1
|
Calì S, Spoldi E, Piazzolla D, Dodd IB, Forti F, Dehò G, Ghisotti D. Bacteriophage P4 Vis protein is needed for prophage excision. Virology 2004; 322:82-92. [PMID: 15063119 DOI: 10.1016/j.virol.2004.01.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2003] [Revised: 01/12/2004] [Accepted: 01/16/2004] [Indexed: 11/21/2022]
Abstract
Upon infection of its host Escherichia coli, satellite bacteriophage P4 can integrate its genome into the bacterial chromosome by Int-mediated site-specific recombination between the attP and the attB sites. The opposite event, excision, may either occur spontaneously or be induced by a superinfecting P2 helper phage. In this work, we demonstrate that the product of the P4 vis gene, a regulator of the P4 late promoters P(LL) and P(sid), is needed for prophage excision. This conclusion is supported by the following evidence: (i) P4 mutants carrying either a frameshift mutation or a deletion of the vis gene were unable to excise both spontaneously or upon P2 phage superinfection; (ii) expression of the Vis protein from a plasmid induced P4 prophage excision; (iii) excision depended on a functional integrase (Int) protein, thus suggesting that Vis is involved in the formation of the excision complex, rather than in the excision recombination event per se; (iv) Vis protein bound P4 DNA in the attP region at two distinct boxes (Box I and Box II), located between the int gene and the attP core region, and caused bending of the bound DNA. Furthermore, we mapped by primer extension the 5' end of the int transcript and found that ectopic expression of Vis reduced its signal intensity, suggesting that Vis is also involved in negative regulation of the int promoter.
Collapse
Affiliation(s)
- Simona Calì
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, 20133 Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
2
|
Lindqvist BH, Dehò G, Calendar R. Mechanisms of genome propagation and helper exploitation by satellite phage P4. Microbiol Rev 1993; 57:683-702. [PMID: 8246844 PMCID: PMC372931 DOI: 10.1128/mr.57.3.683-702.1993] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Temperate coliphage P2 and satellite phage P4 have icosahedral capsids and contractile tails with side tail fibers. Because P4 requires all the capsid, tail, and lysis genes (late genes) of P2, the genomes of these phages are in constant communication during P4 development. The P4 genome (11,624 bp) and the P2 genome (33.8 kb) share homologous cos sites of 55 bp which are essential for generating 19-bp cohesive ends but are otherwise dissimilar. P4 turns on the expression of helper phage late genes by two mechanisms: derepression of P2 prophage and transactivation of P2 late-gene promoters. P4 also exploits the morphopoietic pathway of P2 by controlling the capsid size to fit its smaller genome. The P4 sid gene product is responsible for capsid size determination, and the P2 capsid gene product, gpN, is used to build both sizes. The P2 capsid contains 420 capsid protein subunits, and P4 contains 240 subunits. The size reduction appears to involve a major change of the whole hexamer complex. The P4 particles are less stable to heat inactivation, unless their capsids are coated with a P4-encoded decoration protein (the psu gene product). P4 uses a small RNA molecule as its immunity factor. Expression of P4 replication functions is prevented by premature transcription termination effected by this small RNA molecule, which contains a sequence that is complementary to a sequence in the transcript that it terminates.
Collapse
Affiliation(s)
- B H Lindqvist
- Biologisk Institutt og Bioteknologisenteret i Oslo, Universitetet i Oslo, Norway
| | | | | |
Collapse
|
3
|
Ghisotti D, Chiaramonte R, Forti F, Zangrossi S, Sironi G, Dehò G. Genetic analysis of the immunity region of phage-plasmid P4. Mol Microbiol 1992; 6:3405-13. [PMID: 1484492 DOI: 10.1111/j.1365-2958.1992.tb02208.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In the prophage P4, expression of the early genes is prevented by premature termination of transcription from the constitutive promoter PLE. In order to identify the region coding for the immunity determinant, we cloned several fragments of P4 DNA and tested their ability to confer immunity to P4 superinfection. A 357 bp long fragment (P4 8418-8774) is sufficient to confer immunity to an infecting P4 phage and to complement the immunity-defective P4 cl405 mutant, both in the presence and in the absence of the helper phage P2. The immunity region covers PLE and the cl locus. We were unable to obtain evidence of translation of the region, thus we suggest that P4 immunity is not elicited by a protein but by a transcript (or transcripts) encoded by the region downstream of the promoter PLE. The promoter PLE appears to be necessary for the expression of P4 immunity: fragments in which the PLE region is deleted did not complement P4 cl405 for lysogenization, although they still interfered with P4 growth. Two complementary sequences downstream of PLE (seqA and seqB) at the 5' and 3' ends of the immunity region play an essential role in the control of P4 immunity.
Collapse
Affiliation(s)
- D Ghisotti
- Dipartimento di Genetica e di Biologia dei Microrganismi, Università di Milano, Italy
| | | | | | | | | | | |
Collapse
|
4
|
Polissi A, Bertoni G, Acquati F, Dehò G. Cloning and transposon vectors derived from satellite bacteriophage P4 for genetic manipulation of Pseudomonas and other gram-negative bacteria. Plasmid 1992; 28:101-14. [PMID: 1329125 DOI: 10.1016/0147-619x(92)90041-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We developed transposon and cloning shuttle vectors for genetic manipulation of Pseudomonas and other gram-negative bacteria, exploiting the unique properties and the broad host range of the satellite bacteriophage P4. P4::Tn5 AP-1 and P4::Tn5 AP-2 are suicide transposon vectors which have been used for efficient Tn5 mutagenesis in Pseudomonas putida. pKGB2 is a phasmid vector with a cloning capacity of about 7.5 kb; useful unique cloning sites are SacI and SacII in the streptomycin resistance determinant and PvuI and XhoI in the kanamycin resistance determinant. pKGB4 is a cosmid derived from pKGB2 and carries the additional cloning site SmaI in the kanamycin resistance determinant; its cloning capacity is about 18 kb. These vectors and their recombined derivatives were transferred from Escherichia coli to P. putida by transduction and may be used for other bacterial species susceptible to P4 infection.
Collapse
Affiliation(s)
- A Polissi
- Dipartimento di Genetica e di Biologia dei microrganismi, Università di Milano, Italy
| | | | | | | |
Collapse
|
5
|
Nonessential region of bacteriophage P4: DNA sequence, transcription, gene products, and functions. J Virol 1990; 64:24-36. [PMID: 2403440 PMCID: PMC249035 DOI: 10.1128/jvi.64.1.24-36.1990] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We sequenced the leftmost 2,640 base pairs of bacteriophage P4 DNA, thus completing the sequence of the 11,627-base-pair P4 genome. The newly sequenced region encodes three nonessential genes, which are called gop, beta, and cII (in order, from left to right). The gop gene product kills Escherichia coli when the beta protein is absent; the gop and beta genes are transcribed rightward from the same promoter. The cII gene is transcribed leftward to a rho-independent terminator. Mutation of this terminator creates a temperature-sensitive phenotype, presumably owing to a defect in expression of the beta gene.
Collapse
|
6
|
Dehó G, Zangrossi S, Ghisotti D, Sironi G. Alternative promoters in the development of bacteriophage plasmid P4. J Virol 1988; 62:1697-704. [PMID: 2833620 PMCID: PMC253205 DOI: 10.1128/jvi.62.5.1697-1704.1988] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Infection of Escherichia coli with the satellite virus P4 without its helper bacteriophage P2 leads either to the immune integrated state or to the nonimmune multicopy plasmid condition. We analyzed the transcription pattern of the phage plasmid P4 early and late after infection and during the stable plasmid or lysogenic condition. The early postinfection phase is characterized by the leftward transcription of an operon including the genes cI (P4 immunity) and alpha (replication). This early transcript starts from the promoter PLE, which shows a good homology with the E. coli sigma 70 promoter. At later times, the transcription of this operon starts from a different promoter, PLL, located 400 base pairs upstream of PLE, and sharing little homology with the canonical E. coli promoter sequence; a longer transcript encoding an additional open reading frame is thus produced. PLL shares two boxes of homology with the P4 late promoter PSID, positively regulated by the P4 delta gene product, and depends on delta function for its full activation. In the multicopy plasmid state, the transcription pattern is similar to that observed at late times after infection. Since in the plasmid state not only is P4 immunity not expressed but its establishment is prevented, even though the P4 cI gene is transcribed, the P4 cI function may be regulated at the posttranscriptional level. In the immune state, transcription starts from PLE but does not continue to cover the P4 alpha gene. This suggests that P4 immunity acts by prematurely terminating transcription initiated at PLE.
Collapse
Affiliation(s)
- G Dehó
- Dipartimento di Genetica e di Biologia dei Microrganismi, Università degli Studi di Milano, Italy
| | | | | | | |
Collapse
|
7
|
Wolfson JS, McHugh GL, Hooper DC, Swartz MN. Knotting of DNA molecules isolated from deletion mutants of intact bacteriophage P4. Nucleic Acids Res 1985; 13:6695-702. [PMID: 3903657 PMCID: PMC321986 DOI: 10.1093/nar/13.18.6695] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
DNA molecules isolated from tailless phage particles (capsids) of bacteriophage P4 virl del10 are known to be knotted. We have found by electron microscopy that 80% of DNA molecules isolated from intact phage particles of P4 virl del10 also contained knots. This observation indicates that the predominant form of P4 virl del10 DNA within the intact phage particle is either knotted or in a configuration that permits knotting upon isolation. In comparison to P4 virl del10 (deleted 1000 basepairs), DNA molecules isolated from intact P4 virl del2 (deleted 650 basepairs) and P4 virl (non-deleted) contained 50% and 15% knots respectively, showing an association of decreased size of deletion of DNA with a decreased fraction of knotted genomes.
Collapse
|
8
|
Krevolin MD, Inman RB, Roof D, Kahn M, Calendar R. Bacteriophage P4 DNA replication. Location of the P4 origin. J Mol Biol 1985; 182:519-27. [PMID: 2989532 DOI: 10.1016/0022-2836(85)90238-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
An electron microscopic examination of replicating bacteriophage P4 DNA molecules has revealed theta-type structures that replicate bidirectionally from a single origin. Many replicating P4 DNA molecules also contain long (2000 bases) single-strand DNA regions at the growing fork that are deployed in a trans configuration, which supports the concept of continuous leading strand and discontinuous lagging strand syntheses. The position of the P4 origin was localized by the use of a plasmid complementation test for replication in vivo, as well as by labeling of DNA replicating in vitro in the presence of a chain-terminating inhibitor. During this study we discovered a second site on the P4 genome which is essential for replication, and we have named it crr (cis region required for replication). The site is located at least 3300 bases from the origin but appears to be required for the initiation of DNA replication in vivo as well as in vitro.
Collapse
|
9
|
Raimondi A, Donghi R, Montaguti A, Pessina A, Dehò G. Analysis of spontaneous deletion mutants of satellite bacteriophage P4. J Virol 1985; 54:233-5. [PMID: 3973980 PMCID: PMC254783 DOI: 10.1128/jvi.54.1.233-235.1985] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Spontaneous deletion mutants of satellite bacteriophage P4 have been isolated and characterized. All of the deletions analyzed that were between 850 and 1,700 base pairs long are within the region nonessential for P4 lytic development; some of them cover the cII or the gop locus.
Collapse
|
10
|
Abstract
Nucleotide sequence of one-third of the genome of coliphage P4 has been obtained and mutations virl, epsilon am104, cI405, sidl, and delta 35 identified. The epsilon gene likely encodes a 10 kd protein with epsilon am104 being located at the beginning of the gene. cI405, a proposed repressor gene mutation, is located in a sequence capable of coding for a 15 kd protein. A new class of P4 mutations, ash, is located in the neighborhood of cI405. Two TATA-like sequences are mapped 5' to this cI (ash) sequence. Virl is possibly a promoter-up mutation and is located near or within the replication origin, which is about 400 bp long and AT rich. A sidl mutation is amber that shortens the sid protein by 9 amino acids. The delta gene may encode a 17 kd protein and appears to be coupled with the sid gene translationally. In the 5' side of the sid gene a sequence of CACAAT is the best TATA-like sequence. Sequences of two possible genes that are previously unrecognized and part of the alpha and psu genes are also identified.
Collapse
|
11
|
Lagos R, Goldstein R. Phasmid P4: manipulation of plasmid copy number and induction from the integrated state. J Bacteriol 1984; 158:208-15. [PMID: 6370957 PMCID: PMC215400 DOI: 10.1128/jb.158.1.208-215.1984] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
"Phasmid" P4 is unusual in that it is capable of (i) temperate, (ii) lytic, helper-dependent, and (iii) plasmid modes of propagation. In this report we characterize most of the known P4 genetic functions as to their essential or nonessential roles in the stable maintenance of plasmid P4 vir1 (pP4 vir1 (pP4 vir1). We also identify growth conditions that can be used to stably maintain pP4 vir1 at any one of several different copy number levels (n = 1 to 3, n = 10 to 15, or n = 30 to 40). Analyses of a temperature-sensitive alpha derivative of pP4 vir1 show that shifting the temperature from 37 to 42 degrees C allows this mutant to maintain an integrated copy of the plasmid, whereas replication of free copies is repressed because of the nonpermissive condition for their DNA synthesis. Conversely, a shift from 42 to 37 degrees C can be used to reinstate plasmid propagation. The utility of the inducible states of pP4 vir1 is discussed with respect to its attributes as a vector with the potential for cloning inserts of DNA up to 33,000 base pairs in a wide range of bacterial hosts.
Collapse
|
12
|
Ghisotti D, Zangrossi S, Sironi G. An Escherichia coli gene required for bacteriophage P2-lambda interference. J Virol 1983; 48:616-26. [PMID: 6355505 PMCID: PMC255392 DOI: 10.1128/jvi.48.3.616-626.1983] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The gene old of bacteriophage P2 is known to (i) cause interference with phage lambda growth; (ii) kill recB- mutants of Escherichia coli after P2 infection; and (iii) determine increased sensitivity of P2 lysogenic cells to X-ray irradiation. In all of these phenomena, inhibition of protein synthesis occurs. We have isolated bacterial mutants, named pin (P2 interference), able to suppress all of the above-mentioned phenomena caused by the old+ gene product and the concurrent protein synthesis inhibition. Pin mutations are recessive, map at 12 min on the E. coli map, and identify a new gene. Satellite bacteriophage P4 does not plate on pin-3 mutant strains and causes cell lethality and protein synthesis inhibition in such mutants. P4 mutants able to grow on pin-3 strains have been isolated.
Collapse
|
13
|
Ow DW, Ausubel FM. Conditionally replicating plasmid vectors that can integrate into the Klebsiella pneumoniae chromosome via bacteriophage P4 site-specific recombination. J Bacteriol 1983; 155:704-13. [PMID: 6307977 PMCID: PMC217740 DOI: 10.1128/jb.155.2.704-713.1983] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
P4 is a satellite phage of P2 and is dependent on phage P2 gene products for virion assembly and cell lysis. Previously, we showed that a virulent mutant of phage P4 (P4 vir1) could be used as a multicopy, autonomously replicating plasmid vector in Escherichia coli and Klebsiella pneumoniae in the absence of the P2 helper. In addition to establishing lysogeny as a self-replicating plasmid, it has been shown that P4 can also lysogenize E. coli via site-specific integration into the host chromosome. In this study, we show that P4 also integrates into the K. pneumoniae chromosome at a specific site. In contrast to that in E. coli, however, site-specific integration in K. pneumoniae does not require the int gene of P4. We utilized the alternative modes of P4 lysogenization (plasmid replication or integration) to construct cloning vectors derived from P4 vir1 that could exist in either lysogenic mode, depending on the host strain used. These vectors carry an amber mutation in the DNA primase gene alpha, which blocks DNA replication in an Su- host and allows the selection of lysogenic strains with integrated prophages. In contrast, these vectors can be propagated as plasmids in an Su+ host where replication is allowed. To demonstrate the utility of this type of vector, we show that certain nitrogen fixation (nif) genes of K. pneumoniae, which otherwise inhibit nif gene expression when present on multicopy plasmids, do not exhibit inhibitory effects when introduced as merodiploids via P4 site-specific integration.
Collapse
|
14
|
Abstract
A genetic map of satellite bacteriophage P4 has been constructed by means of standard multifactor crosses. The genetic map appears to be a circular permutation of the mature DNA physical map. In addition, a set of markers appear to be linked both to the left and to the right of the same gene alpha. These facts suggest that the P4 genetic map is circular. Since terminal redundancy and/or cyclic permutation are not known to be present in P4 mature DNA, the circularity of P4 genetic map may reflect the physical circularity of the molecules involved in the recombination process. The low frequency of recombination and the strong negative interference observed are in agreement with the above hypothesis.
Collapse
|
15
|
Lindqvist BH. Recombination between satellite phage P4 and its helper P2. I. In vivo and in vitro construction of P4: :P2 hybrid satellite phage. Gene X 1981; 14:231-41. [PMID: 6271624 DOI: 10.1016/0378-1119(81)90156-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
16
|
Calendar R, Ljungquist E, Deho G, Usher DC, Goldstein R, Youderian P, Sironi G, Six EW. Lysogenization by satellite phage P4. Virology 1981; 113:20-38. [PMID: 7023020 DOI: 10.1016/0042-6822(81)90133-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
17
|
Geisselsoder J, Youdarian P, Dehò G, Chidambaram M, Goldstein R, Ljungquist E. Mutants of satellite virus P4 that cannot derepress their bacteriophage P2 helper. J Mol Biol 1981; 148:1-19. [PMID: 7310867 DOI: 10.1016/0022-2836(81)90232-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
18
|
Sauer B, Ow D, Ling L, Calendar R. Mutants of satellite bacteriophage P4 that are defective in the suppression of transcriptional polarity. J Mol Biol 1981; 145:29-46. [PMID: 7021852 DOI: 10.1016/0022-2836(81)90333-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
19
|
Ow DW, Ausubel FM. Recombinant P4 bacteriophages propagate as viable lytic phages or as autonomous plasmids in Klebsiella pneumoniae. MOLECULAR & GENERAL GENETICS : MGG 1980; 180:165-75. [PMID: 6255293 DOI: 10.1007/bf00267366] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We demonstrate the use of bacteriophage P4 as a molecular cloning vector in Klebsiella pneumoniae. A hybrid P4 phage, constructed in vitro, that contains a K. pneumoniae hisDG DNA fragment can be propagated either as a lytic viable specialized transducing phage or as an autonomous, self-replicating plasmid. Hybrid P4 genomes existing as plasmids can be readily converted into non-defective P4-hybrid phage particles by superinfection with helper phage P2. Infection of a K. pneumoniae hisD non-P2 lysogen with P4-hisD hybrid phage results in approximately 90% of the infected cells becoming stably transduced to HisD+. Because P4 interferes with P2 growth, high titre stocks of P4 hybrid phages are relatively free (less than or equal to 10(-6) of P2 contamination. The hisG gene product was detected in ultraviolet light irradiated host cells infected by the P4-hisDG hybrid phage. A mutant of P4 (P4sid1) that directs the packaging of P4 DNA into P2 sized capsids should permit the construction of hybrid phages carrying 26 kilobase inserts.
Collapse
|
20
|
Kahn M, Ow D, Sauer B, Rabinowitz A, Calendar R. Genetic analysis of bacteriophage P4 using P4-plasmid ColE1 hybrids. MOLECULAR & GENERAL GENETICS : MGG 1980; 177:399-412. [PMID: 6929401 DOI: 10.1007/bf00271478] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A set of plasmids that contain fragments of the bacteriophage P4 genome has been constructed by deleting portions of a P4-ColE1 hybrid. A P4 genetic map has been established and related to the physical map by examining the ability of these plasmids to rescue various P4 mutations. The P4 virl mutation and P4 genes involved in DNA replication (alpha), activation of P2 helper genes (delta and epsilon), polarity suppression (psu) and head size determination (sid) have been mapped, as has the region responsible for synthesis of a nonessential P4 protein. One of the deleted plasmids contains only 5900 base pairs (52%) of P4 but will form plaques if additional DNA is added to increase its total size to near that of P4. This plasmid is also unique in that it will not form stable associations with P2 lysogens of E. coli which are recA+. P4 alpha mutants can be suppressed as a result of replication under control of the ColE1 part of the hybrid.
Collapse
|
21
|
|
22
|
Barclay SL, Dove WF. Mutations of bacteriophage P2 which prevent activation of P2 late genes by satellite phage P4. Virology 1978; 91:321-35. [PMID: 741656 DOI: 10.1016/0042-6822(78)90380-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
23
|
Barclay SL, Dove WF. Mutants of E. coli in which bacteriophage P4 cannot activate the late genes of its helper, bacteriophage P2. Virology 1978; 91:336-44. [PMID: 369115 DOI: 10.1016/0042-6822(78)90381-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
24
|
|
25
|
|