Abstract
The mechanisms by which herpesvirus genome ends are fused to form circles after infection and are re-formed by cleavage from concatemeric DNA are unknown. We used the simple structure of guinea pig cytomegalovirus genomes, which have either one repeated DNA sequence at each end or one repeat at one end and no repeat at the other, to study these mechanisms. In circular DNA, two restriction fragments contained fused terminal sequences and had sizes consistent with the presence of single or double terminal repeats. This result implies a simple ligation of genomic ends and shows that circularization does not occur by annealing of single-stranded terminal repeats formed by exonuclease digestion. Cleavage to form the two genome types occurred at two sites, and homologies between these sites identified two potential cis elements that may be necessary for cleavage. One element coincided with the A-rich region of a pac2 sequence and had 9 of 11 bases identical between the two sites. The second element had six bases identical at both sites, in each case 7 bp from the termini. To confirm the presence of cis cleavage elements, a recombinant virus in which foreign sequences displaced the 6- and 11-bp elements 1 kb from the cleavage point was constructed. Cleavage at the disrupted site did not occur. In a second recombinant virus, restoration of 64 bases containing the 6- and 11-bp elements to the disrupted cleavage site restored cleavage. Therefore, cis cleavage elements exist within this 64-base region, and sequence conservation suggests that they are the 6- and 11-bp elements.
Collapse