiol 2015; 6:378. [PMID: 26733874 PMCID: PMC4685097 DOI: 10.3389/fphys.2015.00378] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 11/23/2015] [Indexed: 02/05/2023] Open
Abstract
The respiratory tree receives sensory innervation from the jugular and nodose vagal sensory ganglia. Neurons of these ganglia are derived from embryologically distinct origins and as such demonstrate differing molecular, neurochemical and physiological phenotypes. Furthermore, whereas nodose afferent neurons project to the nucleus of the solitary tract (nTS), recent neuroanatomical studies in rats suggest that jugular neurons have their central terminations in the paratrigeminal nucleus (Pa5). In the present study we confirm that guinea pigs demonstrate a comparable distinction between the brainstem terminations of nodose and jugular ganglia afferents. Thus, microinjection of fluorescently conjugated cholera toxin B (CT-B) neural tracers into the caudal nTS and Pa5 resulted in highly specific retrograde labeling of neurons in the nodose and jugular ganglia, respectively. Whereas, nodose neurons more often expressed 160 KD neurofilament proteins and the alpha3 subunit of Na+/K+ ATPase, significantly more jugular neurons expressed the neuropeptides substance P (SP) and, especially, Calcitonin Gene-Related Peptide (CGRP). Indeed, terminal fibers in the Pa5 compared to the nTS were characterized by their significantly greater expression of CGRP, further supporting the notion that jugular afferents project to trigeminal-related brainstem regions. Electrical stimulation of the guinea pig larynx following selective surgical denervation of the nodose afferent innervation to the larynx (leaving intact the jugular innervation) resulted in stimulus dependent respiratory slowing and eventual apnea. This jugular ganglia neuron mediated response was unaffected by bilateral microinjections of the GABAA agonist muscimol into the nTS, but was abolished by muscimol injected into the Pa5. Taken together these data confirm that jugular and nodose vagal ganglia afferent neurons innervate distinct central circuits and support the notion that multiple peripheral and central pathways mediate sensory responses associated with airway irritations.
Collapse
Affiliation(s)
- Alexandria K Driessen
- School of Biomedical Sciences, The University of Queensland St Lucia, QLD, Australia
| | - Michael J Farrell
- Monash Biomedicine Discovery Institute and Department of Medical Imaging and Radiation Sciences, Monash University Clayton, VIC Australia
| | - Stuart B Mazzone
- School of Biomedical Sciences, The University of Queensland St Lucia, QLD, Australia
| | - Alice E McGovern
- School of Biomedical Sciences, The University of Queensland St Lucia, QLD, Australia
| |
Collapse
|
29
|
|
30
|
Liu BY, Lin YJ, Lee HF, Ho CY, Ruan T, Kou YR. Menthol suppresses laryngeal C-fiber hypersensitivity to cigarette smoke in a rat model of gastroesophageal reflux disease: the role of TRPM8. J Appl Physiol (1985) 2014; 118:635-45. [PMID: 25539933 DOI: 10.1152/japplphysiol.00717.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Patients with gastroesophageal reflux disease (GERD) display enhanced laryngeal reflex reactivity to stimuli that may be due to sensitization of the laryngeal C-fibers by acid and pepsin. Menthol, a ligand of transient receptor potential melastatin-8 (TRPM8), relieves throat irritation. However, the possibility that GERD induces laryngeal C-fiber hypersensitivity to cigarette smoke (CS) and that menthol suppresses this event has not been investigated. We delivered CS into functionally isolated larynxes of 160 anesthetized rats. Laryngeal pH 5-pepsin treatment, but not pH 5-denatured pepsin, augmented the apneic response to CS, which was blocked by denervation or perineural capsaicin treatment (a procedure that blocks the conduction of C fibers) of the superior laryngeal nerves. This augmented apnea was partially attenuated by capsazepine [an transient receptor potential vanilloid 1 (TRPV1) antagonist], SB-366791 (a TRPV1 antagonist), and HC030031 [a transient receptor potential ankyrin 1 (TRPA1) antagonist] and was completely prevented by a combination of TRPV1 and TRPA1 antagonists. Local application of menthol significantly suppressed the augmented apnea and this effect was reversed by pretreatment with AMTB (a TRPM8 antagonist). Our electrophysiological studies consistently revealed that laryngeal pH 5-pepsin treatment increased the sensitivity of laryngeal C-fibers to CS. Likewise, menthol suppressed this laryngeal C-fiber hypersensitivity and its effect could be reversed by pretreatment with AMTB. Our results suggest that laryngeal pH 5-pepsin treatment increases sensitivity to CS of both TRPV1 and TRPA1, which are presumably located at the terminals of laryngeal C-fibers. This sensory sensitization leads to enhanced laryngeal reflex reactivity and augmentation of the laryngeal C-fiber responses to CS, which can be suppressed by menthol acting via TRPM8.
Collapse
Affiliation(s)
- Bi-Yu Liu
- Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Jung Lin
- Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Hung-Fu Lee
- Department of Neurosurgery, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Ching-Yin Ho
- Department of Otolaryngology, Taipei Veteran General Hospital, Taipei, Taiwan; Department of Otolaryngology, National Yang-Ming University, Taipei, Taiwan; and
| | - Ting Ruan
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Yu Ru Kou
- Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan;
| |
Collapse
|
31
|
Abstract
Sensory nerves innervating the lung and airways play an important role in regulating various cardiopulmonary functions and maintaining homeostasis under both healthy and disease conditions. Their activities conducted by both vagal and sympathetic afferents are also responsible for eliciting important defense reflexes that protect the lung and body from potential health-hazardous effects of airborne particulates and chemical irritants. This article reviews the morphology, transduction properties, reflex functions, and respiratory sensations of these receptors, focusing primarily on recent findings derived from using new technologies such as neural immunochemistry, isolated airway-nerve preparation, cultured airway neurons, patch-clamp electrophysiology, transgenic mice, and other cellular and molecular approaches. Studies of the signal transduction of mechanosensitive afferents have revealed a new concept of sensory unit and cellular mechanism of activation, and identified additional types of sensory receptors in the lung. Chemosensitive properties of these lung afferents are further characterized by the expression of specific ligand-gated ion channels on nerve terminals, ganglion origin, and responses to the action of various inflammatory cells, mediators, and cytokines during acute and chronic airway inflammation and injuries. Increasing interest and extensive investigations have been focused on uncovering the mechanisms underlying hypersensitivity of these airway afferents, and their role in the manifestation of various symptoms under pathophysiological conditions. Several important and challenging questions regarding these sensory nerves are discussed. Searching for these answers will be a critical step in developing the translational research and effective treatments of airway diseases.
Collapse
Affiliation(s)
- Lu-Yuan Lee
- Department of Physiology, University of Kentucky, Lexington, Kentucky
| | | |
Collapse
|
32
|
Bautista TG, Dutschmann M. Ponto-medullary nuclei involved in the generation of sequential pharyngeal swallowing and concomitant protective laryngeal adduction in situ. J Physiol 2014; 592:2605-23. [PMID: 24639482 DOI: 10.1113/jphysiol.2014.272468] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Both swallowing and respiration involve postinspiratory laryngeal adduction. Swallowing-related postinspiratory neurons are likely to be located in the nucleus of the solitary tract (NTS) and those involved in respiration are found in the Kölliker-Fuse nucleus (KF). The function of KF and NTS in the generation of swallowing and its coordination with respiration was investigated in perfused brainstem preparations of juvenile rats (n = 41). Orally injected water evoked sequential pharyngeal swallowing (s-PSW) seen as phasic, spindle-shaped bursting of vagal nerve activity (VNA) against tonic postinspiratory discharge. KF inhibition by microinjecting isoguvacine (GABAA receptor agonist) selectively attenuated tonic postinspiratory VNA (n = 10, P < 0.001) but had no effect on frequency or timing of s-PSW. KF disinhibition after bicuculline (GABAA receptor antagonist) microinjections caused an increase of the tonic VNA (n = 8, P < 0.01) resulting in obscured and delayed phasic s-PSW. Occurrence of spontaneous PSW significantly increased after KF inhibition (P < 0.0001) but not after KF disinhibition (P = 0.14). NTS isoguvacine microinjections attenuated the occurrence of all PSW (n = 5, P < 0.01). NTS bicuculline microinjections (n = 6) resulted in spontaneous activation of a disordered PSW pattern and long-lasting suppression of respiratory activity. Pharmacological manipulation of either KF or NTS also triggered profound changes in respiratory postinspiratory VNA. Our results indicate that the s-PSW comprises two functionally distinct components. While the primary s-PSW is generated within the NTS, a KF-mediated laryngeal adductor reflex safeguards the lower airways from aspiration. Synaptic interaction between KF and NTS is required for s-PSW coordination with respiration as well as for proper gating and timing of s-PSW.
Collapse
Affiliation(s)
- Tara G Bautista
- Florey Institute of Neuroscience and Mental Health, Gate 11, Royal Parade, University of Melbourne, Victoria, 3052, Australia
| | - Mathias Dutschmann
- Florey Institute of Neuroscience and Mental Health, Gate 11, Royal Parade, University of Melbourne, Victoria, 3052, Australia
| |
Collapse
|
33
|
Bautista TG, Dutschmann M. Inhibition of the pontine Kölliker-Fuse nucleus abolishes eupneic inspiratory hypoglossal motor discharge in rat. Neuroscience 2014; 267:22-9. [PMID: 24603053 DOI: 10.1016/j.neuroscience.2014.02.027] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 02/17/2014] [Accepted: 02/19/2014] [Indexed: 11/28/2022]
Abstract
The pontine Kölliker-Fuse nucleus (KF) has established functions in the regulation of inspiratory-expiratory phase transition and the regulation of upper airway patency via laryngeal valving mechanisms. Here we studied the role of the KF in the gating and modulation of eupneic hypoglossal motor activity (HNA) using the in situ perfused brainstem preparation, which displays robust inspiratory HNA. Microinjection of glutamate into the KF area triggered complex and often biphasic modulation (excitation/inhibition or inhibition/excitation) of HNA. Subsequent transient pharmacological inhibition of KF by unilateral microinjection of GABA-A receptor agonist isoguvacine reduced HNA and while bilateral microinjections completely abolished HNA. Our results indicate that mixed and overlapping KF pre-motor neurons provide eupneic drive for inspiratory HNA and postinspiratory vagal nerve activity. Both motor activities have important functions in the regulation of upper airway patency during eupnea but also during various oro-pharyngeal behaviors. These results have potential implications in the contribution of state-dependent modulation of KF hypoglossal pre-motor neurons during sleep-wake cycle to obstructive sleep apnea.
Collapse
Affiliation(s)
- T G Bautista
- Florey Institute of Neuroscience and Mental Health, Gate 11, Royal Parade, University of Melbourne, Victoria 3052, Australia
| | - M Dutschmann
- Florey Institute of Neuroscience and Mental Health, Gate 11, Royal Parade, University of Melbourne, Victoria 3052, Australia.
| |
Collapse
|
34
|
The physiological significance of postinspiration in respiratory control. PROGRESS IN BRAIN RESEARCH 2014; 212:113-30. [DOI: 10.1016/b978-0-444-63488-7.00007-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
35
|
Oppersma E, Doorduin J, van der Heijden EHFM, van der Hoeven JG, Heunks LMA. Noninvasive ventilation and the upper airway: should we pay more attention? CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2013; 17:245. [PMID: 24314000 PMCID: PMC4059377 DOI: 10.1186/cc13141] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In an effort to reduce the complications related to invasive ventilation, the use of noninvasive ventilation (NIV) has increased over the last years in patients with acute respiratory failure. However, failure rates for NIV remain high in specific patient categories. Several studies have identified factors that contribute to NIV failure, including low experience of the medical team and patient–ventilator asynchrony. An important difference between invasive ventilation and NIV is the role of the upper airway. During invasive ventilation the endotracheal tube bypasses the upper airway, but during NIV upper airway patency may play a role in the successful application of NIV. In response to positive pressure, upper airway patency may decrease and therefore impair minute ventilation. This paper aims to discuss the effect of positive pressure ventilation on upper airway patency and its possible clinical implications, and to stimulate research in this field.
Collapse
|
36
|
Huang J, Marcus CL, Davenport PW, Colrain IM, Gallagher PR, Tapia IE. Respiratory and auditory cortical processing in children with obstructive sleep apnea syndrome. Am J Respir Crit Care Med 2013; 188:852-7. [PMID: 23947422 DOI: 10.1164/rccm.201307-1257oc] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Children with obstructive sleep apnea syndrome (OSAS) have impaired cortical processing of respiratory afferent stimuli, manifested by blunted sleep respiratory-related evoked potentials (RREP). However, whether this impairment is limited to respiratory stimuli, or reversible after successful treatment, is unknown. We hypothesized that, during sleep, children with OSAS have (1) abnormal RREP, (2) normal cortical processing of nonrespiratory stimuli, and (3) persistence of abnormal RREP after treatment. OBJECTIVES To measure sleep RREP and auditory evoked potentials in normal control subjects and children with OSAS before and after treatment. METHODS Twenty-four children with OSAS and 24 control subjects were tested during N3 sleep. Thirteen children with OSAS repeated testing 4-6 months after adenotonsillectomy. MEASUREMENTS AND MAIN RESULTS RREP were blunted in OSAS compared with control subjects (N350 at Cz -27 ± 15.5 vs. -47.4 ± 28.5 μV; P = 0.019), and did not improve after OSAS treatment (N350 at Cz pretreatment -25.1 ± 7.4 vs. -29.8 ± 8.1 post-treatment). Auditory evoked potentials were similar in OSAS and control subjects at baseline (N350 at Cz -58 ± 33.1 vs. -66 ± 31.1 μV), and did not change after treatment (N350 at Cz -67.5 ± 36.8 vs. -65.5 ± 20.3). CONCLUSIONS Children with OSAS have persistent primary or irreversible respiratory afferent cortical processing deficits during sleep that could put them at risk of OSAS recurrence. OSAS does not seem to affect the cortical processing of nonrespiratory (auditory) afferent stimuli during sleep.
Collapse
Affiliation(s)
- Jingtao Huang
- 1 The Sleep Center, Children's Hospital of Philadelphia, University of Pennsylvania's Perelman School of Medicine, Philadelphia, Pennsylvania
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
Many articles in this section of Comprehensive Physiology are concerned with the development and function of a central pattern generator (CPG) for the control of breathing in vertebrate animals. The action of the respiratory CPG is extensively modified by cortical and other descending influences as well as by feedback from peripheral sensory systems. The central nervous system also incorporates other CPGs, which orchestrate a wide variety of discrete and repetitive, voluntary and involuntary movements. The coordination of breathing with these other activities requires interaction and coordination between the respiratory CPG and those governing the nonrespiratory activities. Most of these interactions are complex and poorly understood. They seem to involve both conventional synaptic crosstalk between groups of neurons and fluid identity of neurons as belonging to one CPG or another: neurons that normally participate in breathing may be temporarily borrowed or hijacked by a competing or interrupting activity. This review explores the control of breathing as it is influenced by many activities that are generally considered to be nonrespiratory. The mechanistic detail varies greatly among topics, reflecting the wide variety of pertinent experiments.
Collapse
Affiliation(s)
- Donald Bartlett
- Department of Physiology & Neurobiology, Dartmouth Medical School, Lebanon, New Hampshire, USA.
| | | |
Collapse
|
38
|
Role of TRPA1 and TRPV1 in the ROS-dependent sensory irritation of superior laryngeal capsaicin-sensitive afferents by cigarette smoke in anesthetized rats. Pulm Pharmacol Ther 2013; 26:364-72. [DOI: 10.1016/j.pupt.2013.01.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 12/24/2012] [Accepted: 01/25/2013] [Indexed: 11/18/2022]
|
39
|
Intranasal trigeminal sensitivity: measurements before and after nasal surgery. Eur Arch Otorhinolaryngol 2013; 271:87-92. [PMID: 23568039 DOI: 10.1007/s00405-013-2466-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 03/20/2013] [Indexed: 10/27/2022]
Abstract
Nasal surgeries constitute an extensive manipulation of the nasal mucosa and therefore of structures related to trigeminal and olfactory sensitivity. While olfactory changes due to nasal surgery are relatively well investigated, there are only very few studies regarding trigeminal sensitivity. Aim of the present study was to investigate sensory changes after nasal surgery with special regard to the trigeminal sensitivity. In 38 patients prior to and around 12 weeks after nasal surgery the following psychophysical measures were performed: odor identification, odor discrimination, phenyl ethyl alcohol odor threshold, sensitivity to trigeminal stimuli, trigeminal detection thresholds and trigeminal pain thresholds. These results were compared to those of a control group (43 healthy volunteers). Psychophysical olfactory and trigeminal testing showed no major changes in patients after surgery compared to the control group. Independent from the time of measurement higher trigeminal detection thresholds were found in patients compared to healthy subjects, meaning that trigeminal thresholds were already increased before surgery. The present study revealed a decreased trigeminal sensitivity in patients already before surgery. It may be hypothesized that patients also exhibit a decreased sensitivity for nasal airflow, which may also contribute to the patients' impression of impaired nasal breathing.
Collapse
|
40
|
Van Erck-Westergren E, Franklin SH, Bayly WM. Respiratory diseases and their effects on respiratory function and exercise capacity. Equine Vet J 2013; 45:376-87. [PMID: 23368813 DOI: 10.1111/evj.12028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 12/02/2012] [Indexed: 12/26/2022]
Abstract
Given that aerobic metabolism is the predominant energy pathway for most sports, the respiratory system can be a rate-limiting factor in the exercise capacity of fit and healthy horses. Consequently, respiratory diseases, even in mild forms, are potentially deleterious to any athletic performance. The functional impairment associated with a respiratory condition depends on the degree of severity of the disease and the equestrian discipline involved. Respiratory abnormalities generally result in an increase in respiratory impedance and work of breathing and a reduced level of ventilation that can be detected objectively by deterioration in breathing mechanics and arterial blood gas tensions and/or lactataemia. The overall prevalence of airway diseases is comparatively high in equine athletes and may affect the upper airways, lower airways or both. Diseases of the airways have been associated with a wide variety of anatomical and/or inflammatory conditions. In some instances, the diagnosis is challenging because conditions can be subclinical in horses at rest and become clinically relevant only during exercise. In such cases, an exercise test may be warranted in the evaluation of the patient. The design of the exercise test is critical to inducing the clinical signs of the problem and establishing an accurate diagnosis. Additional diagnostic techniques, such as airway sampling, can be valuable in the diagnosis of subclinical lower airway problems that have the capacity to impair performance. As all these techniques become more widely used in practice, they should inevitably enhance veterinarians' diagnostic capabilities and improve their assessment of treatment effectiveness and the long-term management of equine athletes.
Collapse
|
41
|
Role of sensory stimulation in amelioration of obstructive sleep apnea. SLEEP DISORDERS 2011; 2011:596879. [PMID: 23470957 PMCID: PMC3581136 DOI: 10.1155/2011/596879] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 01/30/2011] [Accepted: 02/09/2011] [Indexed: 01/01/2023]
Abstract
Obstructive sleep apnea (OSA), characterized by recurrent upper airway (UA) collapse during sleep, is associated with significant morbidity and disorders. Polysomnogram is employed in the evaluation of OSA and apnea-hypopnea number per hour reflects severity. For normal breathing, it is essential that the collapsible UA is patent. However, obstruction of the UA is quite common in adults and infants. Normally, important reflex mechanisms defend against the UA collapse. The muscle activity of UA dilators, including the genioglossus, tensor palatini (TP), and pharyngeal constrictors, is due to the integrated mechanism of afferent sensory input → to motor function. Snoring is harsh breathing to prevent UA obstruction. Unfortunately, snoring vibrations, pharyngeal suction collapse, negative pressure, and hypoxia cause pathological perturbations including dysfunctional UA afferent sensory activity. The current paper posits that peripheral sensory stimulation paradigm, which has been shown to be efficacious in improving several neurological conditions, could be an important therapeutic strategy in OSA also.
Collapse
|
42
|
Yamamoto Y, Hashiguchi M, Yamaguchi-Yamada M. Morphological development and expression of neurotrophin receptors in the laryngeal sensory corpuscles. Anat Rec (Hoboken) 2011; 294:694-705. [PMID: 21370491 DOI: 10.1002/ar.21344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 09/29/2010] [Accepted: 09/30/2010] [Indexed: 02/04/2023]
Abstract
Morphological development of sensory structures in the laryngeal mucosa of postnatal rats was observed by use of immunohistochemistry for protein gene-product 9.5 (PGP9.5). Moreover, expression changes of high affinity neurotrophin receptors, TrkA, TrkB and TrkC, and low affinity neurotrophin receptor p75(NTR) were examined to elucidate the relationship to morphogenesis. Intraepithelial nerve endings and parent axons of the laminar endings with immunoreactivity for PGP9.5 have already appeared in the rat on embryonic day 18 (E18) as well as solitary chemoreceptor cells in the glottic cleft. According to neurotrophin receptors, TrkA immunoreactivity were observed on and after postnatal week 3 (3W) in the nervous sensory structures, that is, free nerve endings, laminar endings and sub- and intragemmal plexuses of the taste buds. In the laminar endings, TrkC immunoreactivity was also observed on and after 3W. According to the laryngeal sensory cells, the solitary chemoreceptor cells were immunoreactive to TrkA, TrkB, and TrkC on and after postnatal day 3 (P3). In the taste buds in arytenoid region, taste cells were immunoreactive for TrkA, TrkB, and TrkC on and after 3W, P14, and 3W, respectively. Immunoreactivity for p75(NTR) was observed on the surface of taste cells on and after P9. The results of the present study suggest that sensory structures in the laryngeal mucosa were developed on perinatal days to involve respiratory reflex, and that neurotrophin receptors may take part in the regulation and maintenance of sensory structures.
Collapse
Affiliation(s)
- Yoshio Yamamoto
- Laboratory of Veterinary Biochemistry and Cell Biology, Faculty of Agriculture, Department of Veterinary Sciences, Iwate University, Morioka, Iwate, Japan.
| | | | | |
Collapse
|
43
|
Wheeler-Hegland K, Pitts T, Davenport PW. Peak morphology and scalp topography of the pharyngeal sensory-evoked potential. Dysphagia 2010; 26:287-94. [PMID: 20890713 DOI: 10.1007/s00455-010-9308-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 09/02/2010] [Indexed: 10/19/2022]
Abstract
The initiation of the pharyngeal stage of swallowing is dependent upon sensory input to the brainstem and cortex. The event-related evoked potential provides a measure of neuronal electrical activity as it relates to a specific stimulus. Air-puff stimulation to the posterior pharyngeal wall produces a sensory-evoked potential (PSEP) waveform. The goal of this study was to characterize the scalp topography and morphology for the component peaks of the PSEP waveform. Twenty-five healthy men and women served as research participants. PSEPs were measured via a 32-electrode cap (10-20 system) connected to SynAmps2 Neuroscan EEG System. Air puffs were delivered directly to the oropharynx using a thin polyethylene tube connected to a flexible laryngoscope. The PSEP waveform is characterized by four early- and mid-latency component peaks: an early positivity (P1) and negativity (N1), followed by a mid-latency positivity (P2) and negativity (N2). The early positive peak P1 is localized bilaterally to the lateral parietal scalp, the N1 medially in the frontoparietal region, and the P2 and N2 with diffuse scalp locations. Somatosensory and premotor regions are possible anatomical correlates of peak locations. Based on the latencies of the peaks, they are likely analogous to somatosensory- and respiratory-related evoked potential peaks.
Collapse
Affiliation(s)
- Karen Wheeler-Hegland
- Department of Physiological Sciences, University of Florida, Box 100144, Gainesville, FL 32610, USA.
| | | | | |
Collapse
|
44
|
Tan CT, Tsai HH, Ho CY. Increasing humidity blocks continuous positive airflow-induced apnea responses in rats. J Chin Med Assoc 2010; 73:369-74. [PMID: 20688303 DOI: 10.1016/s1726-4901(10)70080-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 06/09/2010] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The aim of this study was to investigate the role of temperature and humidity in positive continuous pressure flow-induced apnea. METHODS Forty-two adult male Sprague-Dawley rats were used in a functionally isolated laryngeal animal model. In study 1, animals were challenged with laryngeal stimulation for 1 minute to detect the possibility of adaptation. In study 2, different airflow conditions (25 degrees C dry-25 degrees C dry, 25 degrees C dry-25 degrees C wet, 25 degrees C dry-37 degrees C dry and 25 degrees C dry-37 degrees C wet) were delivered to determine the role of temperature and humidity in the flow-induced apneic response of the larynx. The apneic index was calculated by prolonged expiratory time/baseline expiratory time. RESULTS Laryngeal dry room temperature air exposure induced an apneic response, and this response was reproducible and could be eliminated by humidification. In contrast, this apneic response could not be inhibited by increasing temperature alone. In addition, prolonged cold dry air stimulation did not evoke a tachyphylactic effect to normalize the breathing pattern. CONCLUSION Laryngeal cold dry air stimulation triggered an apneic response, which could be eliminated by humidification but not by the heating of air. These results suggest that using continuous positive airway pressure (CPAP) with humidified air decreases CPAP-induced apnea.
Collapse
Affiliation(s)
- Ching-Ting Tan
- Department of Otolaryngology, National Taiwan University College of Medicine, Taipei, Taiwan, R.O.C
| | | | | |
Collapse
|
45
|
Nasal chemosensory cells use bitter taste signaling to detect irritants and bacterial signals. Proc Natl Acad Sci U S A 2010; 107:3210-5. [PMID: 20133764 DOI: 10.1073/pnas.0911934107] [Citation(s) in RCA: 308] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The upper respiratory tract is continually assaulted with harmful dusts and xenobiotics carried on the incoming airstream. Detection of such irritants by the trigeminal nerve evokes protective reflexes, including sneezing, apnea, and local neurogenic inflammation of the mucosa. Although free intra-epithelial nerve endings can detect certain lipophilic irritants (e.g., mints, ammonia), the epithelium also houses a population of trigeminally innervated solitary chemosensory cells (SCCs) that express T2R bitter taste receptors along with their downstream signaling components. These SCCs have been postulated to enhance the chemoresponsive capabilities of the trigeminal irritant-detection system. Here we show that transduction by the intranasal solitary chemosensory cells is necessary to evoke trigeminally mediated reflex reactions to some irritants including acyl-homoserine lactone bacterial quorum-sensing molecules, which activate the downstream signaling effectors associated with bitter taste transduction. Isolated nasal chemosensory cells respond to the classic bitter ligand denatonium as well as to the bacterial signals by increasing intracellular Ca(2+). Furthermore, these same substances evoke changes in respiration indicative of trigeminal activation. Genetic ablation of either G alpha-gustducin or TrpM5, essential elements of the T2R transduction cascade, eliminates the trigeminal response. Because acyl-homoserine lactones serve as quorum-sensing molecules for gram-negative pathogenic bacteria, detection of these substances by airway chemoreceptors offers a means by which the airway epithelium may trigger an epithelial inflammatory response before the bacteria reach population densities capable of forming destructive biofilms.
Collapse
|
46
|
Tessier C, Holcombe SJ, Derksen FJ, Berney C, Boruta D. Effects of stylopharyngeus muscle dysfunction on the nasopharynx in exercising horses. Equine Vet J 2010; 36:318-23. [PMID: 15163038 DOI: 10.2746/0425164044890553] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
REASONS FOR PERFORMING STUDY Nasopharyngeal collapse has been observed in horses as a potential cause of exercise intolerance and upper respiratory noise. No treatment is currently available and affected horses are often retired from performance. OBJECTIVE To determine the effect of bilateral glossopharyngeal nerve block and stylopharyngeus muscle dysfunction on nasopharyngeal function and airway pressures in exercising horses. METHODS Endoscopic examinations were performed on horses at rest and while running on a treadmill at speeds corresponding to HRmax50, HRmax75 and HRmax, with upper airway pressures measured with and without bilateral glossopharyngeal nerve block. RESULTS Bilateral glossopharyngeal nerve block caused stylopharyngeus muscle dysfunction and dorsal nasopharyngeal collapse in all horses. Peak inspiratory upper airway pressure was significantly (P = 0.0069) more negative at all speeds and respiratory frequency was lower (P = 0.017) in horses with bilateral glossopharyngeal nerve block and stylopharyngeus muscle dysfunction compared to control values. CONCLUSIONS Bilateral glossopharyngeal nerve anaesthesia produced stylopharyngeus muscle dysfunction, dorsal pharyngeal collapse and airway obstruction in all horses. POTENTIAL RELEVANCE The stylopharyngeus muscle is probably an important nasopharyngeal dilating muscle in horses and dysfunction of this muscle may be implicated in clinical cases of dorsal nasopharyngeal collapse. Before this information can be clinically useful, further research on the possible aetiology of stylopharyngeus dysfunction and dysfunction of other muscles that dilate the dorsal and lateral walls of the nasopharynx in horses is needed.
Collapse
Affiliation(s)
- C Tessier
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | | | |
Collapse
|
47
|
Eskiizmir G, Kezirian E. Is there a vicious cycle between obstructive sleep apnea and laryngopharyngeal reflux disease? Med Hypotheses 2009; 73:706-8. [DOI: 10.1016/j.mehy.2009.04.042] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 04/14/2009] [Accepted: 04/18/2009] [Indexed: 11/29/2022]
|
48
|
Cummings KJ, Frappell PB. Breath-to-breath hypercapnic response in neonatal rats: temperature dependency of the chemoreflexes and potential implications for breathing stability. Am J Physiol Regul Integr Comp Physiol 2009; 297:R124-34. [PMID: 19420287 DOI: 10.1152/ajpregu.91011.2008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The breathing of newborns is destabilized by warm temperatures. We hypothesized that in unanesthetized, intact newborn rats, body temperature (T(B)) influences the peripheral chemoreflex response (PCR response) to hypercapnia. To test this, we delivered square-wave challenges of 8% CO(2) in air to postnatal day 4-5 (P4-P5) rats held at a T(B) of 30 degrees C (Cold group, n = 11), 33 degrees C (Cool group, n = 10), and 35 degrees C thermoneutral zone group [thermoneutral zone (TNZ) group, n = 11], while measuring ventilation (Ve) directly with a pneumotach and mask. Cool animals were challenged with 8% CO(2) balanced in either air or hyperoxia (n = 10) to identify the PCR response. Breath-to-breath analysis was performed on 30 room air breaths and every breath of the 1-min CO(2) challenge. As expected, warmer T(B) was associated with an unstable breathing pattern in room air: TNZ animals had a coefficient of variation in Ve (Ve CV%) that was double that of animals held at cooler T(B) (P < 0.001). Hyperoxia markedly suppressed the hypercapnic ventilatory response over the first 10 breaths (or approximately 4 s), suggesting that this domain is dominated by the PCR response. The PCR response (P = 0.03) and total response (P = 0.04) were significantly greater in TNZ animals compared with hypothermic animals. The total response had a significant, negative relationship with Vco(2) (R(2) = 0.53; P < 0.001). Breathing stability was positively related to the total response (R(2) = 0.36; P < 0.001) and to a lesser extent, the PCR response (R(2) = 0.19; P = 0.01) and was negatively related to Vco(2) (R(2) = 0.34; P < 0.001). ANCOVA confirmed a significant effect of T(B) alone on breathing stability (P < 0.01), with no independent effects of Vco(2) (P = 0.41), the PCR response (P = 0.82), or the total Ve response (P = 0.08). Our data suggest that in early postnatal life, the chemoreflex responses to CO(2) are highly influenced by T(B), and while related to breathing stability, are not predictors of stability after accounting for the independent effect of T(B).
Collapse
Affiliation(s)
- Kevin J Cummings
- Department of Zoology, La Trobe University, Melbourne, Victoria, Australia.
| | | |
Collapse
|
49
|
Binder MD, Hirokawa N, Windhorst U. R. ENCYCLOPEDIA OF NEUROSCIENCE 2009. [PMCID: PMC7163931 DOI: 10.1007/978-3-540-29678-2_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Marc D. Binder
- Department of Physiology & Biophysics, University of Washington School of Medicine, Seattle Washington, USA
| | - Nobutaka Hirokawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine University of Tokyo Hongo, Bunkyo‐ku Tokyo, Japan
| | | |
Collapse
|
50
|
Abstract
Cigarette smoke is undoubtedly one of the most common inhaled irritants in the human respiratory tract, and invariably evokes coughing in both smokers and nonsmokers. Results obtained from the studies in human volunteers and from single-fiber recording of vagal bronchopulmonary afferents in animals clearly indicate that nicotine is primarily responsible for the airway irritation and coughing caused by inhalation of cigarette smoke. Furthermore, both nicotine and acetylcholine can evoke inward current, membrane depolarization, and action potentials in isolated pulmonary sensory neurons, and these responses are blocked by hexamethonium. Taken together, these findings suggest that the tussive effect of nicotine is probably mediated through an activation of nicotinic acetylcholine receptors (nAChRs) expressed on the sensory terminals of cough receptors located in the airway mucosa. Indeed, the expressions of alpha4-alpha7 and beta2-beta4 subunits of nAChR transcripts in pulmonary sensory neurons have lent further support to this conclusion. The specific subtypes of the neuronal nAChRs and their subunit compositions expressed on the cough sensors remain to be determined.
Collapse
Affiliation(s)
- L-Y Lee
- Department of Physiology, University of Kentucky, Lexington, KY 40536-0298, USA.
| | | |
Collapse
|