1
|
Kutschenko A, Bigalke H, Wegner F, Wohlfarth K. The role of human serum albumin and neurotoxin associated proteins in the formulation of BoNT/A products. Toxicon 2019; 168:158-163. [PMID: 31323228 DOI: 10.1016/j.toxicon.2019.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/11/2019] [Accepted: 07/16/2019] [Indexed: 11/28/2022]
Abstract
Botulinum neurotoxin (BoNT) is synthesized as a progenitor toxin complex (PTC) by Clostridium botulinum. This PTC comprises, in addition to the neurotoxin itself, neurotoxin associated proteins (NAPs) which are composed of three hemagglutinins and one non-toxic, non-hemagglutinin protein. After oral ingestion, these NAPs protect the neurotoxin from the low pH and proteases in the gastrointestinal tract and play a role in the entry via the intestinal barrier. Two of the three therapeutically used botulinum neurotoxin serotype A (BoNT/A) products (onabotulinumtoxinA and abobotulinumtoxinA) contain different amounts of NAPs, while incobotulinumtoxinA, lacks these proteins. In addition, human serum albumin (HSA) that is supposed to stabilize BoNT/A is added at different concentrations. Up to now, the function of the NAPs and HSA after parenteral therapeutic application is not completely understood. To investigate the influence of NAPs and HSA on potency of BoNT/A, we used the ex vivo mouse phrenic nerve hemidiaphragm assay. Increasing doses of HSA resulted dose-dependently in a more pronounced effect of BoNT/A. Though, a plateau was reached with concentrations of 0.8 mg/ml HSA and higher, the accessory addition of NAPs in a relevant amount (4 ng/ml) did not further enhance the effect of BoNT/A. In conclusion, in our ex vivo assay an adequate concentration of HSA prevented BoNT/A from loss of effect and supplementary NAPs did not alter this effect. A confirmation of these data in an in vivo assay is still lacking. However, it might be supposed that even in clinically applied BoNT/A products an increase of HSA accompanied by the avoidance of NAPs could potentially reduce the injected dose and, thus, the risk of unwanted side effects, the treatment costs as well as the risk of a secondary therapy failure due to BoNT/A neutralizing antibodies.
Collapse
Affiliation(s)
- Anna Kutschenko
- Department of Neurology, Hannover Medical School, Hannover, Germany.
| | - Hans Bigalke
- Institute of Toxicology, Hannover Medical School, Hannover, Germany
| | - Florian Wegner
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Kai Wohlfarth
- Department of Neurology, BG Hospital Bergmannstrost, Halle (Saale), Germany
| |
Collapse
|
2
|
Comparative immunochemical characteristics of botulinum neurotoxin type A and its associated proteins. Toxicon 2013; 72:126-32. [PMID: 23811077 DOI: 10.1016/j.toxicon.2013.06.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 06/15/2013] [Accepted: 06/17/2013] [Indexed: 11/24/2022]
Abstract
Clostridium botulinum strains secrete their neurotoxins (BoNT) along with a group of neurotoxin-associated proteins (NAPs) that enhance the oral toxicity and provide protection to the neurotoxin against acidity, temperature and proteases in the G.I. tract. A major component of NAPs is Hn-33, a 33 kDa protein, which is also protease resistant and strongly protects BoNT. The complex form of BoNT/A is used as a commercial therapeutic formulation against many neuromuscular disorders and for cosmetic purposes. Immune response against this formulation could hinder its long-term use; therefore, it is important to characterize the immunological properties of the associated proteins. This study aims to understand the immunological reactivity of BoNT/A complex, BoNT, NAPs, and Hn-33 through a series of competitive enzyme-linked immunosorbent assays (ELISA). The results indicated that BoNT/A complex competed 6 times more with complex antibodies compared to the neurotoxin confirming that the higher immunogenicity of BoNT/A complex was indeed a result of the associated proteins with the neurotoxin complex. While the nearly identical immuno-reactivity of BoNT/A complex and Hn-33 with Hn-33 antibodies indicated that the reactivity was due to the higher immunogenicity not the abundance of Hn-33 in the complex. Both the ELISA and immuno-blot results implied that Hn-33 is primarily responsible for eliciting the antibody response in BoNT/A complex.
Collapse
|
3
|
Severe Nervous System Complications After Botulinum Type A Therapy: Three Case Reports With Reviews of FDA-Reported Nervous System Adverse Effects. PM R 2012; 4:613-23. [DOI: 10.1016/j.pmrj.2012.04.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 04/17/2012] [Accepted: 04/24/2012] [Indexed: 11/23/2022]
|
4
|
Jimenez-Shahed J. A new treatment for focal dystonias: incobotulinumtoxinA (Xeomin®), a botulinum neurotoxin type A free from complexing proteins. Neuropsychiatr Dis Treat 2012; 8:13-25. [PMID: 22275842 PMCID: PMC3261649 DOI: 10.2147/ndt.s16085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Dystonia is a movement disorder of uncertain pathogenesis that is characterized by involuntary and inappropriate muscle contractions which cause sustained abnormal postures and movements of multiple or single (focal) body regions. The most common focal dystonias are cervical dystonia (CD) and blepharospasm (BSP). The first-line recommended treatment for CD and BSP is injection with botulinum toxin (BoNT), of which two serotypes are available: BoNT type A (BoNT/A) and BoNT type B (BoNT/B). Conventional BoNT formulations include inactive complexing proteins, which may increase the risk for antigenicity, possibly leading to treatment failure. IncobotulinumtoxinA (Xeomin(®); Merz Pharmaceuticals GmbH, Frankfurt, Germany) is a BoNT/A agent that has been recently Food and Drug Administration-approved for the treatment of adults with CD and adults with BSP previously treated with onabotulinumtoxinA (Botox(®); Allergen, Inc, Irvine, CA) - a conventional BoNT/A. IncobotulinumtoxinA is the only BoNT product that is free of complexing proteins. The necessity of complexing proteins for the effectiveness of botulinum toxin treatment has been challenged by preclinical and clinical studies with incobotulinumtoxinA. These studies have also suggested that incobotulinumtoxinA is associated with a lower risk for stimulating antibody formation than onabotulinumtoxinA. In phase 3 noninferiority trials, incobotulinumtoxinA demonstrated significant improvements in CD and BSP symptoms in both primary and secondary measures, compared with baseline, and met criteria for noninferiority versus onabotulinumtoxinA. In placebo-controlled trials, incobotulinumtoxinA also significantly improved the symptoms of CD and BSP, with robust outcomes in both primary and secondary measures. The use of incobotulinumtoxinA has been well tolerated in all trials, with an adverse event profile similar to that of onabotulinumtoxinA. Based on these data, incobotulinumtoxinA is a safe and effective BoNT/A for the treatment of CD and BSP, and may pose a lower risk for immunogenicity leading to treatment failure compared with other available BoNT agents. This paper reviews the treatment of focal dystonias with BoNTs, in particular, incobotulinumtoxinA. Controlled trials from the existing incobotulinumtoxinA literature are summarized.
Collapse
|
5
|
Conway JO, Sherwood LJ, Collazo MT, Garza JA, Hayhurst A. Llama single domain antibodies specific for the 7 botulinum neurotoxin serotypes as heptaplex immunoreagents. PLoS One 2010; 5:e8818. [PMID: 20098614 PMCID: PMC2809108 DOI: 10.1371/journal.pone.0008818] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Accepted: 12/23/2009] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND There are currently 7 known serotypes of botulinum neurotoxin (BoNT) classified upon non-cross reactivity of neutralizing immunoglobulins. Non-neutralizing immunoglobulins, however, can exhibit cross-reactivities between 2 or more serotypes, particularly mosaic forms, which can hamper the development of highly specific immunoassays, especially if based on polyclonal antisera. Here we employ facile recombinant antibody technology to subtractively select ligands to each of the 7 BoNT serotypes, resulting in populations with very high specificity for their intended serotype. METHODS AND FINDINGS A single llama was immunized with a cocktail of 7 BoNT toxoids to generate a phage display library of single domain antibodies (sdAb, VHH or nanobodies) which were selected on live toxins. Resulting sdAb were capable of detecting both toxin and toxin complex with the best combinations able to detect 100s-10s of pg per 50 microL sample in a liquid bead array. The most sensitive sdAb were combined in a heptaplex assay to identify each of the BoNT serotypes in buffer and milk and to a lesser extent in carrot juice, orange juice and cola. Several anti-A(1) sdAb recognized A2 complex, showing that subtype cross-reactivity within a serotype was evident. Many of our sdAb could act as both captor and tracer for several toxin and toxin complexes suggesting sdAb can be used as architectural probes to indicate BoNT oligomerisation. Six of 14 anti-A clones exhibited inhibition of SNAP-25 cleavage in the neuro-2A assay indicating some sdAb had toxin neutralizing capabilities. Many sdAb were also shown to be refoldable after exposure to high temperatures in contrast to polyclonal antisera, as monitored by circular dichroism. CONCLUSIONS Our panel of molecularly flexible antibodies should not only serve as a good starting point for ruggedizing assays and inhibitors, but enable the intricate architectures of BoNT toxins and complexes to be probed more extensively.
Collapse
Affiliation(s)
- Jerry O. Conway
- Department of Virology and Immunology, Southwest Foundation for Biomedical Research, San Antonio, Texas, United States of America
| | - Laura J. Sherwood
- Department of Virology and Immunology, Southwest Foundation for Biomedical Research, San Antonio, Texas, United States of America
| | - M. Thelma Collazo
- Department of Virology and Immunology, Southwest Foundation for Biomedical Research, San Antonio, Texas, United States of America
| | - John A. Garza
- Department of Virology and Immunology, Southwest Foundation for Biomedical Research, San Antonio, Texas, United States of America
| | - Andrew Hayhurst
- Department of Virology and Immunology, Southwest Foundation for Biomedical Research, San Antonio, Texas, United States of America
- * E-mail:
| |
Collapse
|
6
|
Lee MS, Lee JC, Choi CY, Chung J. Production and characterization of monoclonal antibody to botulinum neurotoxin type B light chain by phage display. Hybridoma (Larchmt) 2008; 27:18-24. [PMID: 18294072 DOI: 10.1089/hyb.2007.0532] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A monoclonal antibody to the light chain of botulinum neurotoxin type B (BoNT/B) was generated and its protective activity was evaluated in vivo. A chimeric rabbit/human Fab library was generated using bone marrow and spleen cDNAs of rabbits immunized with the BoNT/B light chain, and three monoclonal antibodies specific to the catalytic domain of BoNT/B were isolated. One of these clones, BCXRH1, was specific to a conformation-dependent epitope, and partially neutralized the BoNT/B complex in vivo.
Collapse
Affiliation(s)
- Myung-Shin Lee
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, South Korea
| | | | | | | |
Collapse
|
7
|
Volland H, Lamourette P, Nevers MC, Mazuet C, Ezan E, Neuburger LM, Popoff M, Créminon C. A sensitive sandwich enzyme immunoassay for free or complexed Clostridium botulinum neurotoxin type A. J Immunol Methods 2008; 330:120-9. [DOI: 10.1016/j.jim.2007.11.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Revised: 10/17/2007] [Accepted: 11/14/2007] [Indexed: 10/22/2022]
|
8
|
Abstract
Botulinum neurotoxin (BoNT), which cause the deadly neuroparalytic disease, botulism, is the most toxic substance known to man. BoNT can be used as potential bioterrorism agents, and therefore, pose great threat to national security and public health. Rapid and sensitive detection of BoNTs using molecular and biochemical techniques is an essential component in the diagnosis of botulism, and is yet to be achieved. The most sensitive and widely accepted assay method for BoNTs is mouse bioassay, which takes 4 days to complete. This clearly can not meet the need for clinical diagnosis of botulism, botulinum detection in field conditions, and screening of large scale samples. Consequently, the clinical diagnosis of botulism relies on the clinical symptom development, thus limiting the effectiveness of antitoxin treatment. In response to this critical need, many in vitro methods for BoNT detection are under development. This review is focused on recently developed in vitro detection methods for BoNTs, and emerging new technologies with potential for sensitive and rapid in vitro diagnostics for botulism.
Collapse
Affiliation(s)
- Shuowei Cai
- Botulinum Research Center, and Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, North Dartmouth, Massachusetts 02747, USA.
| | | | | |
Collapse
|
9
|
Lee JC, Park SY, Choi CY, Chung J, Lee MS. Generation of a naïve/synthetic antibody specific to botulinum neurotoxin via motif-grafting. BIOTECHNOL BIOPROC E 2007. [DOI: 10.1007/bf02931105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Lim ECH, Seet RCS, Chow A, Oh VMS, Ong BKC, Wilder-Smith EPV. Topical botulinum toxin to treat hyperhidrosis? No sweat! Med Hypotheses 2006; 67:27-32. [PMID: 16524669 DOI: 10.1016/j.mehy.2006.01.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2006] [Revised: 01/07/2006] [Accepted: 01/10/2006] [Indexed: 11/25/2022]
Abstract
Palmar, plantar and axillary hyperhidrosis, though benign, may be burdensome and occupationally restrictive, even hazardous. Treatment modalities range from topical antiperspirants, iontophoresis, systemic medications such as anticholinergics and benzodiazepines and injections of botulinum toxin, to thoracic sympathectomy. Intradermal injections of botulinum toxin (BTX), though effective, are painful especially when multiple injections are required. Iontophoretic administration of BTX has been described, the BTX entering the eccrine sweat glands via the sweat pores and through the sweat ducts. We postulate that BTX can be administered topically, either unassisted or assisted by application of an electrical gradient, low-frequency ultrasound or excipients such as dimethylsulfoxide. We examine the rationale and feasibility for such a treatment modality and route of administration.
Collapse
Affiliation(s)
- Erle C H Lim
- Division of Neurology, Yong Loo Lin School of Medicine, National University of Singapore/National University Hospital, 5 Lower Kent Ridge Road, Singapore 119074, Singapore.
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
Botulism is a deadly disease caused by ingestion of the preformed neurotoxin produced from the anaerobic spore-forming bacteria Clostridium botulinum. Botulinum neurotoxins are the most poisonous toxins known and have been a concern in the food industry for a long time. Therefore, rapid identification of botulinum neurotoxin using molecular and biochemical techniques is an essential component in the establishment of coordinated laboratory response systems and is the focus of current research and development. Because of the extreme toxicity of botulinum neurotoxin, some confirmatory testing with the mouse bioassay is still necessary, but rapid methods capable of screening large numbers of samples are also needed. This review is focused on the development of several detection methods for botulinum neurotoxins in foods.
Collapse
Affiliation(s)
- Shashi K Sharma
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland 20740-3835, USA.
| | | |
Collapse
|
12
|
Poli MA, Rivera VR, Neal D. Development of sensitive colorimetric capture ELISAs for Clostridium botulinum neurotoxin serotypes E and F. Toxicon 2002; 40:797-802. [PMID: 12175617 DOI: 10.1016/s0041-0101(01)00288-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sensitive and specific enzyme-linked immunosorbent assays (ELISAs) were developed to detect Clostridium botulinum neurotoxin serotypes E (BoNT E) and F (BoNT F) in assay buffer and human serum. The assay is based upon affinity-purified horse polyclonal antibodies directed against the approximately 50 kD C-fragments of each toxin. Standard curves were linear over 0.5-10 ng/ml (BoNT E) or 2-20 ng/ml (BoNT F). Accurate measurements were achieved at 0.5 ng/ml (BoNT E) or 2 ng/ml (BoNT F) in assay buffer and 10% human serum. Variation between triplicates was typically 5-10%. Less than 1% cross-reactivity occurred between other serotypes A, B, E or F). When tested against toxins complexed to their neurotoxin-associated proteins, interference was absent for BoNT F. However, pure BoNT E and that complexed to associated proteins demonstrated significant quantitative differences. We believe these differences arise from trypsin activation of the toxin. These assays demonstrated sensitivities close to that of the mouse bioassay, without the use of animals, in a much simpler format than other reported assays of similar sensitivity.
Collapse
Affiliation(s)
- Mark A Poli
- Toxinology and Aerobiology Division, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, MD 21702-5011, USA.
| | | | | |
Collapse
|
13
|
Szílagyi M, Rivera VR, Neal D, Merrill GA, Poli MA. Development of sensitive colorimetric capture elisas for Clostridium botulinum neurotoxin serotypes A and B. Toxicon 2000; 38:381-9. [PMID: 10669027 DOI: 10.1016/s0041-0101(99)00168-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Sensitive and specific enzyme-linked immunosorbent assays were developed to detect Clostridium botulinum neurotoxin serotypes A (BoNT A) and B (BoNT B) in assay buffer and human serum. The assay is based upon affinity-purified horse polyclonal antibodies directed against the approximately 50 kDa C-fragments of each toxin. Standard curves were linear over the range of 0.1-10 ng mL. Detection was possible at 0.2 ng mL (20 pg/well) and accurate quantitation at 0.5 ng/mL (50 pg well) in assay buffer and 10% human serum. Variations between triplicates was typically 5-10%. Less than 1% cross reactivity occurred between other serotypes when each assay was performed against serotypes A, B and E. When tested against toxins complexed to their associated nontoxic proteins, interference was absent (BoNT B) or < 25% (BoNT A). These assays demonstrate sensitivity close to that of the mouse bioassay without the use of animals and in a much simpler format than other reported assays of similar sensitivity.
Collapse
Affiliation(s)
- M Szílagyi
- Aeronautical and Maritime Research Laboratory, Defence Science and Technology Organization, Maribyrnong, Vic., Australia
| | | | | | | | | |
Collapse
|
14
|
Abstract
A purified monovalent botulinum type F toxoid vaccine was administered to 35 healthy adult volunteers in a phase I clinical trial. Serum samples from the vaccinated volunteers were evaluated for an antibody response at various time intervals over 1 year by mouse bioassay and ELISA. The antibody response was measured for varying doses of vaccine (2, 5, or 10 microg), and after single or multiple (two or three doses @ 10 microg) vaccinations. Six out of 15 (40%) individuals developed antibody titers after receiving a single dose. After two and three vaccinations, there was a 90% (18/20) and 100% (10/10) seroconversion rate, respectively. Eight months after initial injection, 57 and 63% of individuals were antibody positive following two or three vaccinations, respectively. Single vaccinations, at any of the tested dosages, elicited lower, if any, antibody response than did multiple vaccinations. After the third vaccination, ELISA titers positively correlated with mouse neutralization bioassay titers (r(2)=0.86).
Collapse
Affiliation(s)
- V A Montgomery
- Division of Toxinology, US Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Ft Detrick, MD 21702, USA.
| | | | | | | |
Collapse
|
15
|
Ekong TAN, Feavers IM, Sesardic D. Recombinant SNAP-25 is an effective substrate for Clostridium botulinum type A toxin endopeptidase activity in vitro. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 10):3337-3347. [PMID: 9353935 DOI: 10.1099/00221287-143-10-3337] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Bacterial neurotoxins are now being used routinely for the treatment of neuromuscular conditions. Alternative assays to replace or to complement in vivo bioassay methods for assessment of the safety and potency of these botulinum neurotoxin-based therapeutic products are urgently needed. Advances made in understanding the mode of action of clostridial neurotoxins have provided the basis for the development of alternative mechanism-based assay methods. Thus, the identification of SNAP-25 (synaptosomal-associated protein of molecular mass 25 kDa) as the intracellular protein target which is selectively cleaved during poisoning by botulinum neurotoxin type A (BoNT/A) has enabled the development of a functional in vitro assay for this toxin. Using recombinant DNA methods, a segment of SNAP-25 (aa residues 134-206) spanning the toxin cleavage site was prepared as a fusion protein to the maltose-binding protein in Escherichia coli. The fusion protein was purified by affinity chromatography and the fragment isolated after cleavage with Factor Xa. Targeted antibodies specific for the N and C termini of SNAP-25, as well as the toxin cleavage site, were prepared and used in an immunoassay to demonstrate BoNT/A endopeptidase activity towards recombinant SNAP-25 substrates. The reaction required low concentrations of reducing agents which were inhibitory at higher concentrations as were metal chelators and some inhibitors of metallopeptidases. The endopeptidase assay has proved to be more sensitive than the mouse bioassay for detection of toxin in therapeutic preparations. A good correlation with results obtained in the in vivo bioassay (r = 0.95, n = 23) was demonstrated. The endopeptidase assay described here may provide a suitable replacement assay for the estimation of the potency of type A toxin in therapeutic preparations.
Collapse
Affiliation(s)
- Theresa A N Ekong
- Division of Bacteriology, National Institute for Biological Standards and Control, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK
| | - Ian M Feavers
- Division of Bacteriology, National Institute for Biological Standards and Control, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK
| | - Dorothea Sesardic
- Division of Bacteriology, National Institute for Biological Standards and Control, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK
| |
Collapse
|
16
|
Pearce LB, First ER, MacCallum RD, Gupta A. Pharmacologic characterization of botulinum toxin for basic science and medicine. Toxicon 1997; 35:1373-412. [PMID: 9403963 DOI: 10.1016/s0041-0101(96)00180-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The use of Botulinum neurotoxin (BoNT) is increasing in both clinical and basic science. Clinically, intramuscular injection of nanogram quantities of BoNT is fast becoming the treatment of choice for a spectrum of disorders including movement disorders such as torticollis, blepharospasm, Meige Disease, and hemifacial spasm (Borodic et al., 1991, 1994a; Jankovic and Brin, 1991; Clarke, 1992). Neuroscientists are using BoNTs as tools to develop a better understanding of the mechanisms underlying the neurotransmitter release process. Consequently, our ability to accurately and reliably quantify the biologic activity of botulinum toxin has become more important than ever. The accurate measurement of the pharmacologic activity of BoNTs has become somewhat problematic with the most significant problems occurring with the clinical use of the toxins. The biologic activity of BoNTs has been measured using a variety of techniques including assessment of whole animal responses to in vitro effects on neurotransmitter release. The purpose of this review is to examine the approaches employed to characterize, quantify and investigate the actions of the BoNTs and to provide a guide to aid investigators in determining which of these methods is most appropriate for their particular application or use.
Collapse
Affiliation(s)
- L B Pearce
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, MA 02118, USA
| | | | | | | |
Collapse
|