1
|
Cornetta K, Lin TY, Tao H, Huang J, Piskorowski J, Wilcox P, Xie D, Yao J, House K, Nance E, Duffy L. Product Enhanced Reverse Transcriptase for assessing replication competent virus in vectors retroviral vectors pseudotyped with GALV and VSV-G envelopes. J Virol Methods 2024; 329:114988. [PMID: 38908550 PMCID: PMC11368651 DOI: 10.1016/j.jviromet.2024.114988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 06/02/2024] [Accepted: 06/16/2024] [Indexed: 06/24/2024]
Abstract
We evaluated the use of the Product Enhanced Reverse Transcriptase (PERT) assay as a means of detecting virus in retroviral vectors products pseudotyped with Gibbon Ape Leukemia Virus (GALV) and Vesicular Stomatitis Virus G (VSVG) envelopes. PERT provides greater standardization than the S+/L- assay which has been used extensively in virus detection. A challenge is that PERT will also detect residual retroviral vectors as vector particles contain reverse transcriptase. Vector products were cultured for 3 weeks on HEK293 cells to amplify any potential virus. In addition, vector supernatant and end-of-production cells were spiked with GALV to evaluate for inhibition by the test article. Results of PERT and the S+/L- assay were compared. PERT and S+/L- assays were both effective in detecting virus. Vector supernatants were negative at the end of 3 weeks of culture by PERT for both GAVL and VSVG pseudotyped vector. In contrast, end-of-production cells were positive by PERT due to persistent vector producing cells. A one-week culture of cell-free media obtained at the 3 weeks timepoint allowed distinction of virus-free test articles from those with virus. The PERT assay is suitable for detecting replication competent retrovirus in vector products pseudotyped with GALV and VSVG envelopes.
Collapse
Affiliation(s)
- Kenneth Cornetta
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, USA.
| | - Tsai-Yu Lin
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, USA
| | - Haipeng Tao
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Jianping Huang
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Jordon Piskorowski
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, USA
| | - Parker Wilcox
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, USA
| | - Danhui Xie
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, USA
| | - Jing Yao
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, USA
| | - Kimberley House
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, USA
| | - Emily Nance
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, USA
| | - Lisa Duffy
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, USA
| |
Collapse
|
2
|
Srinivasachar Badarinarayan S, Sauter D. Switching Sides: How Endogenous Retroviruses Protect Us from Viral Infections. J Virol 2021; 95:e02299-20. [PMID: 33883223 PMCID: PMC8315955 DOI: 10.1128/jvi.02299-20] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 03/30/2021] [Indexed: 01/15/2023] Open
Abstract
Long disregarded as junk DNA or genomic dark matter, endogenous retroviruses (ERVs) have turned out to represent important components of the antiviral immune response. These remnants of once-infectious retroviruses not only regulate cellular immune activation, but may even directly target invading viral pathogens. In this Gem, we summarize mechanisms by which retroviral fossils protect us from viral infections. One focus will be on recent advances in the role of ERVs as regulators of antiviral gene expression.
Collapse
MESH Headings
- Animals
- Endogenous Retroviruses/genetics
- Endogenous Retroviruses/physiology
- Enhancer Elements, Genetic
- Gene Expression Regulation
- Humans
- Immunity, Cellular
- Promoter Regions, Genetic
- RNA, Double-Stranded/genetics
- RNA, Double-Stranded/metabolism
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Receptors, Pattern Recognition/metabolism
- Receptors, Virus/antagonists & inhibitors
- Receptors, Virus/metabolism
- Retroelements
- Viral Proteins/metabolism
- Virion/metabolism
- Virus Diseases/genetics
- Virus Diseases/immunology
- Virus Diseases/virology
Collapse
Affiliation(s)
- Smitha Srinivasachar Badarinarayan
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Germany
| | - Daniel Sauter
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Germany
| |
Collapse
|
3
|
Purtscher M, Rothbauer M, Kratz SRA, Bailey A, Lieberzeit P, Ertl P. A microfluidic impedance-based extended infectivity assay: combining retroviral amplification and cytopathic effect monitoring on a single lab-on-a-chip platform. LAB ON A CHIP 2021; 21:1364-1372. [PMID: 33566877 DOI: 10.1039/d0lc01056a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Detection, quantification and monitoring of virus - host cell interactions are of great importance when evaluating the safety of pharmaceutical products. With the wide usage of viral based vector systems in combination with mammalian cell lines for the production of biopharmaceuticals, the presence of replication competent viral particles needs to be avoided and potential hazards carefully assessed. Consequently, regulatory agencies recommend viral clearance studies using plaque assays or TCID50 assays to evaluate the efficiency of the production process in removing viruses. While plaque assays provide reliable information on the presence of viral contaminations, they are still tedious to perform and can take up to two weeks to finish. To overcome some of these limitations, we have automated, miniaturized and integrated the dual cell culture bioassay into a common lab-on-a-chip platform containing embedded electrical sensor arrays to enrich and detect infectious viruses. Results of our microfluidic single step assay show that a significant reduction in assay time down to 3 to 4 days can be achieved using simultaneous cell-based viral amplification, release and detection of cytopathic effects in a target cell line. We further demonstrate the enhancing effect of continuous fluid flow on infection of PG-4 reporter cells by newly formed and highly active virions by M. dunni cells, thus pointing to the importance of physical relevant viral-cell interactions.
Collapse
Affiliation(s)
- Michaela Purtscher
- University of Applied Sciences FH Technikum Wien, Höchstädtplatz 6, 1200 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
4
|
Existence of Two Distinct Infectious Endogenous Retroviruses in Domestic Cats and Their Different Strategies for Adaptation to Transcriptional Regulation. J Virol 2016; 90:9029-45. [PMID: 27466428 DOI: 10.1128/jvi.00716-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 07/22/2016] [Indexed: 01/17/2023] Open
Abstract
UNLABELLED Endogenous retroviruses (ERVs) are the remnants of ancient retroviral infections of germ cells. Previous work identified one of the youngest feline ERV groups, ERV-DC, and reported that two ERV-DC loci, ERV-DC10 and ERV-DC18 (ERV-DC10/DC18), can replicate in cultured cells. Here, we identified another replication-competent provirus, ERV-DC14, on chromosome C1q32. ERV-DC14 differs from ERV-DC10/DC18 in its phylogeny, receptor usage, and, most notably, transcriptional activities; although ERV-DC14 can replicate in cultured cells, it cannot establish a persistent infection owing to its low transcriptional activity. Furthermore, we examined ERV-DC transcription and its regulation in feline tissues. Quantitative reverse transcription-PCR (RT-PCR) detected extremely low ERV-DC10 expression levels in feline tissues, and bisulfite sequencing showed that 5' long terminal repeats (LTRs) of ERV-DC10/DC18 are significantly hypermethylated in feline blood cells. Reporter assays found that the 5'-LTR promoter activities of ERV-DC10/DC18 are high, whereas that of ERV-DC14 is low. This difference in promoter activity is due to a single substitution from A to T in the LTR, and reverse mutation at this nucleotide in ERV-DC14 enhanced its replication and enabled it to persistently infect cultured cells. Therefore, ERV-DC LTRs can be divided into two types based on this nucleotide, the A type or T type, which have strong or attenuated promoter activity, respectively. Notably, ERV-DCs with T-type LTRs, such as ERV-DC14, have expanded in the cat genome significantly more than A-type ERV-DCs, despite their low promoter activities. Our results provide insights into how the host controls potentially infectious ERVs and, conversely, how ERVs adapt to and invade the host genome. IMPORTANCE The domestic cat genome contains many endogenous retroviruses, including ERV-DCs. These ERV-DCs have been acquired through germ cell infections with exogenous retroviruses. Some of these ERV-DCs are still capable of producing infectious virions. Hosts must tightly control these ERVs because replication-competent viruses in the genome pose a risk to the host. Here, we investigated how ERV-DCs are adapted by their hosts. Replication-competent viruses with strong promoter activity, such as ERV-DC10 and ERV-DC18, were suppressed by promoter methylation in LTRs. On the other hand, replication-competent viruses with weak promoter activity, such as ERV-DC14, seemed to escape strict control via promoter methylation by the host. Interestingly, ERV-DCs with weak promoter activity, such as ERV-DC14, have expanded in the cat genome significantly more than ERV-DCs with strong promoter activity. Our results improve the understanding of the host-virus conflict and how ERVs adapt in their hosts over time.
Collapse
|
5
|
Liu Q, Yan Y, Kozak CA. Permissive XPR1 gammaretrovirus receptors in four mammalian species are functionally distinct in interference tests. Virology 2016; 497:53-58. [PMID: 27423269 DOI: 10.1016/j.virol.2016.06.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 06/29/2016] [Accepted: 06/30/2016] [Indexed: 01/29/2023]
Abstract
Xenotropic/polytropic mouse leukemia viruses (X/P-MLVs) use the XPR1 gammaretrovirus receptor for entry. X/P-MLV host range is defined by usage of naturally occurring restrictive XPR1 receptors, and is governed by polymorphisms in the virus envelope glycoprotein and in XPR1. Here, we examined receptors of four mammalian species permissive to all X/P-MLVs (Mus dunni, human, rabbit, mink). Interference assays showed the four to be functionally distinct. Preinfection with X-MLVs consistently blocked all nine XPR1-dependent viruses, while preinfection with P-MLVs and wild mouse X/P-MLVs produced distinctive interference patterns in the four cells. These patterns indicate shared usage of independent, but not always fully functional, receptor sites. XPR1 sequence comparisons identified candidate sites in receptor-determining regions that correlate with some interference patterns. The evolutionary record suggests that the X/P-MLV tropism variants evolved to adapt to host receptor polymorphisms, to circumvent blocks by competing viruses or to avoid host-encoded envelope glycoproteins acquired for defense.
Collapse
Affiliation(s)
- Qingping Liu
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Yuhe Yan
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Christine A Kozak
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA.
| |
Collapse
|
6
|
Mosier DE. Introduction for “Safety Considerations for Retroviral Vectors: A Short Review”. APPLIED BIOSAFETY 2016. [DOI: 10.1177/153567600400900203] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
Abstract
Gene therapy vectors based on murine retroviruses have now been in clinical trials for over 20 years. During that time, a variety of novel vector pseudotypes were developed in an effort to improve gene transfer. Lentiviral vectors are now in clinical trials and a similar evolution of vector technology is anticipated. These modifications present challenges for those producing large-scale clinical materials. This chapter discusses approaches to process development for novel lentiviral vectors, highlight considerations, and methods to be incorporated into the development schema.
Collapse
Affiliation(s)
- Anna Leath
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | |
Collapse
|
8
|
Abstract
An understanding in the life cycle of γ-retroviruses has led to significant progress in the development of murine leukemia virus (MLV)-based vectors for gene delivery and human gene therapy. An MLV-based vector consists of the cis-acting sequences important for viral replication and gene expression. The sequence that encodes viral proteins is replaced with the gene of interest. To generate infectious retroviral vectors, viral-encoded proteins are supplied in trans for virion assembly. Here, we describe a method to rapidly generate MLV vectors from transiently transfected human 293T cells. The strategies to purify and titer the vector and to detect the presence of replication competent retrovirus (RCR) in the vector harvest are also described.
Collapse
Affiliation(s)
- Tammy Chang
- Department of Virology, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA
| | | |
Collapse
|
9
|
Murine leukemia viruses: objects and organisms. Adv Virol 2011; 2011:403419. [PMID: 22312342 PMCID: PMC3265304 DOI: 10.1155/2011/403419] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 07/25/2011] [Indexed: 01/12/2023] Open
Abstract
Murine leukemia viruses (MLVs) are among the simplest retroviruses. Prototypical gammaretroviruses encode only the three polyproteins that will be used in the assembly of progeny virus particles. These are the Gag polyprotein, which is the structural protein of a retrovirus particle, the Pol protein, comprising the three retroviral enzymes—protease, which catalyzes the maturation of the particle, reverse transcriptase, which copies the viral RNA into DNA upon infection of a new host cell, and integrase, which inserts the DNA into the chromosomal DNA of the host cell, and the Env polyprotein, which induces the fusion of the viral membrane with that of the new host cell, initiating infection. In general, a productive MLV infection has no obvious effect upon host cells. Although gammaretroviral structure and replication follow the same broad outlines as those of other retroviruses, we point out a number of significant differences between different retroviral genera.
Collapse
|
10
|
Naturally Occurring Polymorphisms of the Mouse Gammaretrovirus Receptors CAT-1 and XPR1 Alter Virus Tropism and Pathogenicity. Adv Virol 2011; 2011:975801. [PMID: 22312361 PMCID: PMC3265322 DOI: 10.1155/2011/975801] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 07/12/2011] [Indexed: 01/29/2023] Open
Abstract
Gammaretroviruses of several different host range subgroups have been isolated from laboratory mice. The ecotropic viruses infect mouse cells and rely on the host CAT-1 receptor. The xenotropic/polytropic viruses, and the related human-derived XMRV, can infect cells of other mammalian species and use the XPR1 receptor for entry. The coevolution of these viruses and their receptors in infected mouse populations provides a good example of how genetic conflicts can drive diversifying selection. Genetic and epigenetic variations in the virus envelope glycoproteins can result in altered host range and pathogenicity, and changes in the virus binding sites of the receptors are responsible for host restrictions that reduce virus entry or block it altogether. These battleground regions are marked by mutational changes that have produced 2 functionally distinct variants of the CAT-1 receptor and 5 variants of the XPR1 receptor in mice, as well as a diverse set of infectious viruses, and several endogenous retroviruses coopted by the host to interfere with entry.
Collapse
|
11
|
Kozak CA. The mouse "xenotropic" gammaretroviruses and their XPR1 receptor. Retrovirology 2010; 7:101. [PMID: 21118532 PMCID: PMC3009702 DOI: 10.1186/1742-4690-7-101] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 11/30/2010] [Indexed: 11/29/2022] Open
Abstract
The xenotropic/polytropic subgroup of mouse leukemia viruses (MLVs) all rely on the XPR1 receptor for entry, but these viruses vary in tropism, distribution among wild and laboratory mice, pathogenicity, strategies used for transmission, and sensitivity to host restriction factors. Most, but not all, isolates have typical xenotropic or polytropic host range, and these two MLV tropism types have now been detected in humans as viral sequences or as infectious virus, termed XMRV, or xenotropic murine leukemia virus-related virus. The mouse xenotropic MLVs (X-MLVs) were originally defined by their inability to infect cells of their natural mouse hosts. It is now clear, however, that X-MLVs actually have the broadest host range of the MLVs. Nearly all nonrodent mammals are susceptible to X-MLVs, and all species of wild mice and several common strains of laboratory mice are X-MLV susceptible. The polytropic MLVs, named for their apparent broad host range, show a more limited host range than the X-MLVs in that they fail to infect cells of many mouse species as well as many nonrodent mammals. The co-evolution of these viruses with their receptor and other host factors that affect their replication has produced a heterogeneous group of viruses capable of inducing various diseases, as well as endogenized viral genomes, some of which have been domesticated by their hosts to serve in antiviral defense.
Collapse
Affiliation(s)
- Christine A Kozak
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892-0460, USA.
| |
Collapse
|
12
|
|
13
|
Abstract
Retroviral vectors based on murine leukemia viruses (MuLV) have been used in clinical investigations for over a decade. Alternative retroviruses, most notably vectors based on HIV-1 and other lentiviruses, are now entering into clinical trials. Although vectors are designed to be replication defective, recombination events during vector production could lead to the generation of replication competent retroviruses (RCR) or replication competent lentiviruses (RCL). Careful screening of vector prior to human use must insure that patients are not inadvertently exposed to RCR or RCL. We describe methods capable of detecting low levels of virus contamination and discuss the current regulatory guidelines for screening gene therapy products intended for human use.
Collapse
Affiliation(s)
- Lakshmi Sastry
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | | |
Collapse
|
14
|
Abstract
Up to 10% of the mouse genome is comprised of endogenous retrovirus (ERV) sequences, and most represent the remains of ancient germ line infections. Our knowledge of the three distinct classes of ERVs is inversely correlated with their copy number, and their characterization has benefited from the availability of divergent wild mouse species and subspecies, and from ongoing analysis of the Mus genome sequence. In contrast to human ERVs, which are nearly all extinct, active mouse ERVs can still be found in all three ERV classes. The distribution and diversity of ERVs has been shaped by host-virus interactions over the course of evolution, but ERVs have also been pivotal in shaping the mouse genome by altering host genes through insertional mutagenesis, by adding novel regulatory and coding sequences, and by their co-option by host cells as retroviral resistance genes. We review mechanisms by which an adaptive coexistence has evolved. (Part of a multi-author review).
Collapse
Affiliation(s)
- C. Stocking
- Heinrich-Pette-Institute, Martinistrasse 52, 20251 Hamburg, Germany
| | - C. A. Kozak
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 4 Center Drive MSC 0460, Bethesda, Maryland, 20892-0460 USA
| |
Collapse
|
15
|
Abstract
Bovine viral diarrhea virus (BVDV) is a positive-strand RNA virus and a member of the genus Pestivirus in the family Flaviviridae. To identify and characterize essential factors required for BVDV replication, a library expressing random fragments of the BVDV genome was screened for sequences that act as transdominant inhibitors of viral replication by conferring resistance to cytopathic BVDV-induced cell death. We isolated a BVDV-nonpermissive MDBK cell clone that harbored a 1.2-kb insertion spanning the carboxy terminus of the envelope glycoprotein 1 (E1), the envelope glycoprotein E2, and the amino terminus of p7. Confirming the resistance phenotype conferred by this library clone, naïve MDBK cells expressing this fragment were found to be 100- to 1,000-fold less permissive to both cytopathic and noncytopathic BVDV infection compared to parental MDBK cells, although these cells remained fully permissive to vesicular stomatitis virus. This restriction could be overcome by electroporation of BVDV RNA, indicating a block at one or more steps in viral entry prior to translation of the viral RNA. We determined that the E2 ectodomain was responsible for the inhibition to BVDV entry and that this block occurred downstream from BVDV interaction with the cellular receptor CD46 and virus binding, suggesting interference with a yet-unidentified BVDV entry factor.
Collapse
|
16
|
Cornetta K, Matheson L, Ballas C. Retroviral vector production in the National Gene Vector Laboratory at Indiana University. Gene Ther 2006; 12 Suppl 1:S28-35. [PMID: 16231053 DOI: 10.1038/sj.gt.3302613] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The National Gene Vector Laboratory (NGVL) is a US National Institutes of Health initiative charged with providing clinical grade vectors for gene therapy trials. The program was started in 1995 and Indiana University has served as the production site for retroviral vectors and is also accepting applications for production of lentiviral vectors. The facility is designed to produce vectors for Phase I and Phase II clinical trials with the specific mandate to facilitate investigator-initiated research for academic institutions. To date, the facility has generated over 30 Master Cell Banks for gene therapy investigators throughout the United States. This required the facility to develop a system that can adapt to the varied needs of investigators, most of whom request different vector backbones, packaging cell lines, final product volumes, and media. In this review, we will illustrate some of the experiences of the Indiana University NGVL during the generation of retroviral vectors using murine-based packaging cell lines.
Collapse
Affiliation(s)
- K Cornetta
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | |
Collapse
|
17
|
Wu SC, Liu JH, Hong WW. Propagation kinetics of retrovirus transgene vector and replication-competent retrovirus in static and microcarrier cell culture systems using different medium exchange strategies. Enzyme Microb Technol 2006. [DOI: 10.1016/j.enzmictec.2005.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Wu T, Yan Y, Kozak CA. Rmcf2, a xenotropic provirus in the Asian mouse species Mus castaneus, blocks infection by polytropic mouse gammaretroviruses. J Virol 2005; 79:9677-84. [PMID: 16014929 PMCID: PMC1181588 DOI: 10.1128/jvi.79.15.9677-9684.2005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cells from the Asian wild mouse species Mus castaneus are resistant to infection by the polytropic host range group of mouse gammaretroviruses. Two factors are responsible for this resistance: a defective XPR1 cell surface receptor for polytropic murine leukemia viruses (P-MLVs), and a resistance factor detectable only in interspecies hybrids between M. castaneus and mice with an XPR1 variant that permits infection by xenotropic MLVs (X-MLVs) as well as P-MLVs. This second novel virus resistance phenotype has been associated with expression of viral Env glycoprotein; Northern blotting with specific hybridization probes identified a spliced X-MLV env message unique to virus-resistant mice. These observations suggest that resistance is due to expression of one or more endogenous X-MLV envelope genes that interfere with infection by exogenous P-MLVs. M. castaneus contains multiple X-MLV proviruses, but serial backcrosses reduced this proviral content and permitted identification of a single proviral env sequence inherited with resistance. The resistance phenotype and the provirus were mapped to the same site on distal chromosome 18. The provirus was shown to be a full-length provirus highly homologous to previously described X-MLVs. Use of viral pseudotypes confirmed that this resistance gene, termed Rmcf2, prevents entry of P-MLVs. Rmcf2 resembles the virus resistance genes Fv4 and Rmcf in that it produces Env glycoprotein but fails to produce infectious virus; the proviruses associated with all three resistance genes have fatal defects. This type of provirus Env-mediated resistance represents an important defense mechanism in wild mouse populations exposed to endemic infections.
Collapse
Affiliation(s)
- Tiyun Wu
- Laboratory of Molecular Microbiology, National Institute and Allergy and Infectious Diseases, Bethesda, MD 20892-0460, USA
| | | | | |
Collapse
|
19
|
Lavillette D, Kabat D. Porcine endogenous retroviruses infect cells lacking cognate receptors by an alternative pathway: implications for retrovirus evolution and xenotransplantation. J Virol 2004; 78:8868-77. [PMID: 15280495 PMCID: PMC479092 DOI: 10.1128/jvi.78.16.8868-8877.2004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A PHQ motif near the amino termini of gammaretroviral envelope glycoprotein surface (SU) subunits is important for infectivity but not for incorporation into virions or binding to cognate receptors. The H residue of this motif is most critical, with all substitutions we tested being inactive. Interestingly, porcine endogenous retroviruses (PERVs) of all three host-range groups, A, B, and C, lack full PHQ motifs, but most members have an H residue at position 10. H10A PERV mutants are noninfectious but were efficiently transactivated by adding to the assays a PHQ-containing SU or receptor-binding subdomain (RBD) derived from a gibbon ape leukemia virus (GALV). A requirement of this transactivation was a functional GALV receptor on the cells. In contrast to this heterologous transactivation, PERV RBDs and SUs were inactive in all tested cells, including porcine ST-IOWA cells. Surprisingly, transactivation by GALV RBD enabled wild-type or H10A mutant PERVs of all three host-range groups to efficiently infect cells from humans and rodents that lack functional PERV receptors and it substantially enhanced infectivities of wild-type PERVs, even for cells with PERV receptors. Thus, PERVs can suboptimally infect cells that contain cognate receptors or they can employ a transactivation pathway to more efficiently infect all cells. This ability to infect cells lacking cognate receptors was previously demonstrated only for nontransmissible variant gammaretroviruses with recombinant and mutant envelope glycoproteins. We conclude that some endogenously inherited mammalian retroviruses also have a receptor-independent means for overcoming host-range and interference barriers, implying a need for caution in xenotransplantation, especially of porcine tissues.
Collapse
Affiliation(s)
- Dimitri Lavillette
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Rd., Portland, OR 97239-3098, USA
| | | |
Collapse
|
20
|
Uchida E, Sato K, Iwata A, Ishii-Watabe A, Mizuguchi H, Hikata M, Murata M, Yamaguchi T, Hayakawa T. An improved method for detection of replication-competent retrovirus in retrovirus vector products. Biologicals 2004; 32:139-46. [PMID: 15536044 DOI: 10.1016/j.biologicals.2004.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2004] [Accepted: 08/19/2004] [Indexed: 11/16/2022] Open
Abstract
Contamination by replication-competent retrovirus (RCR) is one of the most important safety issues of retrovirus vector products for gene therapy clinical research. To improve the sensitivity of RCR detection and to shorten the assay period, we have developed a novel RCR detection method (infectivity RT-PCR method) based on real-time quantitative reverse transcription-polymerase chain reaction (RT-PCR) in combination with virus infection and a novel virus concentration method using polyethyleneimine (PEI)-conjugated magnetic beads. In this method, permissive cells were infected with RCR samples, and amplified RCR in the culture supernatants was adsorbed by PEI-beads. Then RCR RNA extracted from PEI-beads was quantified by real-time RT-PCR. We demonstrated that 1 infectious unit (iu) of RCR spiked in 10(6) cfu/ml of vector products could be detected within 3 days, and the sensitivity for viral detection was increased 3- to 10-fold compared with the direct S+L- assay. By this method, the presence of retroviral vector interfered with RCR detection only slightly. In conclusion, infectivity RT-PCR conducted in conjunction with virus concentration using PEI-beads can detect RCR more sensitively and rapidly than the conventional infectivity assay.
Collapse
Affiliation(s)
- Eriko Uchida
- National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Kim S, Park EJ, Yu SS, Kim S. Development of enzyme-linked immunosorbent assay for detecting antibodies to replication-competent murine leukemia virus. J Virol Methods 2004; 118:1-7. [PMID: 15158062 DOI: 10.1016/j.jviromet.2004.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2003] [Revised: 12/20/2003] [Accepted: 01/15/2004] [Indexed: 10/26/2022]
Abstract
A method for detecting the antibodies to replication-competent retrovirus (RCR) was developed. Specific fragments of murine leukemia virus (MLV) Gag or Env protein were cloned and expressed in Escherichia coli, and used subsequently to develop the ELISA system. It was found that CA of Gag and SU of Env, but not the transmembrane portion of Env, could be used in ELISA. ELISA conditions such as coating buffer and blocking solution were optimized using sera obtained from mice immunized with amphotropic MLV particles. In an optimized ELISA system, serum samples from normal healthy individuals provided very low absorbance values. ELISA was performed using serum samples from patients who had received skin fibroblasts engineered with MLV-based retroviral vector. Experimental samples presented absorbance values comparable to those found with control serum samples from normal, healthy individuals, showing no evidence of RCR infection.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/analysis
- Antibodies, Viral/blood
- Antigens, Viral/genetics
- Base Sequence
- DNA, Viral/genetics
- Enzyme-Linked Immunosorbent Assay/methods
- Enzyme-Linked Immunosorbent Assay/statistics & numerical data
- Gene Products, env/genetics
- Gene Products, env/immunology
- Gene Products, gag/genetics
- Gene Products, gag/immunology
- Genetic Therapy/adverse effects
- Genetic Vectors
- Humans
- Leukemia Virus, Murine/genetics
- Leukemia Virus, Murine/immunology
- Leukemia Virus, Murine/physiology
- Mice
- Mice, Inbred BALB C
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Safety
- Sensitivity and Specificity
- Virology/methods
- Virology/statistics & numerical data
- Virus Replication
Collapse
Affiliation(s)
- Sujeong Kim
- ViroMed Co., Ltd., 1510-8 Bongcheon-Dong, Gwanak-Gu, Seoul 151-818, South Korea.
| | | | | | | |
Collapse
|
22
|
Castilla LH, Perrat P, Martinez NJ, Landrette SF, Keys R, Oikemus S, Flanegan J, Heilman S, Garrett L, Dutra A, Anderson S, Pihan GA, Wolff L, Liu PP. Identification of genes that synergize with Cbfb-MYH11 in the pathogenesis of acute myeloid leukemia. Proc Natl Acad Sci U S A 2004; 101:4924-9. [PMID: 15044690 PMCID: PMC387350 DOI: 10.1073/pnas.0400930101] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Acute myeloid leukemia subtype M4 with eosinophilia is associated with a chromosome 16 inversion that creates a fusion gene CBFB-MYH11. We have previously shown that CBFB-MYH11 is necessary but not sufficient for leukemogenesis. Here, we report the identification of genes that specifically cooperate with CBFB-MYH11 in leukemogenesis. Neonatal injection of Cbfb-MYH11 knock-in chimeric mice with retrovirus 4070A led to the development of acute myeloid leukemia in 2-5 months. Each leukemia sample contained one or a few viral insertions, suggesting that alteration of one gene could be sufficient to synergize with Cbfb-MYH11. The chromosomal position of 67 independent retroviral insertion sites (RISs) was determined, and 90% of the RISs mapped within 10 kb of a flanking gene. In total, 54 candidate genes were identified; six of them were common insertion sites (CISs). CIS genes included members of a zinc finger transcription factors family, Plag1 and Plagl2, with eight and two independent insertions, respectively. CIS genes also included Runx2, Myb, H2T24, and D6Mm5e. Comparison of the remaining 48 genes with single insertion sites with known leukemia-associated RISs indicated that 18 coincide with known RISs. To our knowledge, this retroviral genetic screen is the first to identify genes that cooperate with a fusion gene important for human myeloid leukemia.
Collapse
Affiliation(s)
- L H Castilla
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Tailor CS, Lavillette D, Marin M, Kabat D. Cell surface receptors for gammaretroviruses. Curr Top Microbiol Immunol 2003; 281:29-106. [PMID: 12932075 DOI: 10.1007/978-3-642-19012-4_2] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Evidence obtained during the last few years has greatly extended our understanding of the cell surface receptors that mediate infections of retroviruses and has provided many surprising insights. In contrast to other cell surface components such as lectins or proteoglycans that influence infections indirectly by enhancing virus adsorption onto specific cells, the true receptors induce conformational changes in the viral envelope glycoproteins that are essential for infection. One surprise is that all of the cell surface receptors for gamma-retroviruses are proteins that have multiple transmembrane (TM) sequences, compatible with their identification in known instances as transporters for important solutes. In striking contrast, almost all other animal viruses use receptors that exclusively have single TM sequences, with the sole proven exception we know of being the coreceptors used by lentiviruses. This evidence strongly suggests that virus genera have been prevented because of their previous evolutionary adaptations from switching their specificities between single-TM and multi-TM receptors. This evidence also implies that gamma-retroviruses formed by divergent evolution from a common origin millions of years ago and that individual viruses have occasionally jumped between species (zoonoses) while retaining their commitment to using the orthologous receptor of the new host. Another surprise is that many gamma-retroviruses use not just one receptor but pairs of closely related receptors as alternatives. This appears to have enhanced viral survival by severely limiting the likelihood of host escape mutations. All of the receptors used by gamma-retroviruses contain hypervariable regions that are often heavily glycosylated and that control the viral host range properties, consistent with the idea that these sequences are battlegrounds of virus-host coevolution. However, in contrast to previous assumptions, we propose that gamma-retroviruses have become adapted to recognize conserved sites that are important for the receptor's natural function and that the hypervariable sequences have been elaborated by the hosts as defense bulwarks that surround the conserved viral attachment sites. Previously, it was believed that binding to receptors directly triggers a series of conformational changes in the viral envelope glycoproteins that culminate in fusion of the viral and cellular membranes. However, new evidence suggests that gamma-retroviral association with receptors triggers an obligatory interaction or cross-talk between envelope glycoproteins on the viral surface. If this intermediate step is prevented, infection fails. Conversely, in several circumstances this cross-talk can be induced in the absence of a cell surface receptor for the virus, in which case infection can proceed efficiently. This new evidence strongly implies that the role of cell surface receptors in infections of gamma-retroviruses (and perhaps of other enveloped animal viruses) is more complex and interesting than was previously imagined. Recently, another gammaretroviral receptor with multiple transmembrane sequences was cloned. See Prassolov, Y., Zhang, D., Ivanov, D., Lohler, J., Ross, S.R., and Stocking, C. Sodium-dependent myo-inositol transporter 1 is a receptor for Mus cervicolor M813 murine leukemia virus.
Collapse
Affiliation(s)
- C S Tailor
- Infection, Immunity Injury and Repair Program, Hospital for Sick Children, Toronto, ON M5G 1XB, Canada
| | | | | | | |
Collapse
|
24
|
Ebeling SB, Simonetti ER, Borst HPE, Blok A, Schelen AM, Braakman E, Ederveen J, Hagenbeek A. Human primary T lymphocytes have a low capacity to amplify MLV-based amphotropic RCR and the virions produced are largely noninfectious. Gene Ther 2003; 10:1800-6. [PMID: 12960969 DOI: 10.1038/sj.gt.3302080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The presence of replication-competent retrovirus (RCR) in retroviral-based gene therapy products poses a potential safety risk for patients. Therefore, RCR testing of clinical gene therapy products and monitoring of patients enrolled in gene therapy trials is required to assure viral safety. The requirement to test ex vivo-transduced cells originates from the presumed amplification of adventitious RCR during the transduction procedure. However, data on the capacity of different cell types to do so are lacking. In this study, we sought to analyze the amplification potential of primary human T lymphocytes after infection with amphotropic MLV-based RCR. The total number of viral particles produced after 1 or 2 weeks was measured by a quantitative 4070A env-specific RT-PCR assay. The fraction of infectious replication-competent viral particles was analyzed in the PG-4 S+L- assay. From this study, we conclude that the total number of viral particles RCR produced by T lymphocytes is 2-4 logs lower than the number produced by NIH-3T3 cells. Surprisingly, less than 1% of the viral particles produced by primary T lymphocytes appeared to be infectious, while nearly all virions produced by NIH-3T3 were. We conclude that primary human T lymphocytes are low producers of MLV-based amphotropic RCR.
Collapse
Affiliation(s)
- S B Ebeling
- Jordan Laboratory for Hemato-Oncology, Department of Hematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Reeves L, Duffy L, Koop S, Fyffe J, Cornetta K. Detection of ecotropic replication-competent retroviruses: comparison of s(+)/l(-) and marker rescue assays. Hum Gene Ther 2002; 13:1783-90. [PMID: 12396630 DOI: 10.1089/104303402760293619] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Guidelines for testing gene therapy products for ecotropic replication-competent retrovirus (Eco-RCR) have not been delineated as they have for amphotropic viruses. To evaluate biologic assays that can detect these viruses, we compared an S(+)/L(-) assay and a marker rescue assay designed specifically for Eco-RCR detection. Moloney murine leukemia virus (Mo-MuLV) obtained from the American Type Culture Collection was used as the positive control. For marker rescue, NIH 3T3 cells were transduced with a retroviral vector expressing the neomycin phosphotransferase gene (3T3/Neo). Inoculation and passage of test material in 3T3/Neo cells for 3 weeks (amplification) and subsequent testing in the S(+)/L(-) assay or the marker rescue assay increased the level of sensitivity for virus detection greater than 10-fold compared with direct inoculation of D56 S(+)/L(-) cells. When serial dilutions of Mo-MuLV stock were evaluated, six of six cultures had detectable virus by the S(+)/L(-) and marker rescue assays at dilutions of 10(-5) and 10(-6). At the 10(-7) dilution, five of six assays had detectable virus in both assays. The ability to detect virus-infected cells was also evaluated in a modification that substituted cells for supernatant. Fifteen 3T3/Neo cultures inoculated with 10(6) 293 cells containing 100 or 10 Mo-MuLV/3T3 cells were all positive by marker rescue. For dilution with 1 virus-infected cell per 10(6) 293 cells, 10 of 15 cultures were positive. At the 0.1-cell dilution only 2 of 15 cultures were positive. If we hope to detect one infected cell in a test article, the probability of detecting virus if the assay is performed in triplicate is 96.3%. In summary, after 3 weeks of amplification the S(+)/L(-) and marker rescue assays can detect virus with similar sensitivities. We prefer the marker rescue assay because of the more reliable growth features of NIH 3T3 cells compared with the D56 cell line. For laboratories analyzing clinical materials, this report may prove useful in establishing detection assays for Eco-RCR.
Collapse
Affiliation(s)
- Lilith Reeves
- Division of Hematology/Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | |
Collapse
|
26
|
Jung YT, Lyu MS, Buckler-White A, Kozak CA. Characterization of a polytropic murine leukemia virus proviral sequence associated with the virus resistance gene Rmcf of DBA/2 mice. J Virol 2002; 76:8218-24. [PMID: 12134027 PMCID: PMC155147 DOI: 10.1128/jvi.76.16.8218-8224.2002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The DBA/2 mouse Rmcf gene is responsible for in vivo and in vitro resistance to infection by the polytropic mink cell focus-forming (MCF) virus subgroup of murine leukemia viruses (MLVs). Previous studies suggested that Rmcf resistance is mediated by expression of an interfering MCF MLV envelope (Env) gene. To characterize this env gene, we examined resistance in crosses between Rmcf(r) DBA/2 mice and Mus castaneus, a species that lacks endogenous MCF env sequences. In backcross progeny, inheritance of Rmcf resistance correlated with inheritance of a specific endogenous MCF virus env-containing 4.6-kb EcoRI fragment. This fragment was present in the DBA/2N substrain with Rmcf-mediated resistance but not in virus-susceptible DBA/2J substrain mice. This fragment contains a provirus with a 5' long terminal repeat and the 5' half of env; the gag and pol genes have been partially deleted. The Env sequence is identical to that of a highly immunogenic viral glycoprotein expressed in the DBA/2 cell line L5178Y and closely resembles the env genes of modified polytropic proviruses. The coding sequence for the full-length Rmcf Env surface subunit was amplified from DNAs from virus-resistant backcross mice and was cloned into an expression vector. NIH 3T3 and BALB 3T3 cells stably transfected with this construct showed significant resistance to infection by MCF MLV but not by amphotropic MLV. This study identifies an Rmcf-linked MCF provirus and indicates that, like the ecotropic virus resistance gene Fv4, Rmcf may mediate resistance through an interference mechanism.
Collapse
Affiliation(s)
- Yong Tae Jung
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892-0460, USA
| | | | | | | |
Collapse
|
27
|
Chen J, Reeves L, Sanburn N, Croop J, Williams DA, Cornetta K. Packaging cell line DNA contamination of vector supernatants: implication for laboratory and clinical research. Virology 2001; 282:186-97. [PMID: 11259201 DOI: 10.1006/viro.2001.0826] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Investigators conducting retroviral gene therapy trials are required to monitor for the presence of replication-competent retrovirus (RCR). The required testing utilizes a combination of biologic assays and molecular tests using PCR. In the course of a human clinical gene therapy trial, we detected 4070A viral envelope sequences in CD34(+) peripheral blood stem cells 2 days after transduction using a PCR-based assay, suggesting the presence of RCR. The supernatant and producer cells used for vector generation had been negative in extensive screening using the extended S(+)/L(-) assay. The presence of a replication-competent virus was subsequently excluded by a combination of biologic and PCR analyses. The source of the 4070A viral envelope sequences was determined to be packaging cell line DNA in the vector supernatant. The analysis of a variety of vector supernatants by quantitative real-time PCR revealed 4070A envelope DNA sequences from the packaging cell line in concentrations equivalent to approximately 50-500 focus-forming units per milliliter of wild-type 4070A virus. When PCR was performed after reverse transcriptase treatment of supernatant (i.e., assessing both RNA and DNA content), 4070A envelope sequence concentrations ranged from 10(2) to 3.5 x 10(3) focus-forming units per milliliter of wild-type 4070A virus. Our data indicate that PCR should not be used to analyze transduced cells for RCR within the first 2 weeks of vector exposure. Furthermore, investigators using PCR to analyze transduction efficiency shortly after vector exposure may experience false-positive findings.
Collapse
Affiliation(s)
- J Chen
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis 46202, USA
| | | | | | | | | | | |
Collapse
|
28
|
Supplemental guidance on testing for replication-competent retrovirus in retroviral vector-based gene therapy products and during follow-up of patients in clinical trials using retroviral vectors. Hum Gene Ther 2001; 12:315-20. [PMID: 11177567 DOI: 10.1089/10430340150218440] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
29
|
Chen J, Reeves L, Cornetta K. Safety testing for replication-competent retrovirus associated with gibbon ape leukemia virus-pseudotyped retroviral vectors. Hum Gene Ther 2001; 12:61-70. [PMID: 11177543 DOI: 10.1089/104303401450979] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The potential pathogenicity of replication-competent retroviruses (RCR) requires vigilant testing to exclude inadvertent contamination of clinical gene therapy vector products with RCR. Pseudotyped vectors using the gibbon ape leukemia virus (GALV) envelope have entered into clinical trials but specific recommendations regarding methods for screening of vector product and analysis of clinical samples have not been set forth. Unfortunately, current screening assays used for detecting amphotropic RCR are not suitable for GALV-pseudotyped RCR. We modified the extended S+/L- assay for RCR detection by using human 293 cells for virus amplification. Of five cell lines tested, 293 cells were selected because they combined a high transduction efficiency and an ability to generate RCR at high titer. After optimizing the amplification assay, a dilution of GALV virus could consistently be detected at a dilution of 10(-6). In coculture experiments, one GALV-infected cell could be consistently detected in 10(6) uninfected cells. A PCR-based assay was developed that was capable of detecting 100 copies of a GALV envelope containing plasmid diluted in 1 microg of DNA obtained from uninfected cells. PCR was also able to detect one GALV-infected cell in 10(6) uninfected cells. These assays will be suitable for testing of vector preparations and for monitoring of clinical samples from patients treated in clinical gene therapy protocols. The assays developed are similar in methodology and sensitivity to those currently used for certification of amphotropic retroviral vectors.
Collapse
Affiliation(s)
- J Chen
- Division of Hematology/Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | |
Collapse
|
30
|
Tailor CS, Nouri A, Kabat D. Cellular and species resistance to murine amphotropic, gibbon ape, and feline subgroup C leukemia viruses is strongly influenced by receptor expression levels and by receptor masking mechanisms. J Virol 2000; 74:9797-801. [PMID: 11000257 PMCID: PMC112417 DOI: 10.1128/jvi.74.20.9797-9801.2000] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chinese hamster ovary (CHO) cells are resistant to infections by gibbon ape leukemia virus (GALV) and amphotropic murine leukemia virus (A-MLV) unless they are pretreated with tunicamycin, an inhibitor of N-linked glycosylation. These viruses use the related sodium-phosphate symporters Pit1 and Pit2, respectively, as receptors in nonhamster cells, and evidence has suggested that the corresponding transporters of CHO cells may be masked by tunicamycin-sensitive secreted inhibitors. Although the E36 line of Chinese hamster cells was reported to secrete the putative Pit2 inhibitor and to be sensitive to the inhibitory CHO factors, E36 cells are highly susceptible to both GALV and A-MLV in the absence of tunicamycin. Moreover, expression of E36 Pit2 in CHO cells conferred tunicamycin-independent susceptibilities to both viruses. Based on the latter results, it was suggested that E36 Pit2 must functionally differ from the endogenous Pit2 of CHO cells. To test these ideas, we analyzed the receptor properties of CHO Pit1 and Pit2 in CHO cells. Surprisingly, and counterintuitively, transfection of a CHO Pit2 expression vector into CHO cells conferred strong susceptibility to both GALV and A-MLV, and similar overexpression of CHO Pit1 conferred susceptibility to GALV. Thus, CHO Pit2 is a promiscuous functional receptor for both viruses, and CHO Pit1 is a functional receptor for GALV. Similarly, we found that the natural resistance of Mus dunni tail fibroblasts to subgroup C feline leukemia viruses (FeLV-C) was eliminated simply by overexpression of the endogenous FeLV-C receptor homologue. These results demonstrate a novel and simple method to unmask latent retroviral receptor activities that occur in some cells. Specifically, resistances to retroviruses that are caused by subthreshold levels of receptor expression or by stoichiometrically limited masking or interference mechanisms can be efficiently overcome simply by overexpressing the endogenous receptors in the same cells.
Collapse
Affiliation(s)
- C S Tailor
- Department of Biochemistry and Molecular Biology, Oregon Health Sciences University, Portland, Oregon 97201-3098, USA.
| | | | | |
Collapse
|
31
|
Marin M, Tailor CS, Nouri A, Kabat D. Sodium-dependent neutral amino acid transporter type 1 is an auxiliary receptor for baboon endogenous retrovirus. J Virol 2000; 74:8085-93. [PMID: 10933718 PMCID: PMC112341 DOI: 10.1128/jvi.74.17.8085-8093.2000] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The baboon endogenous retrovirus (BaEV) belongs to a large, widely dispersed interference group that includes the RD114 feline endogenous virus and primate type D retroviruses. Recently, we and another laboratory independently cloned a human receptor for these viruses and identified it as the human sodium-dependent neutral amino acid transporter type 2 (hASCT2). Interestingly, mouse and rat cells are efficiently infected by BaEV but only become susceptible to RD114 and type D retroviruses if the cells are pretreated with tunicamycin, an inhibitor of protein N-linked glycosylation. To investigate this host range difference, we cloned and analyzed NIH Swiss mouse ASCT2 (mASCT2). Surprisingly, mASCT2 did not mediate BaEV infection, which implied that mouse cells might have an alternative receptor for this virus. In addition, elimination of the two N-linked oligosaccharides from mASCT2 by mutagenesis, as substantiated by protein N-glycosidase F digestions and Western immunoblotting, did not enable it to function as a receptor for RD114 or type D retroviruses. Based on these results, we found that the related ASCT1 transporters of humans and mice are efficient receptors for BaEV but are relatively inactive for RD114 and type D retroviruses. Furthermore, elimination of the two N-linked oligosaccharides from extracellular loop 2 of mASCT1 by mutagenesis enabled it to function as an efficient receptor for RD114 and type D retroviruses. Thus, we infer that the tunicamycin-dependent infection of mouse cells by RD114 and type D retroviruses is caused by deglycosylation of mASCT1, which unmasks previously buried sites for viral interactions. In contrast, BaEV efficiently employs the glycosylated forms of mASCT1 that occur normally in untreated mouse cells.
Collapse
Affiliation(s)
- M Marin
- Department of Biochemistry and Molecular Biology, Oregon Health Sciences University, Portland, Oregon 97201-3098, USA
| | | | | | | |
Collapse
|
32
|
Abstract
Xenotropic murine leukemia virus (X-MuLV) is often used in retrovirus elimination studies involving rodent cells. Currently, X-MuLV is measured using a focus-forming assay on mink (MiCl1 S+L-) or cat (PG-4 S+L-) cell lines. An easier and quicker PG-4 cell plaque assay, which retains the statistical reproducibility of the focus-forming assay, was developed and evaluated in this study. The PG-4 plaque assay is more sensitive than the MiCl1 focus assay for titering X-MuLV. The best results were achieved by passaging PG-4 cells at a seeding density of 4x10(6) cells/T185 flask twice a week, inoculating 3x10(5) cells/well on six-well plates and performing the assay at 35 degrees C. The overall variability of the assay was 0.30 log10 titer unit. A linear response to dilution was observed for wells containing 5-70 plaques. The limit of quantitation was 10 PFU/ml. Using six wells per dilution, the 95% confidence limit of the grand mean titer was within +/-0.5 log10.
Collapse
Affiliation(s)
- Z Li
- Biochemistry Department, Bayer Corporation, Berkeley, CA 94701, USA
| | | | | |
Collapse
|
33
|
Lyu MS, Nihrane A, Kozak CA. Receptor-mediated interference mechanism responsible for resistance to polytropic leukemia viruses in Mus castaneus. J Virol 1999; 73:3733-6. [PMID: 10196266 PMCID: PMC104149 DOI: 10.1128/jvi.73.5.3733-3736.1999] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Asian mouse Mus castaneus is resistant to infection by the polytropic mink cell focus-inducing (MCF) subgroup of murine leukemia viruses (MuLVs). Genetic crosses showed this recessive resistance to be governed by a single gene that maps at or near the gene encoding the polytropic viral receptor, Rmc1. To investigate this resistance, we mated M. castaneus with mice carrying the wild mouse Sxv variant of the Rmc1 receptor that allows infection by xenotropic as well as polytropic virus. Unlike other F1 hybrids of M. castaneus, these F1 mice were resistant to both xenotropic and polytropic classes of MuLVs. Analysis of backcrossed progeny of the F1 hybrids mated to Sxv mice indicates that resistance is due to inheritance of two M. castaneus genes. Cells from individual backcross mice were also examined for cell surface antigen by fluorescence-activated cell sorter analysis with monoclonal antibodies reactive with xenotropic or MCF virus env glycoproteins. A correlation was observed between virus resistance and antigen, suggesting that virus resistance is due to expression of endogenous viral envelope genes that interfere with infection by exogenous virus. Since the inbred strain Rmc1 receptor remains functional in the presence of these M. castaneus genes, and since M. castaneus contains multiple copies of xenotropic MuLV env genes, we suggest that these resistance genes control expression of xenotropic env glycoprotein that interferes with exogenous virus in cells containing the Sxv variant of Rmc1.
Collapse
Affiliation(s)
- M S Lyu
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20982-0460, USA
| | | | | |
Collapse
|
34
|
Tailor CS, Nouri A, Lee CG, Kozak C, Kabat D. Cloning and characterization of a cell surface receptor for xenotropic and polytropic murine leukemia viruses. Proc Natl Acad Sci U S A 1999; 96:927-32. [PMID: 9927670 PMCID: PMC15327 DOI: 10.1073/pnas.96.3.927] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/1998] [Accepted: 11/17/1998] [Indexed: 11/18/2022] Open
Abstract
Xenotropic and polytropic murine leukemia viruses (X-MLVs and P-MLVs) cross-interfere to various extents in non-mouse species and in wild Asian mice, suggesting that they might use a common receptor for infection. Consistent with this hypothesis, the susceptibility of some wild mice to X-MLVs has been mapped to the P-MLV receptor locus at the distal end of mouse chromosome 1. In this study, we report the isolation and characterization of a cDNA for the human X-MLV cell surface receptor (X-receptor) by using a human T lymphocyte cDNA library in a retroviral vector. The predicted X-receptor contains 696 amino acids with multiple hydrophobic potential membrane-spanning sequences and with weak homologies to the yeast proteins SYG1, of unknown function, and PHO81, which has been implicated in a system that regulates transport of inorganic phosphate. Expression of the X-receptor in Chinese hamster ovary cells, which are substantially resistant to P-MLVs and to X-MLVs, made them susceptible to both of these virus groups. The mouse homologue of the X-receptor was mapped by hybridization to the distal end of chromosome 1 at the same position as the P-MLV receptor gene Rmc1. These results strongly support the hypothesis that a common gene encodes the receptors for X-MLVs and P-MLVs, with the human X-receptor preferentially mediating X-MLV infections and the homologous protein of inbred mice mediating only P-MLV infections. We propose that X-MLVs and P-MLVs comprise a single family of retroviruses that have coevolved in response to diversification in X-receptor genes of the host.
Collapse
Affiliation(s)
- C S Tailor
- Department of Biochemistry and Molecular Biology, Oregon Health Sciences University, Portland, OR 97201-3098, USA.
| | | | | | | | | |
Collapse
|
35
|
Arai T, Matsumoto K, Saitoh K, Ui M, Ito T, Murakami M, Kanegae Y, Saito I, Cosset FL, Takeuchi Y, Iba H. A new system for stringent, high-titer vesicular stomatitis virus G protein-pseudotyped retrovirus vector induction by introduction of Cre recombinase into stable prepackaging cell lines. J Virol 1998; 72:1115-21. [PMID: 9445007 PMCID: PMC124585 DOI: 10.1128/jvi.72.2.1115-1121.1998] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We report here on stable prepackaging cell lines which can be converted into packaging cell lines for high-titer vesicular stomatitis virus G protein (VSV-G)-pseudotyped retrovirus vectors by the introduction of Cre recombinase-expressing adenovirus. The generated prepackaging cell lines constitutively express the gag-pol genes and contain an inducible transcriptional unit for the VSV-G gene. From this unit, the introduced Cre recombinase excised both a neomycin resistance (Neo(r)) gene and a poly(A) signal flanked by a tandem pair of loxP sequences and induced transcription of the VSV-G gene from the same promoter as had been used for Neo(r) expression. By inserting an mRNA-destabilizing signal into the 3' untranslated region of the Neo(r) gene to reduce the amount of Neo(r) transcript, we were able efficiently to select the clones capable of inducing VSV-G at high levels. Without the introduction of Cre recombinase, these cell lines produce neither VSV-G nor any detectable infectious virus at all, even after the transduction of a murine leukemia virus-based retrovirus vector encoding beta-galactosidase. They reproducibly produced high-titer virus stocks of VSV-G-pseudotyped retrovirus (1.0 x 10(6) infectious units/ml) from 3 days after the introduction of Cre recombinase. We also present evidence that VSV-G-producing cells are still fully susceptible to transduction by VSV-G pseudotypes. However, in this vector-producing system, which regulates VSV-G pseudotype production in an all-or-none manner, the integration of vector DNA into packaging cell lines would be minimized. We further show that heparin significantly inhibits retransduction of VSV-G pseudotypes in the culture fluids of packaging cell lines, leading to a two- to fourfold increase in the yield of the pseudotypes after induction. This vector-producing system was very stable and should be advantageous in human gene therapy.
Collapse
Affiliation(s)
- T Arai
- Department of Gene Regulation, Institute of Medical Science, University of Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Wilson CA, Ng TH, Miller AE. Evaluation of recommendations for replication-competent retrovirus testing associated with use of retroviral vectors. Hum Gene Ther 1997; 8:869-74. [PMID: 9143913 DOI: 10.1089/hum.1997.8.7-869] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
With input from the gene therapy community, CBER is actively examining the recommendations for RCR testing during retroviral vector production, production of ex vivo-transduced cells, and in patients who receive such material. Our initial recommendations were made at a time when our experience with RCR detection assays and clinical use of retroviral vectors was limited. As the gene therapy field has matured, there is an increasing amount of data available on RCR detection assays and from monitoring of patients in clinical trials. The cumulative data give assurance that RCR detection assays in use are of sufficient sensitivity to provide a margin of safety to patients: no patients to date have evidence of RCR infection. However, CBER encourages members of the gene therapy community to continue to submit data to the FDA or to publish data that will enhance the cumulative data base on RCR testing assays, experience with different VPC, and patient monitoring. Based on the analysis of data accumulated to data, and ongoing discussions with members of the gene therapy community, CBER is proposing to discuss changes to the current RCR testing recommendations, as summarized below. RCR testing during production of retroviral vector and ex vivo-transduced cells. Development of characterized standards for RCR testing of supernatant and cells should allow comparison of assay sensitivity. One proposal under consideration is to apply statistical methods to determine how much material needs to be tested independent of the size of the production lot. Data and discussion are still needed to define a limit concentration and a value for probability of detection for RCR testing, while maintaining an appropriate margin of safety. These modifications of RCR testing strategies could lead to improvements in assay sensitivity. Additional discussion and data are also needed to evaluate the current recommendations of the testing for ex vivo-transduced cells: should both cells and supernatant be tested in all cases? RCR testing during patient follow-up. The time points required for RCR testing during patient follow-up need examination. One proposal under consideration is to sample and assay at three time points during the first year of treatment (e.g., 4-6 weeks, 3 months, and 1 year post-treatment). Further discussion is needed to define appropriate additional follow-up. Choice of assays to detect surrogate markers for RCR infection (i.e., serologic or PCR-based assays) should consider mode of vector administration and the patient population. Positive results with such assays should be pursued by direct culture assay to obtain and characterize the infectious viral isolate. These proposals will be the focal point for the discussion at the Retroviral Vector Breakout Session at the 1997 FDA/NIH Gene Therapy Conference. After the 1997 FDA/NIH Gene Therapy Conference, CBR plans to propose revised recommendations for RCR testing for public comment.
Collapse
Affiliation(s)
- C A Wilson
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, FDA, Rockville, MD 20852, USA
| | | | | |
Collapse
|
37
|
Miller AD. Cell-surface receptors for retroviruses and implications for gene transfer. Proc Natl Acad Sci U S A 1996; 93:11407-13. [PMID: 8876148 PMCID: PMC38070 DOI: 10.1073/pnas.93.21.11407] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Retroviruses can utilize a variety of cell-surface proteins for binding and entry into cells, and the cloning of several of these viral receptors has allowed refinement of models to explain retrovirus tropism. A single receptor appears to be necessary and sufficient for entry of many retroviruses, but exceptions to this simple model are accumulating. For example, HIV requires two proteins for cell entry, neither of which alone is sufficient; 10A1 murine leukemia virus can enter cells by using either of two distinct receptors; two retroviruses can use different receptors in some cells but use the same receptor for entry into other cells; and posttranslational protein modifications and secreted factors can dramatically influence virus entry. These findings greatly complicate the rules governing retrovirus tropism. The mechanism underlying retrovirus evolution to use many receptors for cell entry is not clear, although some evidence supports a mutational model for the evolution of new receptor specificities. Further study of factors that govern retrovirus entry into cells are important for achieving high-efficiency gene transduction to specific cells and for the design of retroviral vectors to target additional receptors for cell entry.
Collapse
Affiliation(s)
- A D Miller
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| |
Collapse
|
38
|
Lyu MS, Kozak CA. Genetic basis for resistance to polytropic murine leukemia viruses in the wild mouse species Mus castaneus. J Virol 1996; 70:830-3. [PMID: 8551621 PMCID: PMC189885 DOI: 10.1128/jvi.70.2.830-833.1996] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Cultured cells derived from the wild mouse species Mus castaneus were found to be uniquely resistant to exogenous infection by polytropic mink cell focus-forming (MCF) murine leukemia viruses (MuLVs). This MCF MuLV resistance is inherited as a genetically recessive trait in the progeny of F1 crosses between M. castaneus and MCF MuLV-susceptible laboratory mice. Examination of the progeny of backcrosses demonstrated that susceptibility is inherited as a single gene which maps to chromosome 1. The map location of this gene places it at or near the locus Rmc1, the gene encoding the receptor for MCF/xenotropic MuLVs, suggesting that resistance is mediated by the M. castaneus allele of this receptor.
Collapse
Affiliation(s)
- M S Lyu
- Laboratory of Molecular Microbiology, National Institutes of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892-0460, USA
| | | |
Collapse
|
39
|
Czub M, McAtee FJ, Czub S, Lynch WP, Portis JL. Prevention of retrovirus-induced neurological disease by infection with a nonneuropathogenic retrovirus. Virology 1995; 206:372-80. [PMID: 7831792 DOI: 10.1016/s0042-6822(95)80052-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Perinatal infection of susceptible mice with the neurotropic retrovirus CasBrE leads to a noninflammatory spongiform degeneration of the central nervous system with a long incubation period of up to 1 year. Virus replication in infected animals can be suppressed by administration of antiviral antibodies, cytotoxic T cells, or by AZT treatment, which results in partial to complete protection from neurological disease. A highly neuropathogenic chimeric retrovirus, FrCasE, which contains the envelope gene of CasBrE, induces rapid neurodegeneration within only 16 days. Here we report that this fatal disease could be prevented if a nonneuropathogenic Friend murine leukemia virus was administered to mice prior to their infection with FrCasE. This double inoculation led to a substantial reduction of the replication level of FrCasE in spleen and CNS. Only live but not heat-inactivated nonneuropathogenic virus was able to protect from FrCasE-induced neurological disease. The extent of protection was influenced by the viral envelope gene and the kinetics of replication of the nonneuropathogenic virus. These observations in addition to the rapidity of the effect make it likely that competition for replication sites through the mechanism of viral interference is responsible for the protection. Resistance was demonstrable in vivo even when the "protecting" and "challenge" virus belonged to different in vitro interference groups. However, the protection was considerably weaker than that seen between viruses belonging to the same interference group.
Collapse
Affiliation(s)
- M Czub
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana 59840
| | | | | | | | | |
Collapse
|
40
|
Affiliation(s)
- M B Gardner
- Department of Pathology, School of Medicine, University of California, Davis 95616
| |
Collapse
|
41
|
Miller DG, Miller AD. Inhibitors of retrovirus infection are secreted by several hamster cell lines and are also present in hamster sera. J Virol 1993; 67:5346-52. [PMID: 8394452 PMCID: PMC237934 DOI: 10.1128/jvi.67.9.5346-5352.1993] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
We have previously shown that Chinese hamster ovary (CHO) cells are resistant to infection by gibbon ape leukemia virus and amphotropic pseudotype retroviral vectors because of the secretion of factors that inhibit retrovirus infection. Such factors were not secreted by any mouse or human cell lines tested. Secretion of the inhibitors and resistance to infection are abrogated by treatment of CHO cells with the glycosylation inhibitor tunicamycin. Here we show that the inhibitory activities against gibbon ape leukemia virus and amphotropic viruses are partially separable and that glycosylation mutations in CHO cells mimic the effects of tunicamycin treatment. We find that several hamster cell lines derived from both Chinese and Syrian hamsters secrete inhibitors of retrovirus infection, showing that these inhibitors are not unique to the CHO cell line. Inhibitory factors are also present in the sera of Chinese and Syrian hamsters but were not detected in bovine serum. These results suggest the presence of specific factors that function to inhibit retrovirus infection in hamsters.
Collapse
Affiliation(s)
- D G Miller
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98104-2092
| | | |
Collapse
|
42
|
Abstract
Retroviral interference is manifested in chronically infected cells as a decrease in susceptibility to superinfection by virions using the same cellular receptor. The pattern of interference reflects the cellular receptor specificity of the chronically infecting retrovirus and is mediated by the viral envelope glycoprotein, which is postulated to bind competitively all cellular receptors available for viral attachment. We established retroviral interference in mice by infecting them with Friend murine leukemia virus and them measured susceptibility to superinfection by challenging the mice with the erythroproliferative spleen focus-forming virus. Infection of approximately 10% of nucleated splenocytes rendered mice 1% as susceptible to superinfection as untreated controls. The magnitude of this effect was the same in mice incapable of producing neutralizing antibodies or genetically deficient for T cells. The results indicated that retroviral interference in vivo was established rapidly with infection of a fraction of the host cell population and that the decrease in susceptibility to superinfection occurred without a detectable contribution by immunologic factors.
Collapse
Affiliation(s)
- T Mitchell
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison 53706
| | | |
Collapse
|
43
|
Wang H, Paul R, Burgeson RE, Keene DR, Kabat D. Plasma membrane receptors for ecotropic murine retroviruses require a limiting accessory factor. J Virol 1991; 65:6468-77. [PMID: 1942243 PMCID: PMC250689 DOI: 10.1128/jvi.65.12.6468-6477.1991] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A retroviral vector was used to express various amounts of the receptor (ecoR) for ecotropic host range murine retroviruses on naturally barren hamster, mink, and human cells. These cells and murine cells were then incubated for 2 h with dilutions of a helper-free ecotropic retrovirus that encodes human growth hormone, and the number of infected cells was later determined by growth hormone-specific immunofluorescence. For all cells under the conditions of these studies, virus adsorption was the limiting step of infection and the cellular capacities for infection were unsaturated either at cell surfaces or at intracellular sites. Thus, infections occurred at low multiplicities of infection per cell and were directly proportional to virus and cell concentrations, and only a small percentage (ca. 5%) of the infectious virions became adsorbed from the medium during the 2-h incubations. Although increasing the adsorption by raising virus or cell concentrations results in more infections in the cultures, increasing adsorption by raising the number of ecoR above a low threshold had no effect on infections. Thus, cells with a low number of ecoR were infected as efficiently as highly adsorbing cells that contained many times more ecoR. To reconcile these results, we conclude that only a small, set number of cell surface ecoR can be functional for infection and that all excess ecoR can only bind virus into an unsalvageable pool. Therefore, retroviral receptors on single cells are functionally diverse. Our results suggest that activity of ecoR in infection requires a limiting second cellular component.
Collapse
Affiliation(s)
- H Wang
- Department of Biochemistry and Molecular Biology, School of Medicine, Oregon Health Sciences University, Portland 97201-3098
| | | | | | | | | |
Collapse
|
44
|
Brightman BK, Li QX, Trepp DJ, Fan H. Differential disease restriction of Moloney and Friend murine leukemia viruses by the mouse Rmcf gene is governed by the viral long terminal repeat. J Exp Med 1991; 174:389-96. [PMID: 1856627 PMCID: PMC2118917 DOI: 10.1084/jem.174.2.389] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Neonatal CxD2 (Rmcfr) and Balb/c (Rmcfs) mice inoculated with Moloney murine leukemia virus (M-MuLV) exhibited approximately equivalent time course and pathology for disease. CxD2 mice showed only slightly reduced presence of Moloney mink cell focus-forming virus (M-MCF) provirus as seen by Southern blot analysis compared to Balb/c mice. This lack of restriction for disease and spread of MCF was in sharp contrast to that seen for CxD2 mice inoculated with Friend murine leukemia virus (F-MuLV), where incidence of disease and propagation of MCFs were severely restricted, as previously reported. Inoculation of CxD2 mice with FM-MuLV, a recombinant F-MuLV virus containing M-MuLV LTR sequences (U3 and R), resulted in T cell disease of time course equal to that seen in Balb/c mice; there also was little restriction for propagation of MCFs. This indicated that presence of the M-MuLV long terminal repeat (LTR) was sufficient for propagation of MCFs in CxD2 mice. Differing restriction for F-MuLV vs. M-MuLV in CxD2 mice was explained on the basis of different "MCF propagator cells" for the two viruses. It was suggested that cells propagating F-MCF (e.g., erythroid progenitors) are blocked by endogenous MCF-like gp70env protein, whereas cells propagating M-MCF (e.g., lymphoid) do not express this protein on their surface. F-MuLV disease in CxD2 mice was greatly accelerated when neonates were inoculated with a F-MuLV/F-MCF pseudotypic mixture. However, F-MCF provirus was not detectable or only barely detectable in F-MuLV/F-MCF-induced tumors, suggesting that F-MCF acted indirectly in induction of these tumors.
Collapse
MESH Headings
- Alleles
- Animals
- Blotting, Southern
- Cloning, Molecular
- DNA, Neoplasm/analysis
- DNA, Viral
- Friend murine leukemia virus
- Immunity, Innate/genetics
- Leukemia, Experimental/genetics
- Leukemia, Experimental/immunology
- Leukemia, Experimental/mortality
- Mice
- Mice, Inbred BALB C
- Mice, Inbred DBA
- Moloney murine leukemia virus
- Repetitive Sequences, Nucleic Acid
- Retroviridae Proteins, Oncogenic/genetics
- T-Lymphocytes/immunology
- Viral Envelope Proteins/genetics
Collapse
Affiliation(s)
- B K Brightman
- Department of Molecular Biology and Biochemistry, University of California, Irvine 92717
| | | | | | | |
Collapse
|
45
|
Tsichlis PN, Lazo PA. Virus-host interactions and the pathogenesis of murine and human oncogenic retroviruses. Curr Top Microbiol Immunol 1991; 171:95-171. [PMID: 1667631 DOI: 10.1007/978-3-642-76524-7_5] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
MESH Headings
- Animals
- Base Sequence
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Viral
- Gene Expression Regulation, Neoplastic
- Gene Expression Regulation, Viral
- Genes, Viral
- Genetic Markers
- Genetic Predisposition to Disease
- Growth Substances/genetics
- Growth Substances/physiology
- Humans
- Leukemia Virus, Murine/genetics
- Leukemia Virus, Murine/pathogenicity
- Leukemia Virus, Murine/physiology
- Mice/genetics
- Mice/microbiology
- Molecular Sequence Data
- Mutagenesis, Insertional
- Neoplasms/genetics
- Neoplasms/microbiology
- Neoplasms/veterinary
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/microbiology
- Oncogenes
- Proto-Oncogenes
- Proviruses/genetics
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/physiology
- Repetitive Sequences, Nucleic Acid
- Retroviridae/genetics
- Retroviridae/pathogenicity
- Retroviridae/physiology
- Rodent Diseases/genetics
- Rodent Diseases/microbiology
- Signal Transduction
- Virus Integration
- Virus Replication
Collapse
Affiliation(s)
- P N Tsichlis
- Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, PA 19111
| | | |
Collapse
|
46
|
Conversion of Friend mink cell focus-forming virus to Friend spleen focus-forming virus by modification of the 3' half of the env gene. J Virol 1991; 65:132-7. [PMID: 1985193 PMCID: PMC240497 DOI: 10.1128/jvi.65.1.132-137.1991] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The 3' half of the env gene of the dualtropic Friend mink cell focus-forming virus was modified by replacing the restriction enzyme fragment of the genome DNA with the corresponding fragment of the acutely leukemogenic, polycythemia-inducing strain of Friend spleen focus-forming virus (F-SFFVP) genome DNA. Replacement with the fragment of F-SFFVP env containing the 585-bp deletion, the 6-bp duplication, and the single-base insertion converted the resulting chimeric genome so that the mutant had a pathogenic activity like that of F-SFFVP. Replacement with the fragment containing only the 585-bp deletion did not result in a pathogenic virus. However, when this virus pseudotyped by Friend murine leukemia virus was passaged in newborn DBA/2 mice, we could recover weakly pathogenic viruses with a high frequency. Molecular analysis of the genome of the recovered virus revealed the presence of a single-base insertion in the same T5 stretch where the wild-type F-SFFV env has the single-base insertion. These results provided evidence that the unique genomic structures present in the 3' half of F-SFFV env are the sole determinants that distinguish the pathogenicity of F-SFFV from that of Friend mink cell focus-forming virus. The importance of the dualtropic env-specific sequence present in the 5' half of F-SFFV env for the pathogenic activity was evaluated by constructing a mutant F-SFFV genome in which this sequence was replaced by the ecotropic env sequence of Friend murine leukemia virus and by examining its pathogenicity. The results indicated that the dualtropic env-specific sequence was essential to pathogenic activity.
Collapse
|
47
|
van Lohuizen M, Berns A. Tumorigenesis by slow-transforming retroviruses--an update. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1032:213-35. [PMID: 2261495 DOI: 10.1016/0304-419x(90)90005-l] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- M van Lohuizen
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam
| | | |
Collapse
|
48
|
Delwart EL, Panganiban AT. N-linked glycosylation and reticuloendotheliosis retrovirus envelope glycoprotein function. Virology 1990; 179:648-57. [PMID: 2173257 DOI: 10.1016/0042-6822(90)90132-b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Different properties of the spleen necrosis virus (SNV) envelope glycoprotein were analyzed following biosynthesis in the presence of glycosylation inhibitors. Tunicamycin, which inhibits all asparagine N-linked glycosylation, prevented intracellular processing and translocation to the cell surface of the envelope protein. In contrast, castanospermine or deoxymannojirimycin, which block glycosidase trimming of the early high-mannose chains and subsequent complex type N-glycosylation, did not inhibit proteolytic cleavage or cellular translocation. The ability of unglycosylated and partially glycosylated envelope protein to bind the viral receptor was assayed using an infection interference assay. Tunicamycin abrogated SNV envelope glycoprotein-induced receptor interference, whereas the trimming glycosidase inhibitors had no effect on interference. Similarly, tunicamycin but not the glycosidase inhibitors reduced the titers of released virus 100-fold. We conclude that carbohydrate trimming and complex N-glycosylation are not essential for envelope glycoprotein translocation, proteolytic cleavage, receptor binding, or infectivity, whereas cotranslational high-mannose N-glycosylation is essential for all of the SNV envelope glycoprotein properties tested. Syncytia formation can be induced following transfection into D17 cells of an envelope glycoprotein expression plasmid. Unlike virus particle infectivity, cell fusion is strongly inhibited by the glycosidase inhibitors.
Collapse
Affiliation(s)
- E L Delwart
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison 53706
| | | |
Collapse
|
49
|
Kozak SL, Kabat D. Ping-pong amplification of a retroviral vector achieves high-level gene expression: human growth hormone production. J Virol 1990; 64:3500-8. [PMID: 2352330 PMCID: PMC249616 DOI: 10.1128/jvi.64.7.3500-3508.1990] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Retroviral vectors offer major advantages for gene transfer studies but have not been useful for producing proteins in large quantities. This deficiency has resulted in part from interference to superinfection, which limits the numbers of active proviruses in cells. Recently, we found that these vectors amplify when they are added as calcium phosphate precipitates to cocultures of cells that package retroviruses into ecotropic and amphotropic host range envelopes. Helper-free virions from either cell type can infect the other without interference, resulting in theoretically limitless back-and-forth (ping-pong) vector replication. In initial studies, however, amplifications of a vector that contained the human growth hormone gene ceased when the hormone produced was 0.3% or less of cellular protein synthesis. This limit was caused by two factors. First, recombinant shutoff viruses that are replication defective and encode envelope glycoproteins form at a low probability during any round of the vector replication cycle and these spread in cocultures, thereby establishing interference. Single cells in shutoff cocultures therefore synthesize both ecotropic and amphotropic envelope glycoproteins, and they release promiscuous (presumably hybrid) virions. The probability of forming shutoff viruses before the vector had amplified to a high multiplicity was reduced by using small cocultures. Second, cells with large numbers of proviruses are unhealthy and their proviral expression can be unstable. Stable expresser cell clones were obtained by selection. Thereby, cell lines were readily obtained that stably produce human growth hormone as 4 to 6% of the total protein synthesis. A ping-pong retroviral vector can be used for high-level protein production in vertebrate cells.
Collapse
Affiliation(s)
- S L Kozak
- Department of Biochemistry and Molecular Biology, School of Medicine, Oregon Health Sciences University, Portland 97201-3098
| | | |
Collapse
|
50
|
Masuda M, Yoshikura H. Construction and characterization of the recombinant Moloney murine leukemia viruses bearing the mouse Fv-4 env gene. J Virol 1990; 64:1033-43. [PMID: 2304138 PMCID: PMC249214 DOI: 10.1128/jvi.64.3.1033-1043.1990] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A nucleotide sequence of the mouse Fv-4 env gene was completed. Structural comparison revealed a close relationship of Fv-4 to the ecotropic Cas-Br-E murine leukemia virus isolated from a wild mouse in southern California. Various portions of the env gene of Moloney murine leukemia virus were replaced by the corresponding Fv-4 env sequence to construct recombinant murine leukemia virus clones. Infectivity of these recombinants was checked by the S+L- cell focus induction assay and the XC cell syncytium formation assay. Recombinants bearing the following Fv-4 env sequence retained ecotropic infectivity; the AccI-BamHI and BamHI-BalI regions coding for the N- and C-terminal halves of Fv-4 gp70SU, respectively; and the BalI-NcoI region encoding the cleavage site between gp70SU and p15(E)TM of the Fv-4 env. However, when the Fv-4 sequence was substituted for the p15(E)TM-coding NcoI-EcoRV region or the AccI-EcoRV region covering almost the entire env gene, infectivity was undetectable in our assays. The recombinant clone containing the Fv-4 AccI-EcoRV region, i.e., almost the entire Fv-4 env sequence, was introduced with pSV2neo into NIH 3T3 cells, and a G418r cell line named NIH(Fv4)-2 was isolated. The NIH(Fv4)-2 cell released viral particles that contained reverse transcriptase, Fv-4 env molecules as well as the other viral proteins, and viral genomic RNA. However, proviral DNA synthesis was not detected upon inoculation of this virus in NIH 3T3 cells. The loss of infectivity of the recombinant virus bearing the Fv-4 AccI-EcoRV region appeared to be caused by failure in an early step of replication.
Collapse
Affiliation(s)
- M Masuda
- Department of Genetics, University of Tokyo, Japan
| | | |
Collapse
|