1
|
Pesch YY, Riedel D, Behr M. Drosophila Chitinase 2 is expressed in chitin producing organs for cuticle formation. ARTHROPOD STRUCTURE & DEVELOPMENT 2017; 46:4-12. [PMID: 27832982 DOI: 10.1016/j.asd.2016.11.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 11/01/2016] [Accepted: 11/02/2016] [Indexed: 06/06/2023]
Abstract
The architecture of the outer body wall cuticle is fundamental to protect arthropods against invading pathogens and numerous other harmful stresses. Such robust cuticles are formed by parallel running chitin microfibrils. Molting and also local wounding leads to dynamic assembly and disassembly of the chitin-matrix throughout development. However, the underlying molecular mechanisms that organize proper chitin-matrix formation are poorly known. Recently we identified a key region for cuticle thickening at the apical cell surface, the cuticle assembly zone, where Obstructor-A (Obst-A) coordinates the formation of the chitin-matrix. Obst-A binds chitin and the deacetylase Serpentine (Serp) in a core complex, which is required for chitin-matrix maturation and preservation. Here we present evidence that Chitinase 2 (Cht2) could be essential for this molecular machinery. We show that Cht2 is expressed in the chitin-matrix of epidermis, trachea, and the digestive system. There, Cht2 is enriched at the apical cell surface and the dense chitin-matrix. We further show that in Cht2 knockdown larvae the assembly zone is rudimentary, preventing normal cuticle formation and pore canal organization. As sequence similarities of Cht2 and the core complex proteins indicate evolutionarily conserved molecular mechanisms, our findings suggest that Cht2 is involved in chitin formation also in other insects.
Collapse
Affiliation(s)
- Yanina-Yasmin Pesch
- Institute for Biology and Sächsischer Inkubator für klinische Translation (TRM/SIKT), University of Leipzig, 04103 Leipzig, Germany; Life & Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany
| | - Dietmar Riedel
- Max Planck Institute for Biophysical Chemistry, Electron Microscopy Group, 37077 Göttingen, Germany
| | - Matthias Behr
- Institute for Biology and Sächsischer Inkubator für klinische Translation (TRM/SIKT), University of Leipzig, 04103 Leipzig, Germany; Life & Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany.
| |
Collapse
|
2
|
Chandran R, Williams L, Hung A, Nowlin K, LaJeunesse D. SEM characterization of anatomical variation in chitin organization in insect and arthropod cuticles. Micron 2015; 82:74-85. [PMID: 26774746 DOI: 10.1016/j.micron.2015.12.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/23/2015] [Accepted: 12/23/2015] [Indexed: 01/18/2023]
Abstract
The cuticles of insects and arthropods have some of the most diverse material properties observed in nature, so much so that it is difficult to imagine that all cutciles are primarily composed of the same two materials: a fibrous chitin network and a matrix composed of cuticle proteins. Various factors contribute to the mechanical and optical properties of an insect or arthropod cuticle including the thickness and composition. In this paper, we also identified another factor that may contribute to the optical, surface, and mechanical properties of a cuticle, i.e. the organization of chitin nanofibers and chitin fiber bundles. Self-assembled chitin nanofibers serve as the foundation for all higher order chitin structures in the cuticles of insects and other arthropods via interactions with structural cuticle proteins. Using a technique that enables the characterization of chitin organization in the cuticle of intact insects and arthropod exoskeletons, we demonstrate a structure/function correlation of chitin organization with larger scale anatomical structures. The chitin scaffolds in cuticles display an extraordinarily diverse set of morphologies that may reflect specific mechanical or physical properties. After removal of the proteinaceous and mineral matrix of a cuticle, we observe using SEM diverse nanoscale and micro scale organization of in-situ chitin in the wing, head, eye, leg, and dorsal and ventral thoracic regions of the periodical cicada Magicicada septendecim and in other insects and arthropods. The organization of chitin also appears to have a significant role in the organization of nanoscale surface structures. While microscale bristles and hairs have long been known to be chitin based materials formed as cellular extensions, we have found a nanostructured layer of chitin in the cuticle of the wing of the dog day annual cicada Tibicen tibicens, which may be the scaffold for the nanocone arrays found on the wing. We also use this process to examine the chitin organizations in the fruit fly, Drosophila melanogaster, and the Atlantic brown shrimp, Farfantepenaeus aztecus. Interestingly many of the homologous anatomical structures from diverse arthropods exhibit similar patterns of chitin organization suggesting that a common set of parameters, govern chitin organization.
Collapse
Affiliation(s)
- Rakkiyappan Chandran
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina Greensboro, 2907 East Gate City Blvd., Greensboro, NC 27401, United States
| | - Lee Williams
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina Greensboro, 2907 East Gate City Blvd., Greensboro, NC 27401, United States
| | - Albert Hung
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 East Gate City Blvd., Greensboro, NC 27401, United States
| | - Kyle Nowlin
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina Greensboro, 2907 East Gate City Blvd., Greensboro, NC 27401, United States
| | - Dennis LaJeunesse
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina Greensboro, 2907 East Gate City Blvd., Greensboro, NC 27401, United States.
| |
Collapse
|
3
|
Pesch YY, Riedel D, Behr M. Obstructor A organizes matrix assembly at the apical cell surface to promote enzymatic cuticle maturation in Drosophila. J Biol Chem 2015; 290:10071-82. [PMID: 25737451 DOI: 10.1074/jbc.m114.614933] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Indexed: 12/29/2022] Open
Abstract
Assembly and maturation of the apical extracellular matrix (aECM) is crucial for protecting organisms, but underlying molecular mechanisms remain poorly understood. Epidermal cells secrete proteins and enzymes that assemble at the apical cell surface to provide epithelial integrity and stability during developmental growth and upon tissue damage. We analyzed molecular mechanisms of aECM assembly and identified the conserved chitin-binding protein Obst-A (Obstructor A) as an essential regulator. We show in Drosophila that Obst-A is required to coordinate protein and chitin matrix packaging at the apical cell surface during development. Secreted by epidermal cells, the Obst-A protein is specifically enriched in the apical assembly zone where matrix components are packaged into their highly ordered architecture. In obst-A null mutant larvae, the assembly zone is strongly diminished, resulting in severe disturbance of matrix scaffold organization and impaired aECM integrity. Furthermore, enzymes that support aECM stability are mislocalized. As a biological consequence, cuticle architecture, integrity, and function are disturbed in obst-A mutants, finally resulting in immediate lethality upon wounding. Our studies identify a new core organizing center, the assembly zone that controls aECM assembly at the apical cell surface. We propose a genetically conserved molecular mechanism by which Obst-A forms a matrix scaffold to coordinate trafficking and localization of proteins and enzymes in the newly deposited aECM. This mechanism is essential for maturation and stabilization of the aECM in a growing and remodeling epithelial tissue as an outermost barrier.
Collapse
Affiliation(s)
- Yanina-Yasmin Pesch
- From the Department of Molecular Developmental Biology, Life & Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany, the Department of Cell & Developmental Biology, Translational Centre for Regenerative Medicine (TRM), University of Leipzig, 04103 Leipzig, Germany, and
| | - Dietmar Riedel
- the Electron Microscopy Group, Max-Planck-Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Matthias Behr
- From the Department of Molecular Developmental Biology, Life & Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany, the Department of Cell & Developmental Biology, Translational Centre for Regenerative Medicine (TRM), University of Leipzig, 04103 Leipzig, Germany, and
| |
Collapse
|
4
|
Gu S, Willis JH. Distribution of cuticular protein mRNAs in silk moth integument and imaginal discs. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2003; 33:1177-1188. [PMID: 14599490 DOI: 10.1016/j.ibmb.2003.06.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The distributions of mRNAs for two cuticular proteins of Hyalophora cecropia were examined with RT-PCR and in situ hybridization. For major regions of larval and pupal cuticle, there was a strong correspondence between the type of cuticle and the predominant cuticular protein message found. Epidermal cells underlying soft cuticle had mRNA for HCCP12, with a RR-1 consensus attributed to soft cuticle, while the epidermal cells associated with hard cuticle had predominantly mRNA for HCCP66, a protein with the RR-2 consensus attributed to hard cuticle. Both messages were found in all areas of the pupal fore- and hind-wings, with modest area-specific difference in concentration being much less than differences in the relative abundance of these cuticular proteins.mRNA for HCCP12 was present in imaginal discs of feeding larvae of H cecropia. Data from Bombyx mori available at SilkBase (http://www.ab.a.u-tokyo.ac.jp/silkbase/) revealed that imaginal discs from feeding larvae had abundant mRNA for RR-1 cuticular proteins, representing six distinct gene products. Only discs from spinning larvae had mRNAs that coded for RR-2 proteins arising from 10 distinct genes. Thus, lepidopteran wing imaginal discs can no longer be regarded as inactive in larval cuticle production.
Collapse
Affiliation(s)
- Subin Gu
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | | |
Collapse
|
5
|
Locke M, Kiss A, Sass M. The cuticular localization of integument peptides from particular routing categories. Tissue Cell 1994; 26:707-34. [PMID: 9437247 DOI: 10.1016/0040-8166(94)90055-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The distribution of integument peptides in relation to chitin and structural features has been studied in the surface epidermis of the caterpillar of Calpodes ethlius by immunoblotting and immunogold labelling using antibodies prepared to peptides isolated from lamellate endocuticle or from hemolymph. The intermoult cuticle consists of an epicuticle, an endocuticle of many chitin containing lamellae, and a chitin containing assembly zone directly above the apical epidermal microvilli and the perimicrovillar space. During the intermoult, the epidermis secretes peptides constitutively, that is, secretory vesicles containing peptides exocytose without accumulating, traverse the perimicrovillar space and form lamellae in the assembly zone. At moulting, the epidermis deposits ecdysial droplets in addition. These interrupt the last few lamellae which later go on to become the perforated ecdysial membrane. The integument is involved with four routing classes of peptide. Secretion is apical into the cuticle (C), basal into the hemolymph (H), bidirectional (BD), or transported to the cuticle across the epidermis from the hemolymph (T). Some peptides change their routing at moulting. There are several patterns of localization. (1) C and BD cuticular peptides occur mainly in chitin containing lamellate cuticle. (2) Some are also present in epicuticle, and are therefore not obligatorily linked to chitin or matrix between chitin fibers. Cuticular peptides that also occur in the hemolymph are glycosylated, whereas most that are only secreted apically into the cuticle are not. All BD but few C peptides carry alpha-D-glucose/alpha-D-mannose. Some C and BD peptides carry N-acetyl glucosamine. (3) C36 extracted from cuticle has most N-acetyl glucosamine and colocalizes with chitin rather than the protein matrix. It is therefore probably the main link between chitin fibers and the matrix. (4) H235 is barely detectable at the apical cell surface during the intermoult but is abundant at moulting around and below the ecdysial droplets. (5) T66 occurs in intermoult lamellate cuticle. At moulting, alone among the peptides examined, it is in ecdysial droplets. Intermoult C and BD peptides are not in ecdysial droplets but continue to be present in the ecdysial membrane, suggesting that constitutive secretion is independent from the exocytosis of transported moult peptides. T66 differs from most hemolymph peptides in that it does not carry N-acetyl glucosamine or alpha-D-glucose/alpha-D-mannose. (6) Weakly reacting BD peptides (and some H peptides barely detectable in cuticle) localize near the apical surface. Their distribution therefore favours apical secretion and retrieval as a mechanism for basal secretion.
Collapse
Affiliation(s)
- M Locke
- Central Food Research Institute of Hungary, Budapest, Hungary
| | | | | |
Collapse
|
6
|
Monoclonal antibodies recognizing larval- and pupal-specific cuticular proteins of Tenebrio molitor (Insecta, Coleoptera). ACTA ACUST UNITED AC 1993; 203:92-99. [PMID: 28305984 DOI: 10.1007/bf00539894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/1993] [Accepted: 04/28/1993] [Indexed: 10/26/2022]
Abstract
To study the sequential expression of insect epidermal cells during metamorphosis, a library of monoclonal antibodies (MABs) was prepared against the water-soluble proteins from preecdysial pupal cuticle of Tenebrio molitor. Six selected MABs recognizing only larval and pupal cuticular proteins (CPs) in immunoblot analysis were classified into three types. Type 1 recognized a 21.5 and a 22 kDa polypeptide, type 2, a 26 kDa polypeptide, and type 3, three polypeptides of 18.5, 19.5 and 21.5 kDa. They did not immunoreact with any protein of fat bodies or haemolymph from pharate pupae, suggesting that the antigens originate from the epidermis. The stage-specificity was confirmed by electron microscopic immunogold labelling. Type 1 and 3 MABs recognized antigens characterizing larval and pupal preecdysial sclerotized cuticles, while the antigens recognized by type 2 were localized in the first few lamellae of unsclerotized postecdysial cuticle. When the expression of the adult programme was inhibited by application of a juvenile hormone analogue, the larval-/pupal-specific CPs were detected in the supernumerary pupal cuticle. These results suggest that the genes encoding these proteins are juvenile hormone dependent. These MABs should be useful tools to isolate pupal-specific genes whose regulation sems to be different from that of the adult-specific ones.
Collapse
|
7
|
Cuticle proteins of the boll weevil, Anthonomus grandis, abdomen: Structural similarities and glycosylation. ACTA ACUST UNITED AC 1991. [DOI: 10.1016/0020-1790(91)90014-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Extracellular matrix of the regeneration chamber and plasma membranes of the epidermis during leg regeneration in an insect Carausius morosus. Tissue Cell 1991; 23:41-55. [DOI: 10.1016/0040-8166(91)90065-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/1990] [Revised: 08/27/1990] [Indexed: 11/23/2022]
|
9
|
Lemoine A, Millot C, Curie G, Delachambre J. Spatial and temporal variations in cuticle proteins as revealed by monoclonal antibodies. Immunoblotting analysis and ultrastructural immunolocalization in a beetle, Tenebrio molitor. Tissue Cell 1990; 22:177-89. [DOI: 10.1016/0040-8166(90)90020-a] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/1989] [Revised: 11/30/1989] [Indexed: 11/17/2022]
|
10
|
Binger LC, Willis JH. In vitro translation of epidermal RNA from different anatomical regions and metamorphic stages of Hyalophora cecropia. ACTA ACUST UNITED AC 1990. [DOI: 10.1016/0020-1790(90)90069-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
11
|
Lemoine A, Millot C, Curie G, Delachambre J. A monoclonal antibody against an adult-specific cuticular protein of Tenebrio molitor (Insecta, Coleoptera). Dev Biol 1989; 136:546-54. [PMID: 2583376 DOI: 10.1016/0012-1606(89)90280-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
To study the sequential expression of the epidermal program in the mealworm Tenebrio molitor, monoclonal antibodies were prepared against the water-soluble proteins from preecdysial adult cuticle. Among the 16 clones obtained, one of them (named K2F6) recognized a 20-kDa antigen, found only in adult extracts but not in the larval or pupal ones, as revealed by immunoblot analysis. Our results strongly suggest an epidermal origin for this protein. The monoclonal antibody K2F6 fails to react with water-soluble proteins from fat body and hemolymph taken during the deposition of the 20-kDa antigen. Electron microscopic immunogold localization of this antigen showed that it is secreted, just after epicuticle deposition, in the 30 first-deposited preecdysial lamellae of sternal and elytral cuticles only. The sclerotizing process, which modifies the physicochemical properties of these cuticles, does not prevent the immunoreaction. When the expression of the adult program was inhibited by application of a juvenile hormone analog (ZR 515), the water-soluble proteins from different pupal-adult intermediates were never recognized by the monoclonal antibody K2F6 using immunoblot analysis. These results support the conclusion that this 20-kDa antigen is a protein specific for the sclerotized cuticle of the adult stage.
Collapse
Affiliation(s)
- A Lemoine
- Laboratoire de Zoologie, URA CNRS 55, Université de Bourgogne, Dijon, France
| | | | | | | |
Collapse
|
12
|
Mazur GD, Regier JC, Kafatos FC. Morphogenesis of silkmoth chorion: sequential modification of an early helicoidal framework through expansion and densification. Tissue Cell 1989; 21:227-42. [PMID: 2772915 DOI: 10.1016/0040-8166(89)90068-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The silkmoth chorion is a helicoidally layered, fibrous structure which is constructed in four sequential morphogenetic modes, beginning with the assembly of a thin, low density lamellar framework. Subsequently, the framework expands in height by the insertion of additional fiber sheets into the preexisting lamellae. This expansion mode begins farthest from the follicular secretory cells and progresses in reverse. Individual fibers then grow in thickness, presumably through accretion of newly synthesized proteins, and eventually fuse. This third mode, which also begins in the most distant lamellae and proceeds in reverse, is called densification, as it results in an approximately two fold increase in overall chorion density without further lamellar expansion. Finally, lamellogenesis is recapitulated in miniature in a region of the chorion's surface, where very-late-forming lamellae are molded into prominent surface structures, the aeropyle crowns. The densification and especially the expansion modes suggest considerable fluidity in the developing chorion, consistent with its proposed cholesteric liquid crystalline structure. Such a structure is also consistent with numerous deviations from the ideal helicoidal array. These distortions and defects are described and discussed in terms of their possible origin and function.
Collapse
Affiliation(s)
- G D Mazur
- Department of Cellular and Developmental Biology, Harvard University, Cambridge, MA 02138
| | | | | |
Collapse
|