1
|
Nahar J, Rainville JR, Dohanich GP, Tasker JG. Further evidence for a membrane receptor that binds glucocorticoids in the rodent hypothalamus. Steroids 2016; 114:33-40. [PMID: 27327842 PMCID: PMC5053862 DOI: 10.1016/j.steroids.2016.05.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/25/2016] [Accepted: 05/30/2016] [Indexed: 10/21/2022]
Abstract
In parallel with their well-characterized delayed genomic effects, steroid hormones exhibit rapid, non-genomic effects at molecular, cellular and behavioral levels. We have proposed a model of rapid, non-genomic glucocorticoid inhibition of hypothalamic neuroendocrine cells through a putative membrane-associated glucocorticoid receptor (GR). Here we tested for plasma membrane GR immunoreactivity and binding in the hypothalamic supraoptic and paraventricular nuclei. Selective cross-linking of membrane proteins with membrane-impermeant BS3 and subsequent Western blot analysis with a monoclonal GR antibody revealed a reduction in the intensities of a ∼98kDa immunoreactive band and a ∼64kDa band in the rat paraventricular and supraoptic nuclei, and of a 64kDa band in hippocampal tissue, which suggested that these proteins are associated with the membrane. Saturation binding of [3H]-corticosterone and [3H]-dexamethasone in rat and mouse hypothalamic tissue revealed a Kd 4-24-fold lower and a Bmax 4-7-fold lower for the membrane-associated GR compared to the intracellular GR, suggesting a lower affinity and abundance of the glucocorticoid binding sites in the membrane than in the cytosol. Together, these findings suggest the presence of a low-affinity, low-abundance membrane-associated GR in the hypothalamus that shares homology with the intracellular GR, and are consistent with physiological evidence of rapid, non-genomic glucocorticoid actions in hypothalamic neuroendocrine cells that are GR dependent.
Collapse
Affiliation(s)
- Jebun Nahar
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, United States
| | - Jennifer R Rainville
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, United States
| | - Gary P Dohanich
- Department of Psychology, Tulane University, New Orleans, LA 70118, United States; Neuroscience Program, Tulane University, New Orleans, LA 70118, United States
| | - Jeffrey G Tasker
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, United States; Neuroscience Program, Tulane University, New Orleans, LA 70118, United States.
| |
Collapse
|
2
|
Morgan DJ, Poolman TM, Williamson AJK, Wang Z, Clark NR, Ma'ayan A, Whetton AD, Brass A, Matthews LC, Ray DW. Glucocorticoid receptor isoforms direct distinct mitochondrial programs to regulate ATP production. Sci Rep 2016; 6:26419. [PMID: 27226058 PMCID: PMC4881047 DOI: 10.1038/srep26419] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/25/2016] [Indexed: 12/21/2022] Open
Abstract
The glucocorticoid receptor (GR), a nuclear receptor and major drug target, has a highly conserved minor splice variant, GRγ, which differs by a single arginine within the DNA binding domain. GRγ, which comprises 10% of all GR transcripts, is constitutively expressed and tightly conserved through mammalian evolution, suggesting an important non-redundant role. However, to date no specific role for GRγ has been reported. We discovered significant differences in subcellular localisation, and nuclear-cytoplasmic shuttling in response to ligand. In addition the GRγ transcriptome and protein interactome was distinct, and with a gene ontology signal for mitochondrial regulation which was confirmed using Seahorse technology. We propose that evolutionary conservation of the single additional arginine in GRγ is driven by a distinct, non-redundant functional profile, including regulation of mitochondrial function.
Collapse
Affiliation(s)
- David J Morgan
- School of Computer Sciences, University of Manchester, Kilburn Building, Oxford Road, Manchester, Uk, M13 9PL.,Faculty of Medical and Human Sciences, University of Manchester, AV Hill Building, Oxford Road, Manchester, UK, M13 9PT
| | - Toryn M Poolman
- Faculty of Medical and Human Sciences, University of Manchester, AV Hill Building, Oxford Road, Manchester, UK, M13 9PT.,Manchester Centre for Nuclear Hormone Research in Disease, University of Manchester, AV Hill Building, Oxford Road, Manchester, UK, M13 9PT.,Manchester Academic Health Sciences Centre, University of Manchester, AV Hill Building, Oxford Road, Manchester, UK, M13 9PT
| | - Andrew J K Williamson
- Faculty of Medical and Human Sciences, University of Manchester, AV Hill Building, Oxford Road, Manchester, UK, M13 9PT.,Manchester Academic Health Sciences Centre, University of Manchester, AV Hill Building, Oxford Road, Manchester, UK, M13 9PT
| | - Zichen Wang
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1603, New York, NY 10029, USA
| | - Neil R Clark
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1603, New York, NY 10029, USA
| | - Avi Ma'ayan
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1603, New York, NY 10029, USA
| | - Anthony D Whetton
- Faculty of Medical and Human Sciences, University of Manchester, AV Hill Building, Oxford Road, Manchester, UK, M13 9PT.,Manchester Academic Health Sciences Centre, University of Manchester, AV Hill Building, Oxford Road, Manchester, UK, M13 9PT.,Stoller Biomarker Discovery Centre, University of Manchester, Wolfson Molecular Imaging Centre, Palatine Road, Manchester, UK, M20 3LJ
| | - Andrew Brass
- School of Computer Sciences, University of Manchester, Kilburn Building, Oxford Road, Manchester, Uk, M13 9PL.,Faculty of Life Sciences, University of Manchester, AV Hill Building, Oxford Road, Manchester, UK, M13 9PT
| | - Laura C Matthews
- Faculty of Medical and Human Sciences, University of Manchester, AV Hill Building, Oxford Road, Manchester, UK, M13 9PT.,Faculty of Medicine and Health, University of Leeds, Wellcome Trust Brenner Building, St James's University Hospital, Leeds, UK, LS9 7TF
| | - David W Ray
- Faculty of Medical and Human Sciences, University of Manchester, AV Hill Building, Oxford Road, Manchester, UK, M13 9PT.,Manchester Centre for Nuclear Hormone Research in Disease, University of Manchester, AV Hill Building, Oxford Road, Manchester, UK, M13 9PT.,Manchester Academic Health Sciences Centre, University of Manchester, AV Hill Building, Oxford Road, Manchester, UK, M13 9PT
| |
Collapse
|
3
|
Abstract
Glucocorticoids (GCs) are steroid hormones with widespread effects. They control intermediate metabolism by stimulating gluconeogenesis in the liver, mobilize amino acids from extra hepatic tissues, inhibit glucose uptake in muscle and adipose tissue, and stimulate fat breakdown in adipose tissue. They also mediate stress response. They exert potent immune-suppressive and anti-inflammatory effects particularly when administered pharmacologically. Understanding these diverse effects of glucocorticoids requires a detailed knowledge of their mode of action. Research over the years has uncovered several details on the molecular action of this hormone, especially in immune cells. In this chapter, we have summarized the latest findings on the action of glucocorticoids in immune cells with a view of identifying important control points that may be relevant in glucocorticoid therapy.
Collapse
|
4
|
Laryea G, Muglia L, Arnett M, Muglia LJ. Dissection of glucocorticoid receptor-mediated inhibition of the hypothalamic-pituitary-adrenal axis by gene targeting in mice. Front Neuroendocrinol 2015; 36:150-64. [PMID: 25256348 PMCID: PMC4342273 DOI: 10.1016/j.yfrne.2014.09.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 08/05/2014] [Accepted: 09/11/2014] [Indexed: 12/17/2022]
Abstract
Negative feedback regulation of glucocorticoid (GC) synthesis and secretion occurs through the function of glucocorticoid receptor (GR) at sites in the hypothalamic-pituitary-adrenal (HPA) axis, as well as in brain regions such as the hippocampus, prefrontal cortex, and sympathetic nervous system. This function of GRs in negative feedback coordinates basal glucocorticoid secretion and stress-induced increases in secretion that integrate GC production with the magnitude and duration of the stressor. This review describes the effects of GR loss along major sites of negative feedback including the entire brain, the paraventricular nucleus of the hypothalamus (PVN), and the pituitary. In genetic mouse models, we evaluate circadian regulation of the HPA axis, stress-stimulated neuroendocrine response and behavioral activity, as well as the integrated response of organism metabolism. Our analysis provides information on contributions of region-specific GR-mediated negative feedback to provide insight in understanding HPA axis dysregulation and the pathogenesis of psychiatric and metabolic disorders.
Collapse
Affiliation(s)
- Gloria Laryea
- Neuroscience Graduate Program, School of Medicine, Vanderbilt University, Nashville, TN, United States; Center for Preterm Birth Research, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, ML 7009, Cincinnati, OH 45229, United States.
| | - Lisa Muglia
- Center for Preterm Birth Research, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, ML 7009, Cincinnati, OH 45229, United States.
| | - Melinda Arnett
- Center for Preterm Birth Research, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, ML 7009, Cincinnati, OH 45229, United States.
| | - Louis J Muglia
- Center for Preterm Birth Research, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, ML 7009, Cincinnati, OH 45229, United States; Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, ML 7009, Cincinnati, OH 45229, United States.
| |
Collapse
|
5
|
Vernocchi S, Battello N, Schmitz S, Revets D, Billing AM, Turner JD, Muller CP. Membrane glucocorticoid receptor activation induces proteomic changes aligning with classical glucocorticoid effects. Mol Cell Proteomics 2013; 12:1764-79. [PMID: 23339905 DOI: 10.1074/mcp.m112.022947] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Glucocorticoids exert rapid nongenomic effects by several mechanisms including the activation of a membrane-bound glucocorticoid receptor (mGR). Here, we report the first proteomic study on the effects of mGR activation by BSA-conjugated cortisol (Cort-BSA). A subset of target proteins in the proteomic data set was validated by Western blot and we found them responding to mGR activation by BSA-conjugated cortisol in three additional cell lines, indicating a conserved effect in cells originating from different tissues. Changes in the proteome of BSA-conjugated cortisol treated CCRF-CEM leukemia cells were associated with early and rapid pro-apoptotic, immune-modulatory and metabolic effects aligning with and possibly "priming" classical activities of the cytosolic glucocorticoid receptor (cGR). PCR arrays investigating target genes of the major signaling pathways indicated that the mGR does not exert its effects through the transcriptional activity of any of the most common kinases in these leukemic cells, but RhoA signaling emerged from our pathway analysis. All cell lines tested displayed very low levels of mGR on their surface. Highly sensitive and specific in situ proximity ligation assay visualized low numbers of mGR even in cells previously thought to be mGR negative. We obtained similar results when using three distinct anti-GR monoclonal antibodies directed against the N-terminal half of the cGR. This strongly suggests that the mGR and the cGR have a high sequence homology and most probably originate from the same gene. Furthermore, the mGR appears to reside in caveolae and its association with caveolin-1 (Cav-1) was clearly detected in two of the four cell lines investigated using double recognition proximity ligation assay. Our results indicate however that Cav-1 is not necessary for membrane localization of the GR since CCRF-CEM and Jurkat cells have a functional mGR, but did not express this caveolar protein. However, if expressed, this membrane protein dimerizes with the mGR modulating its function.
Collapse
Affiliation(s)
- Sara Vernocchi
- Institute of Immunology, Centre de Recherche Public de la Santé/Laboratoire National de Santé, Luxembourg, Grand-Duchy of Luxembourg
| | | | | | | | | | | | | |
Collapse
|
6
|
Baulieu EE, Robel P. Non-genomic mechanisms of action of steroid hormones. CIBA FOUNDATION SYMPOSIUM 2007; 191:24-37; discussion 37-42. [PMID: 8582201 DOI: 10.1002/9780470514757.ch3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Sex steroid hormones are known to act through intracellular receptors and their cognate hormone response elements, located in the promoters of hormone-regulated genes. However, this classical mechanism of action cannot account for a variety of rapid effects of steroids (within seconds or minutes). In this review, non-genomic modes of target cell responses to sex steroids are described. The prototypical example is the resumption of meiosis in amphibian oocytes, triggered by progesterone at the plasma membrane level. Membrane effects of progesterone may also account for sperm maturation. Other membrane-mediated effects of steroids are reviewed. Whether a steroid hormone might elicit responses from a single cell through both genomic and membrane mechanisms remains an open question.
Collapse
Affiliation(s)
- E E Baulieu
- INSERM U33, 80 rue de Général Leclerc, Bicêtre, France
| | | |
Collapse
|
7
|
Löwenberg M, Verhaar AP, van den Brink GR, Hommes DW. Glucocorticoid signaling: a nongenomic mechanism for T-cell immunosuppression. Trends Mol Med 2007; 13:158-63. [PMID: 17293163 DOI: 10.1016/j.molmed.2007.02.001] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Revised: 01/23/2007] [Accepted: 02/01/2007] [Indexed: 01/28/2023]
Abstract
Glucocorticoids were long believed to exert their effects through transcriptional regulation of glucocorticoid-receptor target genes. However, there is accumulating evidence for nongenomic glucocorticoid-receptor-dependent modulation of signal transduction pathways. Here, we review rapid glucocorticoid activities and focus on a novel mechanism that underlies nongenomic glucocorticoid-induced immunosuppression in T cells. The findings demonstrate a physical and functional interaction between the glucocorticoid receptor and the T-cell receptor (TCR) complex. In its unligated state, the glucocorticoid receptor has an important role in TCR signaling but, after glucocorticoid-receptor-ligand binding (caused by short-term treatment with the synthetic glucocorticoid dexamethasone), the TCR complex is disrupted, leading to impaired TCR signaling. These data reveal a dichotomal functional role for glucocorticoid receptors: one in the cytosol as part of the TCR complex and the other as a nuclear regulator of gene transcription. Drugs that selectively target membrane-bound glucocorticoid receptors might represent a novel immunosuppressive approach.
Collapse
Affiliation(s)
- Mark Löwenberg
- Department of Gastroenterology and Hepatology, Academic Medical Center, Meibergdreef, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
8
|
Mandoki JJ, Mendoza-Patiño N, Molina-Guarneros JA, Jiménez-Orozco FA, Velasco-Velázquez MA, García-Mondragón MJ. Hormone multifunctionalities: a theory of endocrine signaling, command and control. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2004; 86:353-77. [PMID: 15302204 DOI: 10.1016/j.pbiomolbio.2003.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A theory is presented outlining how organisms can function and benefit from multifunctionality of hormones in order to enhance greatly the information-carrying potential of endocrine signaling. Hormones are produced continuously as micropulses, and intermittently as larger pulses. It is generally believed that micropulses generate fluctuating basal hormone concentrations, which may consistently elicit particular responses among diverse variables. Evidence is discussed suggesting that in contrast to the hormone micropulses, the larger endogenous hormone pulses may elicit responses which may differ from one pulse to another and may therefore serve different physiological functions. In this paper we postulate that an endogenous hormone pulse is a specific form of a multisignal message that serves a certain physiological function. Different pulses of a hormone may be signals of diverse multisignal messages that serve different functions. A multisignal message may elicit congruous responses by selectively enhancing some actions and suppressing other actions of the component signals. Various roles of signals of multisignal messages are discussed, as well as processes that may be involved in the diversity and selectivity of actions of different pulses of a hormone. Hormones also are converted into other hormones; we analyze how precursor and derived hormones may function independently of each other, and how precursor hormones may give rise to permissive effects. Mechanisms involved in therapeutic and adverse effects of hormone administrations are analyzed, and a strategy is suggested for developing more selective hormonal therapies.
Collapse
Affiliation(s)
- Juan José Mandoki
- Facultad de Medicina, Departamento de Farmacología, Universidad Nacional Autónoma de México, DF, CP 04510, Apdo. Postal 70-297, Mexico.
| | | | | | | | | | | |
Collapse
|
9
|
De Bosscher K, Vanden Berghe W, Haegeman G. The interplay between the glucocorticoid receptor and nuclear factor-kappaB or activator protein-1: molecular mechanisms for gene repression. Endocr Rev 2003; 24:488-522. [PMID: 12920152 DOI: 10.1210/er.2002-0006] [Citation(s) in RCA: 629] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The inflammatory response is a highly regulated physiological process that is critically important for homeostasis. A precise physiological control of inflammation allows a timely reaction to invading pathogens or to other insults without causing overreaction liable to damage the host. The cellular signaling pathways identified as important regulators of inflammation are the signal transduction cascades mediated by the nuclear factor-kappaB and the activator protein-1, which can both be modulated by glucocorticoids. Their use in the clinic includes treatment of rheumatoid arthritis, asthma, allograft rejection, and allergic skin diseases. Although glucocorticoids have been widely used since the late 1940s, the molecular mechanisms responsible for their antiinflammatory activity are still under investigation. The various molecular pathways proposed so far are discussed in more detail.
Collapse
Affiliation(s)
- Karolien De Bosscher
- Department of Molecular Biology, Ghent University, K. L. Ledeganckstraat 35, 9000 Gent, Belgium
| | | | | |
Collapse
|
10
|
Losel RM, Falkenstein E, Feuring M, Schultz A, Tillmann HC, Rossol-Haseroth K, Wehling M. Nongenomic steroid action: controversies, questions, and answers. Physiol Rev 2003; 83:965-1016. [PMID: 12843413 DOI: 10.1152/physrev.00003.2003] [Citation(s) in RCA: 393] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Steroids may exert their action in living cells by several ways: 1). the well-known genomic pathway, involving hormone binding to cytosolic (classic) receptors and subsequent modulation of gene expression followed by protein synthesis. 2). Alternatively, pathways are operating that do not act on the genome, therefore indicating nongenomic action. Although it is comparatively easy to confirm the nongenomic nature of a particular phenomenon observed, e.g., by using inhibitors of transcription or translation, considerable controversy exists about the identity of receptors that mediate these responses. Many different approaches have been employed to answer this question, including pharmacology, knock-out animals, and numerous biochemical studies. Evidence is presented for and against both the participation of classic receptors, or proteins closely related to them, as well as for the involvement of yet poorly understood, novel membrane steroid receptors. In addition, clinical implications for a wide array of nongenomic steroid actions are outlined.
Collapse
Affiliation(s)
- Ralf M Losel
- Institut für klinische Pharmakologie, Klinikum Mannheim, Theodor-Kutzer-Ufer, D-68167 Mannheim, Germany
| | | | | | | | | | | | | |
Collapse
|
11
|
Ioannou N, Liapi C, Sekeris CE, Palaiologos G. Effects of dexamethasone on K(+)-evoked glutamate release from rat hippocampal slices. Neurochem Res 2003; 28:875-81. [PMID: 12718441 DOI: 10.1023/a:1023271325728] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Dexamethasone (DEX) at physiologically elevated (stress) concentration (1 microM) decreased K(+)-evoked glutamate release from rat hippocampal slices under superfusion in the presence of Ca2+. On the contrary 10 microM DEX increased this K(+)-evoked glutamate release while 0.1 microM DEX had no effect. The glucocorticoid antagonist for the "classic" receptor, RU 486, completely reversed the effect of 1 microM DEX. Actinomycin D had no effect. Dexamethasone at 1 microM had no effect on the Ca2(+)-independent (10 mM Mg2+ replacing 1 mM Ca2+) K(+)-evoked glutamate release. Dexamethasone at 1 microM or 10 microM had no effect on the phosphate-activated glutaminase--the key enzyme for the biosynthesis of neurotransmitter glutamate. These results suggest that the effect of DEX on K(+)-evoked glutamate release: (i) depends on its concentration; (ii) is exerted on the Ca2(+)-dependent (neurotransmitter release), at least at physiological stress concentrations; and (iii) is exerted via the classical receptor but is nongenomic.
Collapse
Affiliation(s)
- Nektaria Ioannou
- Laboratory of Biological Chemistry, Medical School, University of Athens, Mikras Asias 75, GR 11527 Athens, Greece
| | | | | | | |
Collapse
|
12
|
Gametchu B, Watson CS. Correlation of membrane glucocorticoid receptor levels with glucocorticoid-induced apoptotic competence using mutant leukemic and lymphoma cells lines. J Cell Biochem 2003; 87:133-46. [PMID: 12244567 DOI: 10.1002/jcb.10288] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We have studied the presence and functional implications of membrane glucocorticoid receptor (mGR) in several wild type (WT) and mutant mouse lymphoid cell lines (nuclear transfer decrease, NT(-); nuclear transfer increase, NT(i); and receptorless, R(-)). Direct fluorescent antibody staining revealed large aggregates of mGR-specific fluorescing antigens in the plasma membrane of the WT and mGR-enriched (mGR(++)) S-49 cells. While R(-) cells totally lacked mGR, this receptor level was low in NT(-) and NT(i) groups. FACS analysis corroborated these results, showing a approximately 4-10-fold difference between the highest mGR levels (mGR(++)) and the R(-) and NT(i) cells. Membrane extracts were analyzed for mGR by immunoblotting. Multiple receptor forms, ranging in M(r) from 94,000 to > 200,000, were observed in the WT cells, while only smaller peptides (85,000-94,000) were found in NT(-) cells. No detectable immunoreactive bands were identified in either membrane or cytosol immunoprecipitates of NT(i) and R(-) cell groups. Within 48 h post dexamethasone exposure > 98% of WT and mGR(++) S-49 cells underwent apoptosis, compared to 0-30% in the mutant cells, albeit the total receptor number is two to three times higher in NT(i) compared to WT. These results suggest a better correlation between the quantity and quality of mGRs (rather than total cellular GRs) and the ability of glucocorticoids (GCs) to lyse lymphoid cells.
Collapse
Affiliation(s)
- Bahiru Gametchu
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.
| | | |
Collapse
|
13
|
|
14
|
Cato ACB, Nestl A, Mink S. Rapid actions of steroid receptors in cellular signaling pathways. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2002; 2002:re9. [PMID: 12084906 DOI: 10.1126/stke.2002.138.re9] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Steroid hormones regulate cellular processes by binding to intracellular receptors that, in turn, interact with discrete nucleotide sequences to alter gene expression. Because most steroid receptors in target cells are located in the cytoplasm, they need to get into the nucleus to alter gene expression. This process typically takes at least 30 to 60 minutes. In contrast, other regulatory actions of steroid hormones are manifested within seconds to a few minutes. These time periods are far too rapid to be due to changes at the genomic level and are therefore termed nongenomic or rapid actions, to distinguish them from the classical steroid hormone action of regulation of gene expression. The rapid effects of steroid hormones are manifold, ranging from activation of mitogen-activated protein kinases (MAPKs), adenylyl cyclase (AC), protein kinase C (PKC), and heterotrimeric guanosine triphosphate-binding proteins (G proteins). In some cases, these rapid actions of steroids are mediated through the classical steroid receptor that can also function as a ligand-activated transcription factor, whereas in other instances the evidence suggests that these rapid actions do not involve the classical steroid receptors. One candidate target for the nonclassical receptor-mediated effects are G protein-coupled receptors (GPCRs), which activate several signal transduction pathways. One characteristic of responses that are not mediated by the classical steroid receptors is insensitivity to steroid antagonists, which has contributed to the notion that a new class of steroid receptors may be responsible for part of the rapid action of steroids. Evidence suggests that the classical steroid receptors can be localized at the plasma membrane, where they may trigger a chain of reactions previously attributed only to growth factors. Identification of interaction domains on the classical steroid receptors involved in the rapid effects, and separation of this function from the genomic action of these receptors, should pave the way to a better understanding of the rapid action of steroid hormones.
Collapse
Affiliation(s)
- Andrew C B Cato
- Forschungszentrum Karlsruhe, Institute of Toxicology and Genetics, Post Office Box 3640, D-76021 Karlsruhe, Germany.
| | | | | |
Collapse
|
15
|
Watson CS, Gametchu B. Membrane estrogen and glucocorticoid receptors--implications for hormonal control of immune function and autoimmunity. Int Immunopharmacol 2001; 1:1049-63. [PMID: 11407301 DOI: 10.1016/s1567-5769(01)00036-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Membrane steroid receptors (mSRs) have recently re-emerged as candidates for mediating steroid effects which do not fit the paradigm of nuclear transcription factor mechanisms. We have studied two steroid-binding classes of mSRs, and have noted striking similarities in their characteristics (immunocytochemical appearance, biochemical properties, proteolytic sensitivity, signaling pathways, regulation, and molecular origins). These observations strengthen the conclusion that mSRs can be modified versions of intracellular steroid receptors. The membrane estrogen receptors (mERs) we studied are involved in estrogen-induced release of prolactin. Membrane glucocorticoid receptors (mGRs) in both mouse and human lymphoma cells are necessary for the initiation of glucocorticoid-induced therapeutic apoptosis which is related to the developmental phenomenon of thymic involution. Diseases of autoimmunity such as systemic lupus erythematosus and arthritis are related to estrogen status. Since both of these mSRs have recently been found in both normal and cancerous lymphoid cells, actions of these mSRs may have important consequences for functions and diseases of the immune system. Therefore, the study of these forms of steroid receptors may present novel therapeutic opportunities for the use of steroids and steroid analogs.
Collapse
Affiliation(s)
- C S Watson
- Human Biological Chemistry and Genetics Department, University of Texas Medical Branch, Route 0645, Galveston, TX 77555-0645, USA.
| | | |
Collapse
|
16
|
Powell CE, Soto AM, Sonnenschein C. Identification and characterization of membrane estrogen receptor from MCF7 estrogen-target cells. J Steroid Biochem Mol Biol 2001; 77:97-108. [PMID: 11377974 DOI: 10.1016/s0960-0760(01)00040-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Estrogens control the proliferation of estrogen-target cells through a receptor mediated pathway. We have recently presented evidence that estradiol cancels the proliferative inhibition exerted by albumin on estrogen-target cells (indirect-negative hypothesis). We postulate that this mechanism requires the presence of a membrane estrogen receptor (mER)-membrane albumin receptor complex. Confirmation for mERalpha in MCF7 cells is now made using both the C542 monoclonal and ER-21 polyclonal antibodies (Ab)s specific for ERalpha. Western blot analysis of purified membrane proteins with ERalpha Abs revealed multiple high M(r) mERs (92 k, 110 k, and 130 k M(r)), as well as a 67 k M(r) mER; immunoreactive proteins were competed by inclusion of 500-fold molar excess C542 peptide. Ligand blot analysis of similar extracts with estradiol-peroxidase identified several potential mERs as well; two of these proteins were also recognized by C542 and ER-21 Abs (110 and 67 k M(r)). Fluorescence, confocal and electron microscopy of MCF7 cells fixed in 2.0% paraformaldehyde/0.1% glutaraldehyde identified specific mERalpha sites by immunocytochemistry. Specific binding of 3H-17beta-estradiol was reduced by a 200-fold molar excess of unlabeled 17beta-estradiol, but not by testosterone and progesterone. These results suggest that the ER on the plasma membrane of MCF7 cells is similar, but not identical to its intracellular counterpart. We propose that the observed mER actively participates in the estrogen-mediated proliferation of MCF7 cells.
Collapse
Affiliation(s)
- C E Powell
- Department of Anatomy and Cellular Biology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | | | | |
Collapse
|
17
|
Diba F, Watson CS, Gametchu B. 5?UTR sequences of the glucocorticoid receptor 1A transcript encode a peptide associated with translational regulation of the glucocorticoid receptor. J Cell Biochem 2001. [DOI: 10.1002/1097-4644(20010401)81:1<149::aid-jcb1031>3.0.co;2-w] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
18
|
Moore FL, Evans SJ. Steroid hormones use non-genomic mechanisms to control brain functions and behaviors: a review of evidence. BRAIN, BEHAVIOR AND EVOLUTION 2000; 54:41-50. [PMID: 10516403 DOI: 10.1159/000006610] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Progestins, estrogens, androgens, and corticosteroids are capable of modifying brain functions and behaviors by mechanisms that involve the classic genomic model for steroid action. However, experimental evidence indicates that some responses to steroid hormones use non-classical, non-genomic mechanisms. This paper reviews the evidence that steroids can bind to receptors in the plasma membrane, activate cell signaling pathways, and regulate responses on a time scale of seconds or a few minutes. The existence of these alternative regulatory pathways for steroid hormones should make endocrinologists and neurobiologists change how they think about steroid hormones. It is no longer valid to assume that minute-to-minute changes in steroid concentrations are not regulating biologically important, short-term responses, or that the only steroids with biological functions are the ones that bind with high affinity to intracellular steroid receptors.
Collapse
Affiliation(s)
- F L Moore
- Department of Zoology, Oregon State University, Corvallis 97331-2914, USA.
| | | |
Collapse
|
19
|
Nemere I, Ray R, McManus W. Immunochemical studies on the putative plasmalemmal receptor for 1, 25(OH)(2)D(3). I. Chick intestine. Am J Physiol Endocrinol Metab 2000; 278:E1104-14. [PMID: 10827014 DOI: 10.1152/ajpendo.2000.278.6.e1104] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Antisera were raised against the NH(2)-terminus of the putative basal lateral membrane (BLM) receptor for 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3); BLM-VDR]. In Western analyses of BLM proteins, antibody (Ab) 099 was monospecific for a 64.5-kDa band. A protein of 64.5 kDa was also labeled by the affinity ligand [(14)C]1, 25(OH)(2)D(3)-bromoacetate; label was diminished in the presence of excess unlabeled secosteroid. The monoclonal antibody against the nuclear VDR (9A7) failed to detect an appropriate band in BLM fractions. Preincubation of isolated intestinal cells with Ab 099, but not 9A7, affected the following two 1,25(OH)(2)D(3)-mediated signal transduction events: augmented intracellular calcium and protein kinase C activity. Subcellular distribution of Ab 099 reactivity by Western analyses and fluorescence microscopy revealed the highest concentrations in BLM followed by the endoplasmic reticulum. Exposure of isolated intestinal cells to 1,25(OH)(2)D(3) for 10 s or vascular perfusion of duodena for 5 min resulted in a time-dependent increase in nuclear localization of the BLM-VDR antigen, as judged by electron microscopy, whereas 24, 25-dihydroxyvitamin D(3) failed to increase antigenic labeling in nuclei. Densitometric quantitation of Western blots of subcellular fractions prepared from isolated intestinal cells treated with vehicle or 1,25(OH)(2)D(3) confirmed a hormone-induced increase of putative BLM-VDR in the nucleus. It is concluded that a novel cell surface binding protein for 1,25(OH)(2)D(3) has been identified.
Collapse
Affiliation(s)
- I Nemere
- Department, Utah State University, Logan, Utah 84322-8700, USA
| | | | | |
Collapse
|
20
|
Evans SJ, Murray TF, Moore FL. Partial purification and biochemical characterization of a membrane glucocorticoid receptor from an amphibian brain. J Steroid Biochem Mol Biol 2000; 72:209-21. [PMID: 10822010 DOI: 10.1016/s0960-0760(00)00031-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A membrane receptor for corticosterone (mGR) in the brain of the roughskin newt (Taricha granulosa) has been previously identified. This manuscript reports the evaluation of several chromatographic resins for enrichment of the newt mGR solubilized from neuronal membranes. A protein with an apparent molecular weight of 63 kDa was purified to near homogeneity following sequential purification using ammonium sulfate fractionation, wheat germ agglutinin (WGA)-agarose chromatography, hydroxylapatite chromatography, and an immobilized ligand affinity resin (Corticosterone-Sepharose). Other studies employed a novel protein differential display strategy and a photoaffinity labeling strategy to visualize candidate receptor proteins following SDS-PAGE. Both of these techniques also identified a 63 kDa protein, agreeing with the estimation of molecular weight from the purification data. Furthermore, the use of 2D SDS-PAGE following the photolabeling procedure showed the candidate 63 kDa protein to have a pI of approximately 5.0. Taken together these data suggest that the newt mGR is an acidic glycoprotein with an apparent molecular weight of 63 kDa. Because these characteristics of newt mGR are inconsistent with the characteristics of intracellular glucocorticoid receptors, these two receptor proteins are apparently distinct.
Collapse
Affiliation(s)
- S J Evans
- Zoology Department, Oregan State University, Corvallis, OR 97331-2914, USA
| | | | | |
Collapse
|
21
|
Fülöp AK, Hegyesi H. Non-Conventional Locations of Hormone Receptors (Binding Sites). A Review. ACTA BIOLOGICA HUNGARICA 1999. [DOI: 10.1007/bf03543057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Chen F, Watson CS, Gametchu B. Association of the glucocorticoid receptor alternatively-spliced transcript 1A with the presence of the high molecular weight membrane glucocorticoid receptor in mouse lymphoma cells. J Cell Biochem 1999. [DOI: 10.1002/(sici)1097-4644(19990901)74:3<430::aid-jcb11>3.0.co;2-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
23
|
Chen F, Watson CS, Gametchu B. Multiple glucocorticoid receptor transcripts in membrane glucocorticoid receptor-enriched S-49 mouse lymphoma cells. J Cell Biochem 1999. [DOI: 10.1002/(sici)1097-4644(19990901)74:3<418::aid-jcb10>3.0.co;2-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
24
|
Powell CE, Watson CS, Gametchu B. Immunoaffinity isolation of native membrane glucocorticoid receptor from S-49++ lymphoma cells: biochemical characterization and interaction with Hsp 70 and Hsp 90. Endocrine 1999; 10:271-80. [PMID: 10484291 DOI: 10.1007/bf02738626] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The membrane glucocorticoid receptor (mGR), previously correlated with glucocorticoid-induced lymphocytolytic competency, was purified under nondenaturing conditions from mGR-enriched mouse S-49 T lymphoma cells. Proteins were immunoaffinity batch adsorbed to BUGR-2 monoclonal antibody-coupled protein A Sepharose 4B beads, and elution by epitope competition was compared with standard denaturation procedures. Elution with BUGR-2 epitope peptides released multiple mGRs (42-150 kDa) and heat shock proteins 70 and 90, suggesting that mGR interacts with these protein chaperones under physiological conditions. The mGR-heat shock protein 90 interaction was inhibited by 1 microM geldanamycin. Several other mGR binding partners were captured and most were dissociated from mGR by 0.6 M salt. Peptide maps of purified mGR displayed immunoreactive bands unique to mGR. Scatchard analysis estimated a k(d) value of 239 nM and a Bmax of 384 fmol/mg protein for mGR, compared to a k(d) of 19.5 nM and a Bmax of 90.3 fmol/mg protein for the intracellular GR (iGR). The rank order of affinities for mGR were RU-486 > dexamethasone > triamcinolone acetonide = aldosterone. Other steroids had no significant binding affinity. These results show that epitope-purified mGR on the plasma membrane of mouse lymphoma cells is similar but not identical to iGR.
Collapse
Affiliation(s)
- C E Powell
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee 53226, USA
| | | | | |
Collapse
|
25
|
Christ M, Haseroth K, Falkenstein E, Wehling M. Nongenomic steroid actions: fact or fantasy? VITAMINS AND HORMONES 1999; 57:325-73. [PMID: 10232053 DOI: 10.1016/s0083-6729(08)60647-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In the common theory of steroid action, steroids bind to intracellular receptors and modulate nuclear transcription after translocation of steroid--receptor complexes into the nucleus. Due to homologies of molecular structure, specific receptors for steroids, vitamin D3, and thyroid hormone are considered to represent a superfamily of steroid receptors. While genomic steroid effects being characterized by their delayed onset of action and their sensitivity to blockers of transcription and protein synthesis have been known for several decades, very rapid actions of steroids have been more widely recognized and characterized in detail only recently. Rapid effects of steroids, vitamin D3, and thyroid hormones on cellular signaling and function may be transmitted by specific membrane receptors. Although no receptor of this kind has been cloned up to now, binding sites in membranes have been characterized exposing binding features compatible with an involvement in rapid steroid signaling. Characteristics of putative membrane receptors were completely different from those of intracellular steroid receptors, which was further supported by the inability of classic steroid receptor antagonists to inhibit nongenomic steroid actions. Development of drugs that specifically affect nongenomic action alone or even both modes of actions may find applications in various areas such as the cardiovascular and central nervous systems and treatment of preterm labor, infertility, and electrolyte homeostasis. To acquaint the reader with major aspects of nongenomic steroid actions, these effects on cellular function will be summarized, potentially related binding sites in membranes discussed, and the physiological or pathophysiological relevance of nonclassic actions exemplified.
Collapse
Affiliation(s)
- M Christ
- Institute of Clinical Pharmacology, Faculty for Clinical Medicine at Mannheim, University of Heidelberg, Germany
| | | | | | | |
Collapse
|
26
|
Benten WP, Lieberherr M, Giese G, Wrehlke C, Stamm O, Sekeris CE, Mossmann H, Wunderlich F. Functional testosterone receptors in plasma membranes of T cells. FASEB J 1999; 13:123-33. [PMID: 9872937 DOI: 10.1096/fasebj.13.1.123] [Citation(s) in RCA: 204] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
T cells are considered to be unresponsive to testosterone due to the absence of androgen receptors (AR). Here, we demonstrate the testosterone responsiveness of murine splenic T cells in vitro as well as the presence of unconventional cell surface receptors for testosterone and classical intracellular AR. Binding sites for testosterone on the surface of both CD4(+) and CD8(+) subsets of T cells are directly revealed with the impeded ligand testosterone-BSA-FITC by confocal laser scanning microscopy (CLSM) and flow cytometry, respectively. Binding of the plasma membrane impermeable testosterone-BSA conjugate induces a rapid rise (<5 s) in [Ca2+]i of Fura-2-loaded T cells. This rise reflects influx of extracellular Ca2+ through non-voltage-gated and Ni2+-blockable Ca2+ channels of the plasma membrane. The testosterone-BSA-induced Ca2+ import is not affected by cyproterone, a blocker of the AR. In addition, AR are not detectable on the surface of intact T cells when using anti-AR antibodies directed against the amino and carboxy terminus of the AR, although T cells contain AR, as revealed by reverse transcription-polymerase chain reactions and Western blotting. AR can be visualized with the anti-AR antibodies in the cytoplasm of permeabilized T cells by using CLSM, though AR are not detectable in cytosol fractions when using the charcoal binding assay with 3H-R1881 as ligand. Cytoplasmic AR do not translocate to the nucleus of T cells in the presence of testosterone, in contrast to cytoplasmic AR in human cancer LNCaP cells. These findings suggest that the classical AR present in splenic T cells are not active in the genomic pathway. By contrast, the cell surface receptors for testosterone are in a functionally active state, enabling T cells a nongenomic response to testosterone.
Collapse
Affiliation(s)
- W P Benten
- Division of Molecular Parasitology and Centre of Biological-Medical Research, Heinrich Heine University, 40225 Duesseldorf, Germany
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Judy BM, Welshons WV. Cellular Localization of Receptors Mediating the Actions of Steroid Hormones. Compr Physiol 1998. [DOI: 10.1002/cphy.cp070117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
28
|
Lackner C, Daufeldt S, Wildt L, Alléra A. Glucocorticoid-recognizing and -effector sites in rat liver plasma membrane. Kinetics of corticosterone uptake by isolated membrane vesicles. III. Specificity and stereospecificity. J Steroid Biochem Mol Biol 1998; 64:69-82. [PMID: 9569012 DOI: 10.1016/s0960-0760(97)00141-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In previous papers we provided evidence for a glucocorticoid (GC) responsive site in a highly purified rat liver plasma membrane (PM) fraction, which has proved to be osmotically active, 'right side-out' vesicles, free of CBG, glucocorticoid receptors (GR) and ATP (J. Steroid Biochem. Molec. Biol. 42 (1992) 737-756 and 757-771). This site, now called 'GC importer', mediates active transmembrane transport of corticosterone (B). Pronounced specificity, including stereo- and enantiomeric specificity, of ligand-GC importer interaction was demonstrated by competition assays using 54 different steroidal hormones and molecules. Important structural prerequisites for ligands with high specificity for the GC importer are plane C21-steroid hormones with 1-ene and/or 4-ene or 5alpha-reduced configuration, and/or OH-group(s) at C11beta>C17alpha>C21. Unexpectedly, other preferred ligands are C17alpha-ethynyl steroids like estrogens with an OH- or OCH3-group at C3 (EE2, mestranol) as well as progestins with C3-OH and 4-ene configuration (ethynodiol). C21-steroids with 11alpha-OH, 11-keto, 16alpha-CH3, 16beta-CH3, 16alpha-OH or 5beta-reduced configuration are low specificity ligands. The importer even displays different specificity for enantiomers (levonorgestrel>L-norgestrel). Altogether, the GC importer preferentially recognizes active GC and natural progestins which act as GC-antagonist (e.g. prednisolone>11beta-cortisol = B > or = progestins). Synthetic GC-agonists (e.g. dexamethasone, betamethasone, triamcinolone), most synthetic progestins, biologically inactive GC (e.g. 11alpha-cortisol, prednisone, cortisone, 11-dehydro-B), mineralocorticoids (aldosterone), natural estrogens (e.g. E1, E2, E3), DES and vitamin D3 derivatives do not interact with the GC importer. Osmotic shrinkage experiments revealed that interaction of high as well as low specificity ligands with the GC importer comprises reversible binding and transport through the PM. The ligand specificity profile of the GC importer and the GR exhibit pronounced differences, suggesting that both GC recognizing sites are different proteins. Performing immunoblotting, using specific mono- and polyclonal antibodies directed against the intracellular rat GR, of the PM pretreated with the membrane protein solubilizing detergent CHAPSO, we found that specific steroid binding to the PM site is not due to contamination with GR. Colchicine, daunorubicine, quinine, reserpine, verapamil and vinblastine, representatives of lipophilic xenobiotics which are known to be transported out of cells by the glycoprotein P170, did not compete with B for uptake into PM-vesicles, indicating that the GC importer is not a member of the ABC/mdr superfamily. The GC importer seems to be an additional link in the chain of steroid signal transduction and may be functionally involved in the action of natural GC-agonists and GC-antagonists.
Collapse
Affiliation(s)
- C Lackner
- Department of Internal Medicine, University of Graz, Austria
| | | | | | | |
Collapse
|
29
|
Pirotte B, Levivier M, Goldman S, Brucher JM, Brotchi J, Hildebrand J. Glucocorticoid-induced long-term remission in primary cerebral lymphoma: case report and review of the literature. J Neurooncol 1997; 32:63-9. [PMID: 9049864 DOI: 10.1023/a:1005733416571] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We report a 25-year old immunocompetent woman with a high grade primary non-Hodgkin's lymphoma of the central nervous system (PNHL-CNS) in whom the administration of dexamethasone alone during three months produced a complete clinical and radiological response lasting over four years. If complete remission of PNHL-CNS induced by glucocorticoids are well known, the opportunity to observe glucocorticoid-induced remission for a long period of time without radio- and chemotherapy is rare. Only nine other cases of PNHL-CNS with complete remission induced by glucocorticoids lasting from 6 to 60 months, were found in the literature and are summarized here. Duration of glucocorticoids therapeutic effect in PNHL-CNS is probably underestimated. Glucocorticoids cannot be recommended as sole initial treatment for PNHL-CNS. However, we suggest standard therapies to be delayed in those patients responding completely to glucocorticoids where radio- and chemotherapy should be contraindicated (kidney, liver, bone marrow failure, pregnancy).
Collapse
Affiliation(s)
- B Pirotte
- Department of Neurosurgery, Erasme Hospital, Université Libre de Bruxelles, Belgium
| | | | | | | | | | | |
Collapse
|
30
|
Ibarrola I, Andrés M, Marino A, Macarulla JM, Trueba M. Purification of a cortisol binding protein from hepatic plasma membrane. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1284:41-6. [PMID: 8865813 DOI: 10.1016/0005-2736(96)00110-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A cortisol binding protein from rat liver plasma membranes has been solubilized in active form by using the zwitterionic detergent CHAPS. Two types of binding sites have been characterised in both native and solubilized membranes. The first is of high affinity and low binding capacity (12 nM; 946 fmol/mg) and the other one is of low affinity and high capacity of binding (344 nM; 12677 fmol/mg) for solubilized membranes. The purified material retained a binding activity comparable to that displayed by the original membrane. The specific binding activity was enriched about 12700-fold, with an 8% yield. Analysis of the purified preparation on sodium dodecyl sulphate-polyacrylamide gel electrophoresis showed two protein subunits with molecular mass of 52000 and 57000 Da. The new cortisol-specific binding membrane protein could be related to the nongenomic effects previously described for this hormone.
Collapse
Affiliation(s)
- I Ibarrola
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, Basque Country University/Euskal Herriko Unibertsitatea, Bilbao, Spain
| | | | | | | | | |
Collapse
|
31
|
Pappas TC, Gametchu B, Watson CS. Membrane estrogen receptor-enriched GH(3)/B6 cells have an enhanced non-genomic response to estrogen. Endocrine 1995; 3:743-9. [PMID: 21153164 DOI: 10.1007/bf03000207] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
We immunoselected GH(3)/B6 cells for a membrane estrogen receptor (mER) using antibodies generated against the rat intracellular ER (iER). Immunocytochemistry with anti-ER antibodies revealed bright fluorescence distributed in patches over the surface of mER-enriched cells, while cells immuno-depleted for mER showed only low-level membrane immunofluorescence. Quantitation via digital image analysis confirmed that immunoenriched populations show increases in both stained cell numbers and intensity of staining. Short-term culturing with serum reversibly decreased the intensity of immunostaining in mER-enriched cells to immuno-depleted cell levels. The mER-enriched populations initially contained ∼85% immunopositive cells in defined medium, but when cultured continuously with serum gradually decline to ∼22% immunopositive cells by 10 weeks. Cells enriched for mER showed a significant increase in rapid (after 2 or 5 min) prolactin release when treated with 17β-estradiol, while mER-depleted cells lacked this response. Immunoprecipitabie membrane proteins isolated from mER-enriched cells were 60,000, 74,000 and ∼ 200,000 MW, compared to an iER size of 67,000. Therefore, the presence and level of an mER that is antigenically related to iER is correlated with the ability of GH(3)/B6 cells to mediate a rapid action of estrogen.
Collapse
Affiliation(s)
- T C Pappas
- Department of Human Biological Chemistry and Genetics, University of Texas, Medical Branch, 77555-0645, Galveston, Texas
| | | | | |
Collapse
|
32
|
Rowan BG, Ip MM. Identification and localization of steroid-binding and nonsteroid-binding forms of the glucocorticoid receptor in the mouse P1798 lymphosarcoma. J Steroid Biochem Mol Biol 1995; 52:437-50. [PMID: 7748809 DOI: 10.1016/0960-0760(94)00193-p] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Glucocorticoid receptors (GCRs) were characterized in sublines of the mouse P1798 lymphosarcoma that are sensitive (S) or resistant (R) to glucocorticoid-mediated apoptosis. Previous work had identified two steroid-binding GCRs in S and R cells: a 97 kDa wild-type GCR in S cells (WT-GCR), and a 45 kDa truncated GCR in R cells (TR-GCR). A third GCR, a 97 kDa nonsteroid-binding GCR (NSB-GCR), was also identified in R cells. Using subcellular fractionation and Western blotting, we now show that in contrast to the WT-GCR which is localized in both the cytoplasm and nucleus of S cells, the NSB-GCR is localized predominantly in R cell nuclei. Moreover, gel filtration chromatography revealed that treatment with 400 mM NaCl and heat did not significantly alter the Stokes radius of the NSB-GCR suggesting that this receptor is not present in a heterooligomeric complex with other proteins. The TR-GCR was localized predominantly in the soluble cytoplasmic fraction but also in the crude membrane fractions of R cell nuclei, suggesting that this receptor is tightly associated with nuclear structures. It was not detected in the soluble nuclear fraction. Unexpectedly, a 45 kDa nonsteroid-binding immunoreactive protein was detected in crude membrane fractions of S cells. These studies describe a complex GCR system in the P1798 lymphosarcoma that necessitates a further consideration of glucocorticoid signaling in S and R cells.
Collapse
Affiliation(s)
- B G Rowan
- Department of Experimental Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | |
Collapse
|
33
|
Grote H, Ioannou I, Voigt J, Sekeris CE. Localization of the glucocorticoid receptor in rat liver cells: evidence for plasma membrane bound receptor. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY 1993; 25:1593-9. [PMID: 8288028 DOI: 10.1016/0020-711x(93)90517-i] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
1. The cytoplasmic glucocorticoid receptor of rat liver cells is in part recovered in the plasma membrane fraction. 2. After in vivo administration of [3H]dexamethasone, 0.35% of the radioactivity recovered is bound on plasma membranes. 3. Dexamethasone also binds in vitro specifically to plasma membranes. Expressed as fmol/mg protein, binding of dexamethasone to plasma membranes is comparable to binding to the soluble cytoplasmic fraction (cytosol). 4. Using polyclonal antibody to the glucocorticoid receptor and the indirect immunofluorescence technic, an intense decoration of the plasma membranes is observed, denoting a high concentration of glucocorticoid receptor on plasma membranes. 5. The localization of the receptor on plasma membranes could be of potential importance for its interaction with agents (mitogens, growth factors) initially acting on the cell membrane, regulating subsequent cell proliferation and growth at the level of the cell nucleus.
Collapse
Affiliation(s)
- H Grote
- Institute of Biological Research and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | | | | | | |
Collapse
|
34
|
Alléra A, Wildt L. Glucocorticoid-recognizing and -effector sites in rat liver plasma membrane. Kinetics of corticosterone uptake by isolated membrane vesicles--I. Binding and transport. J Steroid Biochem Mol Biol 1992; 42:737-56. [PMID: 1504012 DOI: 10.1016/0960-0760(92)90115-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
To gain insight into the mechanisms governing cellular uptake of glucocorticoids, we studied the binding and membrane transport of corticosterone (B) on a highly purified plasma membrane fraction from rat liver that was homogenized using a gentle, isotonic procedure. The fraction was mostly in the form of right-side out and osmotically active vesicles that were free of intracellular glucocorticoid receptors (GCR), transcortin (CBG) and ATP. Our uptake and binding studies carried out at 22 degrees C with [3H]B in physiological concentrations resulted in the following findings: (1) unlabeled B competed with [3H]B for uptake by the membrane vesicles; half-maximal competition of specific uptake was achieved with a 10- to 11-fold molar excess of unlabeled B. (2) [3H]B uptake was a saturable process of unusual kinetics (multiple sigmoidity); modified Scatchard plots revealed three significantly different apparent Kd-values of 1.3, 4.7 and 17.3 nM, corresponding to free B in the blood of non-stressed rats (4-16 nM). (3) Osmotic shrinkage of the vesicles led to a linear decrease in specific uptake, while non-specific uptake was independent of vesicle volume. Passive diffusion of [3H]B took place in leaky, but not in intact, vesicles. Reversible binding to, and mediated transport through, the membrane were interdependent parts of a strongly linked process. B was accumulated inside the vesicle up a concentration gradient by an active transport that followed first-order kinetics (Kt:3.9 nM); for its statistically reliable mathematical formulation and kinetic analysis, a replot was developed that revealed that relative accumulation increased with decreasing external hormone concentration. (4) Comparative binding studies disclosed that the apparent Kd-values (86.5 +/- 7.3 and 77.0 +/- 14.3 nM, respectively) of the [3H]B interactions with CBG and GCR did not differ (P greater than 0.3). These findings permit the conclusion that a plasma membrane-inserted carrier for B, effectively operating at physiological concentrations in the blood, is involved in a functional and regulatory manner in the biological action of glucocorticoids.
Collapse
Affiliation(s)
- A Alléra
- Department of Clinical Biochemistry, University of Bonn, Germany
| | | |
Collapse
|
35
|
van Leeuwen J, Birkenhäger J, van den Bemd G, Buurman C, Staal A, Bos M, Pols H. Evidence for the functional involvement of protein kinase C in the action of 1,25-dihydroxyvitamin D3 in bone. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42314-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|