1
|
Aouadi W, Najburg V, Legendre R, Varet H, Kergoat L, Tangy F, Larrous F, Komarova AV, Bourhy H. Comparative analysis of rabies pathogenic and vaccine strains detection by RIG-I-like receptors. Microbes Infect 2024; 26:105321. [PMID: 38461968 DOI: 10.1016/j.micinf.2024.105321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/25/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024]
Abstract
Rabies virus (RABV) is a lethal neurotropic virus that causes 60,000 human deaths every year globally. RABV infection is characterized by the suppression of the interferon (IFN)-mediated antiviral response. However, molecular mechanisms leading to RABV sensing by RIG-I-like receptors (RLR) that initiates IFN signaling currently remain elusive. Here, we showed that RABV RNAs are primarily recognized by the RIG-I RLR, resulting in an IFN response in the infected cells, but this response varied according to the type of RABV used. Pathogenic RABV strain RNAs, Tha, were poorly detected in the cytosol by RIG-I and therefore caused a weak antiviral response. However, we revealed a strong IFN activity triggered by the attenuated RABV vaccine strain RNAs, SAD, mediated by RIG-I. We characterized two major 5' copy-back defective interfering (5'cb DI) genomes generated during SAD replication. Furthermore, we identified an interaction between 5'cb DI genomes, and RIG-I correlated with a high stimulation of the type I IFN signaling. This study indicates that wild-type RABV RNAs poorly activate the RIG-I pathway, while the presence of 5'cb DIs in the live-attenuated vaccine strain serves as an intrinsic adjuvant that strengthens its efficiency by enhancing RIG-I detection thus strongly stimulates the IFN response.
Collapse
Affiliation(s)
- Wahiba Aouadi
- Institut Pasteur, Université Paris Cité, Lyssavirus Epidemiology and Neuropathology Unit, 75015 Paris, France
| | - Valérie Najburg
- Institut Pasteur, Université Paris Cité, Vaccines-innovation Laboratory, 75015 Paris, France
| | - Rachel Legendre
- Institut Pasteur, Université Paris Cité, Hub Bioinformatics, and Biostatistics, 75015 Paris, France
| | - Hugo Varet
- Institut Pasteur, Université Paris Cité, Hub Bioinformatics, and Biostatistics, 75015 Paris, France
| | - Lauriane Kergoat
- Institut Pasteur, Université Paris Cité, Lyssavirus Epidemiology and Neuropathology Unit, 75015 Paris, France
| | - Frédéric Tangy
- Institut Pasteur, Université Paris Cité, Vaccines-innovation Laboratory, 75015 Paris, France
| | - Florence Larrous
- Institut Pasteur, Université Paris Cité, Lyssavirus Epidemiology and Neuropathology Unit, 75015 Paris, France
| | - Anastassia V Komarova
- Institut Pasteur, Université Paris Cité, Interactomics, RNA and Immunity Laboratory, 75015 Paris, France.
| | - Hervé Bourhy
- Institut Pasteur, Université Paris Cité, Lyssavirus Epidemiology and Neuropathology Unit, 75015 Paris, France.
| |
Collapse
|
2
|
Faria Waziry PA, Raja A, Salmon C, Aldana N, Damodar S, Fukushima AR, Mayi BS. Impact of pyriproxyfen on virus behavior: implications for pesticide-induced virulence and mechanism of transmission. Virol J 2020; 17:93. [PMID: 32631404 PMCID: PMC7339562 DOI: 10.1186/s12985-020-01378-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/30/2020] [Indexed: 02/06/2023] Open
Abstract
Background More than 3 years since the last Zika virus (ZIKV) outbreak in Brazil, researchers are still deciphering the molecular mechanisms of neurovirulence and vertical transmission, as well as the best way to control spread of ZIKV, a flavivirus. The use of pesticides was the main strategy of mosquito control during the last ZIKV outbreak. Methods We used vesicular stomatitis virus (VSV) tagged with green fluorescent protein (GFP) as our prototypical virus to study the impact of insecticide pyriproxyfen (PPF). VZV-GFP infected and uninfected Jurkat, HeLa and trophoblast cells were treated with PPF and compared to untreated cells (control). Cell viability was determined by the MTT assay. Cell morphology, presence of extracellular vesicles (EVs), virus infection/GFP expression as well as active mitochondrial levels/localization were examined by confocal microscopy. Results PPF, which was used to control mosquito populations in Brazil prior to the ZIKV outbreak, enhances VSV replication and has cell membrane-altering properties in the presence of virus. PPF causes enhanced viral replication and formation of large EVs, loaded with virus as well as mitochondria. Treatment of trophoblasts or HeLa cells with increasing concentrations of PPF does not alter cell viability, however, it proportionately increases Jurkat cell viability. Increasing concentrations of PPF followed by VSV infection does not interfere with HeLa cell viability. Both Jurkats and trophoblasts show proportionately increased cell death with increased concentrations of PPF in the presence of virus. Conclusions We hypothesize that PPF disrupts the lipid microenvironment of mammalian cells, thereby interfering with pathways of viral replication. PPF lowers viability of trophoblasts and Jurkats in the presence of VSV, implying that the combination renders immune system impairment in infected individuals as well as enhanced vulnerability of fetuses towards viral vertical transmission. We hypothesize that similar viruses such as ZIKV may be vertically transmitted via EV-to-cell contact when exposed to PPF, thereby bypassing immune detection. The impact of pesticides on viral replication must be fully investigated before large scale use in future outbreaks of mosquito borne viruses.
Collapse
Affiliation(s)
- Paula A Faria Waziry
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, 3400 Gulf to Bay Blvd, Clearwater, FL, 33759, USA
| | - Aarti Raja
- Department of Biological Sciences, Halmos College of Arts and Sciences, Nova Southeastern University, Fort Lauderdale, FL, 33314, USA
| | - Chloe Salmon
- Plymouth University, 3 Endsleigh Place, Drake Circus, Plymouth, England, PL4 8AA
| | - Nathalia Aldana
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, 3200 S. University Dr, Fort Lauderdale, FL, 33328, USA
| | - Sruthi Damodar
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, 3200 S. University Dr, Fort Lauderdale, FL, 33328, USA
| | - Andre Rinaldi Fukushima
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of Sao Paulo, São Paulo, Brazil
| | - Bindu S Mayi
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, 3400 Gulf to Bay Blvd, Clearwater, FL, 33759, USA.
| |
Collapse
|
3
|
Ziegler CM, Botten JW. Defective Interfering Particles of Negative-Strand RNA Viruses. Trends Microbiol 2020; 28:554-565. [PMID: 32544442 PMCID: PMC7298151 DOI: 10.1016/j.tim.2020.02.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/27/2020] [Accepted: 02/25/2020] [Indexed: 12/14/2022]
Abstract
Viral defective interfering particles (DIPs) were intensely studied several decades ago but research waned leaving open many critical questions. New technologies and other advances led to a resurgence in DIP studies for negative-strand RNA viruses. While DIPs have long been recognized, their exact contribution to the outcome of acute or persistent viral infections has remained elusive. Recent studies have identified defective viral genomes (DVGs) in human infections, including respiratory syncytial virus and influenza, and growing evidence indicates that DVGs influence disease severity and may contribute to viral persistence. Further, several studies have advanced our understanding of key viral and host factors that regulate DIP formation and activity. Here we review these discoveries and highlight key questions moving forward.
Collapse
Affiliation(s)
- Christopher M Ziegler
- Department of Medicine, Division of Immunobiology, University of Vermont, Burlington, VT 05405, USA
| | - Jason W Botten
- Department of Medicine, Division of Immunobiology, University of Vermont, Burlington, VT 05405, USA; Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA; Vaccine Testing Center, University of Vermont, Burlington, VT 05405, USA.
| |
Collapse
|
4
|
Low-Fidelity Polymerases of Alphaviruses Recombine at Higher Rates To Overproduce Defective Interfering Particles. J Virol 2015; 90:2446-54. [PMID: 26676773 PMCID: PMC4810721 DOI: 10.1128/jvi.02921-15] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 12/08/2015] [Indexed: 01/20/2023] Open
Abstract
Low-fidelity RNA-dependent RNA polymerases for many RNA virus mutators have been shown to confer attenuated phenotypes, presumably due to increased mutation rates. Additionally, for many RNA viruses, replication to high titers results in the production of defective interfering particles (DIs) that also attenuate infection. We hypothesized that fidelity, recombination, and DI production are tightly linked. We show that a Sindbis virus mutator replicating at a high multiplicity of infection manifests an earlier and greater accumulation of DIs than its wild-type counterpart. The isolated DIs interfere with the replication of full-length virus in a dose-dependent manner. Importantly, the ability of the mutator virus to overproduce DIs could be linked to an increased recombination frequency. These data confirm that RNA-dependent RNA polymerase fidelity and recombination are inversely correlated for this mutator. Our findings suggest that defective interference resulting from higher recombination rates may be more detrimental to RNA virus mutators than the increase in mutational burden. IMPORTANCE Replication, adaptation, and evolution of RNA viruses rely in large part on their low-fidelity RNA-dependent RNA polymerase. Viruses artificially modified in their polymerases to decrease fidelity (mutator viruses) are attenuated in vivo, demonstrating the important role of fidelity in viral fitness. However, attenuation was attributed solely to the modification of the viral mutation rate and the accumulation of detrimental point mutations. In this work, we described an additional phenotype of mutator viruses: an increased recombination rate leading to defective interfering particle (DI) overproduction. Because DIs are known for their inhibitory effect on viral replication, our work suggests that fidelity variants may be attenuated in vivo via several mechanisms. This has important implications in the development of fidelity variants as live attenuated vaccine strains.
Collapse
|
5
|
Frensing T. Defective interfering viruses and their impact on vaccines and viral vectors. Biotechnol J 2015; 10:681-9. [DOI: 10.1002/biot.201400429] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/13/2015] [Accepted: 01/27/2015] [Indexed: 11/12/2022]
|
6
|
Defective interfering influenza virus RNAs: time to reevaluate their clinical potential as broad-spectrum antivirals? J Virol 2014; 88:5217-27. [PMID: 24574404 DOI: 10.1128/jvi.03193-13] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Defective interfering (DI) RNAs are highly deleted forms of the infectious genome that are made by most families of RNA viruses. DI RNAs retain replication and packaging signals, are synthesized preferentially over infectious genomes, and are packaged as DI virus particles which can be transmitted to susceptible cells. Their ability to interfere with the replication of infectious virus in cell culture and their potential as antivirals in the clinic have long been known. However, until now, no realistic formulation has been described. In this review, we consider the early evidence of antiviral activity by DI viruses and, using the example of DI influenza A virus, outline developments that have led to the production of a cloned DI RNA that is highly active in preclinical studies not only against different subtypes of influenza A virus but also against heterologous respiratory viruses. These data suggest the timeliness of reassessing the potential of DI viruses as a novel class of antivirals that may have general applicability.
Collapse
|
7
|
Design requirements for interfering particles to maintain coadaptive stability with HIV-1. J Virol 2012; 87:2081-93. [PMID: 23221552 DOI: 10.1128/jvi.02741-12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Defective interfering particles (DIPs) are viral deletion mutants lacking essential transacting or packaging elements and must be complemented by wild-type virus to propagate. DIPs transmit through human populations, replicating at the expense of the wild-type virus and acting as molecular parasites of viruses. Consequently, engineered DIPs have been proposed as therapies for a number of diseases, including human immunodeficiency virus (HIV). However, it is not clear if DIP-based therapies would face evolutionary blocks given the high mutation rates and high within-host diversity of lentiviruses. Divergent evolution of HIV and DIPs appears likely since natural DIPs have not been detected for lentiviruses, despite extensive sequencing of HIVs and simian immunodeficiency viruses (SIVs). Here, we tested if the apparent lack of lentiviral DIPs is due to natural selection and analyzed which molecular characteristics a DIP or DIP-based therapy would need to maintain coadaptive stability with HIV-1. Using a well-established mathematical model of HIV-1 in a host extended to include its replication in a single cell and interference from DIP, we calculated evolutionary selection coefficients. The analysis predicts that interference by codimerization between DIPs and HIV-1 genomes is evolutionarily unstable, indicating that recombination between DIPs and HIV-1 would be selected against. In contrast, DIPs that interfere via competition for capsids have the potential to be evolutionarily stable if the capsid-to-genome production ratio of HIV-1 is >1. Thus, HIV-1 variants that attempt to "starve" DIPs to escape interference would be selected against. In summary, the analysis suggests specific experimental measurements that could address the apparent lack of naturally occurring lentiviral DIPs and specifies how therapeutic approaches based on engineered DIPs could be evolutionarily robust and avoid recombination.
Collapse
|
8
|
D'Agostino PM, Reiss CS. A confocal and electron microscopic comparison of interferon beta-induced changes in vesicular stomatitis virus infection of neuroblastoma and nonneuronal cells. DNA Cell Biol 2010; 29:103-20. [PMID: 20113203 DOI: 10.1089/dna.2009.0963] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Vesicular stomatitis virus (VSV) replication is highly sensitive to interferon (IFN)-induced antiviral responses. Pretreatment of sensitive cultured cells with IFNbeta results in a 10(4)-fold reduction in the release of infectious VSV particles. However, differences exist between the mechanisms of reduced infectious particle titers in cell lines of neuroblastoma and nonneuronal lineage. In L929-fibroblast-derived cells, using immunofluorescence confocal microscopy, infection under control conditions reveals the accumulation of VSV matrix, phosphoprotein (P), and nucleocapsid (N) proteins over time, with induced cellular morphological changes indicative of cytopathic effects (CPEs). Upon observing L929 cells that had been pretreated with IFNbeta, neither detectable VSV proteins nor CPEs were seen, consistent with type I IFN antiviral protection. When using the same techniques to observe VSV infections of NB41A3 cells, a neuroblastoma cell line, aside from similar viral progression in the untreated control cells, IFNbeta-treated cells illustrated a severely attenuated VSV infection. Attenuated VSV progression was observed through detection of VSV matrix, P, and N proteins in isolated cells during the first 8 h of infection. However, by 18-24 h postinfection all neuroblastomas had succumbed to the viral infection. Finally, upon closer inspection of IFNbeta-treated NB41A3 cells, no detectable changes in VSV protein localization were identified compared with untreated, virally infected neuroblastomas. Next, to extend our study to test our hypothesis that virion assembly is compromised within type I IFN-treated neuroblastoma cells, we employed electron microscopy to examine our experimental conditions at the ultrastructural level. Using VSV-specific antibodies in conjunction with immuno-gold reagents, we observed several similarities between the two cell lines, such as identification of viroplasmic regions containing VSV N and P proteins and signs of stress-induced CPEs of VSV-infected cells, which had either been mock-treated or pretreated with interferon-beta (IFNbeta). One difference we observed between nonneuronal and neuroblastoma cells was more numerous actively budding VSV virions across untreated L929 plasma membranes compared with untreated NB41A3 cells. Additionally, IFNbeta-treated, VSV-infected L929 cells exhibited neither cytoplasmic viroplasm nor viral protein expression. In contrast, IFNbeta-treated, VSV-infected NB41A3 cells showed evidence of VSV infection at a very low frequency as well as small-scale viroplasmic regions that colocalized with viral N and P proteins. Finally, we observed that VSV viral particles harvested from untreated VSV-infected L929 and NB41A3 cells were statistically similar in size and shape. A portion of VSV virions from IFNbeta-treated, virally infected NB41A3 cells were similar in size and shape to virus from both untreated cell types. However, among the sampling of virions, pleomorphic viral particles that were identified from IFNbeta-treated, VSV-infected NB41A3 cells were different enough to suggest a misassembly mechanism as part of the IFNbeta antiviral state in neuroblastoma cells.
Collapse
Affiliation(s)
- Paul M D'Agostino
- Department of Biology, New York University, New York, 10003-6688, USA
| | | |
Collapse
|
9
|
Stauffer Thompson KA, Rempala GA, Yin J. Multiple-hit inhibition of infection by defective interfering particles. J Gen Virol 2009; 90:888-899. [PMID: 19264636 DOI: 10.1099/vir.0.005249-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Defective interfering particles (DIPs) are virus-like particles that arise during virus growth, fail to grow in the absence of virus, and replicate at the expense of virus during co-infections. The inhibitory effects of DIPs on virus growth are well established, but little is known about how DIPs influence their own growth. Here vesicular stomatitis virus (VSV) and its DIPs were used to co-infect BHK cells, and the effect of DIP dose on virus and DIP production was measured using a yield-reduction assay. The resulting dose-response data were used to fit and evaluate mathematical models that employed different assumptions. Our analysis supports a multiple-hit process where DIPs inhibit or promote virus and DIP production, depending on dose. Specifically, three regimes of co-infection were apparent: (i) low DIP - where both virus and DIPs are amplified, (ii) medium DIP - where amplification of both virus and DIPs is inhibited, and (iii) high DIP - with limited recovery of virus production and further inhibition of DIP growth. In addition, serial-passage infections enabled us to estimate the frequency of de novo DIP generation during virus amplification. Our combined experiments and models provide a means to understand better how DIPs quantitatively impact the growth of viruses and the spread of their infections.
Collapse
Affiliation(s)
- Kristen A Stauffer Thompson
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706-1607, USA
| | - Grzegorz A Rempala
- Department of Mathematics, University of Louisville, Louisville, KY 40292, USA
| | - John Yin
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706-1607, USA
| |
Collapse
|
10
|
Pion M, Liska V, Chenine AL, Hofmann-Lehmann R, Vlasak J, Gondois-Rey F, Ruprecht RM, Hirsch I. Extensively deleted simian immunodeficiency virus (SIV) DNA in macaques inoculated with supercoiled plasmid DNA encoding full-length SIVmac239. Virology 2001; 289:103-13. [PMID: 11601922 DOI: 10.1006/viro.2001.1079] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Using long-distance DNA PCR, we prospectively followed rhesus monkeys that had been inoculated intramuscularly with supercoiled plasmid DNA encoding intact simian immunodeficiency virus (SIV). From 4 to 10 weeks postinoculation onward, we detected extensively deleted proviral genomes along with full-length viral genomes in peripheral blood mononuclear cells (PBMC) in adult macaques. During their chronic asymptomatic phase of infection, the frequency of deleted proviral genomes was similar in PBMC and lymph nodes. The latter, however, harbored significantly more full-length proviral DNA than PBMC, consistent with the lack of effective antiviral cytotoxic T-cell activity in lymph nodes described by others during human immunodeficiency virus infection. After the macaques progressed to AIDS, full-length proviral DNA became equally abundant in lymph nodes and in PBMC. We have demonstrated that although a single molecular species of proviral DNA was inoculated, genomic diversity was detected within a short time, thus confirming the genetic instability of the SIV genome in vivo.
Collapse
Affiliation(s)
- M Pion
- Unité de Pathogénie des Infections à Lentivirus, INSERM U372, Parc Scientifique et Technologique de Luminy, 13273 Marseille, France
| | | | | | | | | | | | | | | |
Collapse
|
11
|
|
12
|
Calain P, Roux L. Generation of measles virus defective interfering particles and their presence in a preparation of attenuated live-virus vaccine. J Virol 1988; 62:2859-66. [PMID: 3392771 PMCID: PMC253722 DOI: 10.1128/jvi.62.8.2859-2866.1988] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
By starting from a thrice-purified wild-type measles virus plaque, the generation of detectable subgenomic RNAs was achieved within a series of five serial infections of Vero cells. The evolution of these subgenomic RNAs was followed for seven serial passages and ended with the preparation of a highly interfering viral stock. On the other hand, the detection of discrete subgenomic RNAs was achieved during the first infection of Vero cells with at least one of three measles virus vaccine preparations tested. These subgenomic RNAs, which interfered very efficiently with the replication of the endogenous standard genomes upon vaccine infection but showed a moderate interfering activity with a standard virus stock derived by plaque purification from the vaccine preparation, resulted from the presence of defective interfering particles in the vaccine preparation. The relevance of this finding for the attenuation, stability, and potential capacity for persistent infection of such a vaccine is discussed.
Collapse
Affiliation(s)
- P Calain
- Department of Microbiology, University of Geneva Medical School, Switzerland
| | | |
Collapse
|
13
|
Francis SJ, Southern PJ, Valsamakis A, Oldstone MB. State of viral genome and proteins during persistent lymphocytic choriomeningitis virus infection. Curr Top Microbiol Immunol 1987; 133:67-88. [PMID: 2435462 DOI: 10.1007/978-3-642-71683-6_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
14
|
|
15
|
Abstract
To determine whether defective interfering (DI) particles modulate virulence by initiating a cyclic pattern of virus growth in vivo, adult mice were infected with vesicular stomatitis virus (VSV), both with and without DI particles. A total of 184 mice divided into groups were inoculated intranasally. A majority of mice inoculated only with standard VSV developed paralysis, most of them between days 7 and 9. The addition of DI particles altered the development of paralysis in several ways. When there was significant protection, a few still became paralyzed on days 7 and 9. When overall mortality was unaffected or even slightly increased, the majority of mice became paralyzed between days 7 and 9 as well. Protection could not be predicted based on a single ratio of standard VSV to DI particles or on the absolute amount of DI particles inoculated. Infectious virus recovered from mouse brains at the time of paralysis and incipient death showed considerable variation, although the titer in a majority of the animals was between 10(5) and 10(7) PFU/ml. When the brains of these paralyzed mice were examined for hybridizable VSV RNA, the detection of standard VSV RNA correlated well with infectivity. The amount of DI RNA in the coinfected mice was more variable and independent of the amount of 40S RNA, although DI RNA was usually found when standard RNA was present. Survivors examined between days 14 and 21 did not contain infectious virus or any detectable viral RNA in their brains. Because these results were consistent with the hypothesis of viral cycling in vivo, rather than a gradual accumulation of total infectious virus, mice were coinfected with 10(8) PFU of standard VSV and 10(5) PFU equivalents of DI particles and sacrificed daily thereafter, irrespective of whether they developed paralysis. Infectivity measurements indicated a reproducible cycling pattern of VSV in the mouse brains with a periodicity of about 5 days. This cycling and the detection of DI RNA in brains several days after intranasal inoculation suggest that there is a dynamic continuous interaction between standard VSV and its DI particle beyond the initial site of replication as the virus population spreads into the host animal. Such cycling of virus production before the full development of specific immune responses from the host may have important implications for viral diagnostics and disease transmission.
Collapse
|
16
|
Cave DR, Hagen FS, Palma EL, Huang AS. Detection of vesicular stomatitis virus RNA and its defective-interfering particles in individual mouse brains. J Virol 1984; 50:86-91. [PMID: 6321804 PMCID: PMC255586 DOI: 10.1128/jvi.50.1.86-91.1984] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
To develop a highly sensitive and direct assay for defective interfering (DI) particles of vesicular stomatitis virus (VSV), we reverse transcribed RNA from DI particles and cloned the DNA in pBR322 and used it as hybridization probes. At the lower limit, cDNA of about 850 nucleotides detected 150 pg of VSV RNA. For differentiation of hybridizable sequences found in the RNA of DI particles from complementary or identical sequences in the L mRNA or standard genomic RNA of VSV, RNA obtained from mouse brains was first separated by size, blotted onto nitrocellulose, and then hybridized to in vitro-labeled cDNA probe. Genomic VSV, DI, or L mRNA sequences from one-half of the brain of an infected mouse were detectable, whereas uninfected mice failed to react with this specific probe. When mice were infected intranasally with 10(8) PFU of standard VSV, most of them died between days 6 and 7, and the detection of standard genomic RNA correlated with paralysis and death. DI RNA was not detected in these mice. When mice were infected with 10(8) PFU of standard VSV together with an equivalent amount of DI particles, similar results were obtained. When fewer DI particles were inoculated together with standard virus, significant protection of mice occurred together with the detection of DI RNA. These results indicate that DI particles are protective in vivo and that the details of the virus-host interaction may resemble the cyclic growth patterns in cell cultures for standard VSV and its DI particles.
Collapse
|
17
|
Makino S, Taguchi F, Fujiwara K. Defective interfering particles of mouse hepatitis virus. Virology 1984; 133:9-17. [PMID: 6322437 PMCID: PMC7131828 DOI: 10.1016/0042-6822(84)90420-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/1983] [Accepted: 10/27/1983] [Indexed: 01/19/2023]
Abstract
After six to eight serial undiluted passages of mouse hepatitis virus (JHM strain) in DBT cell culture, a decrease in the yield of infectious virus occurred, and with further passages fluctuating yields of infectious virus were observed. The serially passaged virus interfered with the multiplication of the standard JHM virus, but not with vesicular stomatitis virus. After sucrose equilibrium centrifugation of high passage virus, a single peak contained both infectious virus and interfering activity. This virus population resembled the original JHM virus in its structural proteins, but it contained an increased proportion of a protein with a molecular weight of 65 X 10(3). Genomic RNA from standard JHM virus contained a single species of RNA with a molecular weight of 5.4 X 10(6). After five undiluted passages, however, the virion population contained two RNA species with molecular weights of 5.4 X 10(6) and 5.2 X 10(6). RNase T1 resistant oligonucleotide finger-printing of these RNAs showed that the lower molecular weight RNA had lost several oligonucleotide spots that were present in the genomic RNA of the standard JHM virus. After several serial diluted passages of passage 10 virus, a single virus population was obtained which again had only standard virus RNA with a molecular weight of 5.4 X 10(6) and lacked interfering activity. These results indicated that defective interfering particles were generated by serial undiluted passages of JHM virus.
Collapse
|
18
|
Frey TK, Youngner JS. Novel phenotype of RNA synthesis expressed by vesicular stomatitis virus isolated from persistent infection. J Virol 1982; 44:167-74. [PMID: 6292483 PMCID: PMC256250 DOI: 10.1128/jvi.44.1.167-174.1982] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Vesicular stomatitis virus (VSV) stocks isolated from two persistently infected mouse L-cell lines (designated VSV-PI stocks) express an altered phenotype of RNA synthesis. This phenotype is different from the RNA synthesis phenotype expressed by the viruses used to initiate the persistently infected lines, wild-type VSV and VSV ts-0-23 (a group III, ts-, RNA+ mutant). At 34 and 37 degrees C in L cells productively infected with VSV-PI stocks derived from the two cell lines, transcription of virus mRNA was significantly reduced, whereas replication of the 40S genomic RNA species was enhanced compared with wild-type VSV or ts-0-23. At 34 and 37 degrees C, both VSV-PI stocks replicated with equal or greater efficiency than wild-type VSV; 37 degrees C was the temperature at which the persistently infected cultures were maintained. At 40 degrees C, both VSV-PI stocks were temperature sensitive, and clonal VSV-PI isolates from both cell lines belong to complementation group I (RNA-). Standard ts- mutants (derived by mutagenesis of wild-type VSV) belonging to RNA- complementation groups I, II, and IV do not express the VSV-PI RNA synthesis phenotype at the permissive temperature, making this phenotype distinctive to persistent infection. Since the two VSV-PI populations from persistently infected cell lines initiated with different viruses both evolved this unique phenotype of RNA synthesis, the expression of this phenotype may play an important role in the maintenance of persistence.
Collapse
|
19
|
Abstract
A multiplicity-dependent interference was observed in respiratory syncytial virus preparations (Randall strain) grown in HEp-2 cells, and the factor mediating this interference was characterized. Cloned virus did not demonstrate this multiplicity-dependent interference, but its replication was shown to be inhibited by the interfering factor by assays of reduction of infectious yield assay, the interferon factor was found to be particulate, to be inactivated by UV irradiation, and not to interfere with the replication of a heterologous virus, vesicular stomatitis virus. These characteristics are compatible with the physical properties and biological behavior of defective interfering particles. Defective interfering particles were generated by four undiluted passages of cloned virus but were not apparent after eight passages at a multiplicity of infection of 0.1.
Collapse
|
20
|
Abstract
RNA viruses show high mutation frequencies partly because of a lack of the proofreading enzymes that assure fidelity of DNA replication. This high mutation frequency is coupled with high rates of replication reflected in rates of RNA genome evolution which can be more than a millionfold greater than the rates of the DNA chromosome evolution of their hosts. There are some disease implications for the DNA-based biosphere of this rapidly evolving RNA biosphere.
Collapse
|
21
|
|
22
|
Fultz PN, Streilein JW, Shadduck JA, Kang CY. Genetically determined resistance to lethal vesicular stomatitis virus in syrian hamsters. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1981; 134:339-51. [PMID: 6261542 DOI: 10.1007/978-1-4757-0495-2_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
23
|
Clark HF. Rabies serogroup viruses in neuroblastoma cells: propagation, "autointerference," and apparently random back-mutation of attenuated viruses to the virulent state. Infect Immun 1980; 27:1012-22. [PMID: 7380549 PMCID: PMC550874 DOI: 10.1128/iai.27.3.1012-1022.1980] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Each of several strains of fixed rabies virus was found to replicate to high titers in C1300 mouse neuroblastoma (clone NA) cells, without adaptation. Rabies serogroup Lagos bat, Mokola, and Duvenhage viruses also replicated efficiently in NA cells. Kotonkan and Obodhiang viruses replicated efficiently after adaptation, to titers not previously obtained in vitro. Infection in NA cells was frequently more cytopathic than in BHK-21 cells, allowing titration of Kotonkan and Obodhiang viruses by plaque assay. Duvenhage virus caused syncytium formation. Serial propagation of rabies viruses at a high multiplicity of infection in NA cells led to a rapid decline in virus yields; similar "autointerference" has not previously been demonstrated with rabies virus in other cell systems. Rabies virus infection in NA cells exhibited extreme sensitivity to interference by experimentally added defective interfering virions. Although several strains of attenuated rabies virus consistently reverted rapidly to virulence after propagation in NA cells, other strains of attenuated rabies and rabies serogroup viruses acquired increased virulence at a more gradual rate or not at all, suggesting that diverse characters may control virulence. When attenuated Flury HEP rabies virus was serially propagated at a low multiplicity of infection in either NA cells or suckling mouse brain, virulence appeared at a very variable rate, indicating that these systems may selectively enhance replication of randomly occurring virulent virus mutants.
Collapse
|
24
|
Friedman RM, Ramseur JM. Mechanisms of persistent infections by cytopathic viruses in tissue culture. Brief review. Arch Virol 1979; 60:83-103. [PMID: 226039 DOI: 10.1007/bf01348025] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Reichmann ME, Schnitzlein WM. Defective interfering particles of rhabdoviruses. Curr Top Microbiol Immunol 1979; 86:123-68. [PMID: 387344 DOI: 10.1007/978-3-642-67341-2_4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
26
|
|
27
|
O'Neill FJ, Carroll D. Appearance of defective simian virus 40 following infection of cultured human glioblastoma cells. Virology 1978; 87:109-19. [PMID: 208261 DOI: 10.1016/0042-6822(78)90163-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
28
|
Macdonald RD, Yamamoto T. Quantitative analysis of defective interfering particles in infectious pancreatic necrosis virus preparations. Arch Virol 1978; 57:77-89. [PMID: 566090 DOI: 10.1007/bf01315639] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Infectious pancreatic necrosis virus exhibited an interference phenomenon that resulted in the survival of the infected cell with one hit kinetics. The responsible factor was found to co-purify with standard virus through a purification regime that employed two CsCl gradients and a sucrose gradient. This result suggested that a defective interfering (DI) viral particle was involved. It was possible to estimate the number of DI particles by a statistical method using the Poisson distribution that related cell survival to input DI/cell, which indicated that virus samples from dilute passage contained as many DI particles as samples from undiluted passage; this means that multiple undiluted virus passage did not increase the yield of DI particles. In isopycnic CsCl gradient centrifugation, the DI particles were found in a broad band superimposed over the standard virus peak and extending above it, such that the ratio DI/PFU varied from 0.3--20 in different fractions. These centrifugation methods did not completely separate DI particles from standard virus.
Collapse
|
29
|
Popescu M, Lehmann-Grube F. Defective interfering particles in mice infected with lymphocytic choriomeningitis virus. Virology 1977; 77:78-83. [PMID: 841872 DOI: 10.1016/0042-6822(77)90407-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
30
|
Wiktor TJ, Dietzschold B, Leamnson RN, Koprowski H. Induction and biological properties of defective interfering particles of rabies virus. J Virol 1977; 21:626-35. [PMID: 833940 PMCID: PMC353865 DOI: 10.1128/jvi.21.2.626-635.1977] [Citation(s) in RCA: 73] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
A method for obtaining large quantities of defective interfering (DI) rabies virus particles that fulfill all the criteria delineated by Huang and Baltimore (1970) is described. The purified rabies DI virion was found to be much shorter (60 to 80 nm) than the complete virion (180 nm) and to have a viral genome of about half the size of normal rabies RNA but with all of the structural proteins of standard virions. Rabies DI virions were noninfectious for both cells in culture and for animals. As determined by in vitro and in vivo techniques, interference with the replication of standard virus was specific to rabies virus. The possible role of rabies DI virion in the pathogenicity of rabies virus infection and in the establishment of attenuated strains for use as live rabies vaccines is discussed.
Collapse
|