1
|
Villanueva RA, Rouillé Y, Dubuisson J. Interactions between virus proteins and host cell membranes during the viral life cycle. ACTA ACUST UNITED AC 2006; 245:171-244. [PMID: 16125548 PMCID: PMC7112339 DOI: 10.1016/s0074-7696(05)45006-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The structure and function of cells are critically dependent on membranes, which not only separate the interior of the cell from its environment but also define the internal compartments. It is therefore not surprising that the major steps of the life cycle of viruses of animals and plants also depend on cellular membranes. Indeed, interactions of viral proteins with host cell membranes are important for viruses to enter into host cells, replicate their genome, and produce progeny particles. To replicate its genome, a virus first needs to cross the plasma membrane. Some viruses can also modify intracellular membranes of host cells to create a compartment in which genome replication will take place. Finally, some viruses acquire an envelope, which is derived either from the plasma membrane or an internal membrane of the host cell. This paper reviews recent findings on the interactions of viral proteins with host cell membranes during the viral life cycle.
Collapse
Affiliation(s)
- Rodrigo A Villanueva
- CNRS-UPR2511, Institut de Biologie de Lille, Institut Pasteur de Lille, 59021 Lille Cedex, France
| | | | | |
Collapse
|
2
|
Wang HH, Wong SM. Significance of the 3'-terminal region in minus-strand RNA synthesis of Hibiscus chlorotic ringspot virus. J Gen Virol 2004; 85:1763-1776. [PMID: 15166462 DOI: 10.1099/vir.0.79861-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
RNA-dependent RNA polymerase (RdRp) was solubilized from crude extracts of Hibiscus cannabinus infected by Hibiscus chlorotic ringspot virus (HCRSV), a member of the Carmoviridae. After treatment of the extracts with micrococcal nuclease to remove the endogenous templates, the full-length genomic RNA and the two subgenomic RNAs were efficiently synthesized by the partially purified RdRp complex in vitro. When the full-length RNAs of Potato virus X, Tobacco mosaic virus, Odontoglossum ringspot virus and Cucumber mosaic virus were used as templates, no detectable RNA was synthesized. Synthesis of HCRSV minus-strand RNA was shown to initiate opposite the 3'-terminal two C residues at the 3' end in vitro and in vivo. The CCC-3' terminal nucleotide sequence was optimal and nucleotide variations from CCC-3' diminished minus-strand synthesis. In addition, two putative stem-loops (SLs) located within the 3'-terminal 87 nt of HCRSV plus-strand RNA were also essential for minus-strand RNA synthesis. Deletion or disruption of the structure of these two SLs severely reduced or abolished RNA synthesis. HCRSV RNA in which the two SLs were replaced with the SLs of Turnip crinkle virus could replicate in kenaf protoplasts, indicating that functionally conserved structure, rather than nucleotide sequence, plays an important role in the minus-strand synthesis of HCRSV. Taken together, the specific sequence CCC at the 3' terminus and the two SLs structures located in the 3'UTR are essential for efficient minus-strand synthesis of HCRSV.
Collapse
Affiliation(s)
- Hai-He Wang
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Kent Ridge, Singapore 117543
| | - Sek-Man Wong
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Kent Ridge, Singapore 117543
| |
Collapse
|
3
|
Houwing CJ, Jaspars E. Coat protein blocks the in vitro transcription of the virion RNAs of alfalfa mosaic virus. FEBS Lett 2001. [DOI: 10.1016/0014-5793(86)81128-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Dzianott A, Rauffer-Bruyere N, Bujarski JJ. Studies on functional interaction between brome mosaic virus replicase proteins during RNA recombination, using combined mutants in vivo and in vitro. Virology 2001; 289:137-49. [PMID: 11601925 DOI: 10.1006/viro.2001.1118] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two viral proteins, 1a and 2a, direct replication of brome mosaic bromovirus (BMV) RNAs as well as they participate in BMV RNA recombination. To study the relationship between replication and recombination, double BMV variants that carried mutations in 1a and 2a genes were tested. The observed effects revealed that the 1a helicase and 2a N-terminal or core domains were functionally linked during both processes in vivo. The use of a series of mutant BMV replicase (RdRp) preparations demonstrated in vitro the participation of the 1a and 2a domains in BMV RNA copying and in template switching during minus-strand synthesis. The observed effects support previous observations that the characteristics of homologous and nonhomologous recombination can be modified separately by mutations at different sites on BMV replicase proteins.
Collapse
Affiliation(s)
- A Dzianott
- Plant Molecular Biology Center, Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois 60115, USA
| | | | | |
Collapse
|
5
|
Adkins S, Lewandowski DJ. Small-Scale Isolation of Viral RNA-Dependent RNA Polymerase from Protoplasts Inoculated with In Vitro Transcripts. PHYTOPATHOLOGY 2001; 91:747-752. [PMID: 18944031 DOI: 10.1094/phyto.2001.91.8.747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Cowpea chlorotic mottle virus (CCMV) replicated in tobacco suspension cell protoplasts inoculated with in vitro transcripts of CCMV RNA1, 2, and 3. CCMV RNA-dependent RNA polymerase (RdRp) isolated from these protoplasts specifically recognized CCMV and Brome mosaic virus (BMV) subgenomic RNA promoters and directed in vitro RNA synthesis in a manner indistinguishable from CCMV RdRp more laboriously isolated from systemically infected cowpea leaves. Omission of CCMV RNA3 from the protoplast inoculum or replacement with in vitro transcripts of BMV RNA3 reduced CCMV (+)-strand RNA1 and 2 accumulation to approximately 1/40 and approximately 1/10, respectively, of the level attained when CCMV RNA3 was present. The absence of CCMV RNA3 did not prevent assembly and isolation of highly active, template-dependent and template-specific CCMV RdRp, which directed synthesis of products identical in size to those of RdRp isolated from protoplasts inoculated with all three CCMV genomic RNAs. These results demonstrate that CCMV RNA1 and 2 are sufficient for CCMV replication and RdRp assembly in tobacco protoplasts. This approach for isolation of functional viral RdRp will be especially useful for viruses for which large quantities of infected tissue are unavailable, such as those with specific tissue tropisms or mutants incapable of systemic movement.
Collapse
|
6
|
Plante CA, Kim KH, Pillai-Nair N, Osman TA, Buck KW, Hemenway CL. Soluble, template-dependent extracts from Nicotiana benthamiana plants infected with potato virus X transcribe both plus- and minus-strand RNA templates. Virology 2000; 275:444-51. [PMID: 10998342 DOI: 10.1006/viro.2000.0512] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We have developed a method to convert membrane-bound replication complexes isolated from Nicotiana benthamiana plants infected with potato virus X (PVX) to a soluble, template-dependent system for analysis of RNA synthesis. Analysis of RNA-dependent RNA polymerase activity in the membrane-bound, endogenous template extracts indicated three major products, which corresponded to double-stranded versions of PVX genomic RNA and the two predominant subgenomic RNAs. The endogenous templates were removed from the membrane-bound complex by treatment with BAL 31 nuclease in the presence of Nonidet P-40 (NP-40). Upon the addition of full-length plus- or minus- strand PVX transcripts, the corresponding-size products were detected. Synthesis was not observed when red clover necrotic mosaic dianthovirus (RCNMV) RNA 2 templates were added, indicating template specificity for PVX transcripts. Plus-strand PVX templates lacking the 3' terminal region were not copied, suggesting that elements in the 3' region were required for initiation of RNA synthesis. Extracts that supported RNA synthesis from endogenous templates could also be solublized using sodium taurodeoxycholate and then rendered template-dependent by BAL 31 nuclease/NP-40 treatment. The solubilized preparations copied both plus- and minus-strand PVX transcripts, but did not support synthesis from RCNMV RNA 2. These membrane-bound and soluble template-dependent systems will facilitate analyses of viral and host components required for PVX RNA synthesis.
Collapse
Affiliation(s)
- C A Plante
- Department of Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, USA
| | | | | | | | | | | |
Collapse
|
7
|
Chen J, Ahlquist P. Brome mosaic virus polymerase-like protein 2a is directed to the endoplasmic reticulum by helicase-like viral protein 1a. J Virol 2000; 74:4310-8. [PMID: 10756046 PMCID: PMC111948 DOI: 10.1128/jvi.74.9.4310-4318.2000] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Brome mosaic virus (BMV), a positive-strand RNA virus in the alphavirus-like superfamily, encodes RNA replication proteins 1a and 2a. 1a contains a C-terminal helicase-like domain and an N-terminal domain implicated in viral RNA capping, and 2a contains a central polymerase-like domain. 1a and 2a colocalize in an endoplasmic reticulum (ER)-associated replication complex that is the site of BMV-specific RNA-dependent RNA synthesis in plant and yeast cells. 1a also localizes to the ER in the absence of 2a or viral RNA replication templates. To investigate the determinants of 2a localization, we fused 2a to the green fluorescent protein (GFP), creating a functional GFP-2a fusion that supported BMV RNA replication and subgenomic mRNA transcription. In the absence of 1a, the GFP-2a fusion was found to be diffused throughout the cytoplasm and in punctate spots not associated with any cytoplasmic organelle so far tested. Formation of these spots was dependent on the C-terminal half of 2a and may represent aggregation of a fraction of 2a. When coexpressed with 1a, GFP-2a colocalized with 1a and ER-resident protein Kar2p in a partial or complete ring around the nucleus. Consistent with these results, cell fractionation showed that both the GFP-2a fusion and wild-type (wt) 2a remained soluble when expressed alone, while in cells coexpressing 1a, most of the GFP-2a fusion or wt 2a cofractionated with 1a in the rapidly sedimenting membrane fraction. Deletion analysis showed that the N-terminal 120-amino-acid segment of 2a, containing one of two 2a regions previously shown to interact with 1a, was necessary and sufficient for 1a-directed localization of GFP-2a derivatives to the ER. These results suggest that 1a, which also interacts independently with the ER and viral RNA, is a key organizer of RNA replication complex assembly.
Collapse
Affiliation(s)
- J Chen
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
8
|
Restrepo-Hartwig M, Ahlquist P. Brome mosaic virus RNA replication proteins 1a and 2a colocalize and 1a independently localizes on the yeast endoplasmic reticulum. J Virol 1999; 73:10303-9. [PMID: 10559348 PMCID: PMC113085 DOI: 10.1128/jvi.73.12.10303-10309.1999] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The universal membrane association of positive-strand RNA virus RNA replication complexes is implicated in their function, but the intracellular membranes used vary among viruses. Brome mosaic virus (BMV) encodes two mutually interacting RNA replication proteins: 1a, which contains RNA capping and helicase-like domains, and the polymerase-like 2a protein. In cells from the natural plant hosts of BMV, 1a and 2a colocalize on the endoplasmic reticulum (ER). 1a and 2a also direct BMV RNA replication and subgenomic mRNA synthesis in the yeast Saccharomyces cerevisiae, but whether the distribution of 1a, 2a, and active replication complexes in yeast duplicates that in plant cells has not been determined. For yeast expressing 1a and 2a and replicating BMV genomic RNA3, we used double-label confocal immunofluorescence to define the localization of 1a, 2a, and viral RNA and to explore the determinants of replication complex targeting. As in plant cells, 1a and 2a colocalized on and were retained on the yeast ER, with no detectable accumulation in the Golgi apparatus. 1a and 2a were distributed over most of the ER surface, with strongest accumulation on the perinuclear ER. In vivo labeling with bromo-UTP showed that the sites of 1a and 2a accumulation were the sites of nascent viral RNA synthesis. In situ hybridization showed that completed viral RNA products accumulated predominantly in the immediate vicinity of replication complexes but that some, possibly more mature cells also accumulated substantial viral RNA in the surrounding cytoplasm distal to replication complexes. Additionally, we find that 1a localizes to the ER when expressed in the absence of other viral factors. These results show that BMV RNA replication in yeast duplicates the normal localization of replication complexes, reveal the intracellular distribution of RNA replication products, and show that 1a is at least partly responsible for the ER localization and retention of the RNA replication complex.
Collapse
Affiliation(s)
- M Restrepo-Hartwig
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
9
|
Adkins S, Kao CC. Subgenomic RNA promoters dictate the mode of recognition by bromoviral RNA-dependent RNA polymerases. Virology 1998; 252:1-8. [PMID: 9875310 DOI: 10.1006/viro.1998.9449] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Both the brome mosaic virus (BMV) and cowpea chlorotic mottle virus (CCMV) RNA-dependent RNA polymerases (RdRps) were found to recognize the BMV core subgenomic promoter in the same manner, requiring specific functional groups at positions -17, -14, -13, and -11 relative to the subgenomic initiation site (+1). For CCMV subgenomic RNA synthesis, both RdRps required the same nucleotides and four additional nucleotides at positions -20, -16, -15, and -10. The -20 nucleotide is partially responsible for the differential mode of recognition of the two promoters. These data provide evidence that the RNA can induce RdRps to alter the mode of promoter recognition.
Collapse
Affiliation(s)
- S Adkins
- Department of Biology, Indiana University, Bloomington 47405, USA
| | | |
Collapse
|
10
|
Deiman BA, Séron K, Jaspars EM, Pleij CW. Efficient transcription of the tRNA-like structure of turnip yellow mosaic virus by a template-dependent and specific viral RNA polymerase obtained by a new procedure [corrected]. J Virol Methods 1997; 64:181-95. [PMID: 9079764 DOI: 10.1016/s0166-0934(96)02166-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The RNA-dependent RNA polymerase (RdRp) of turnip yellow mosaic virus (TYMV) was isolated by a simple, new method. An active, template-dependent and specific enzyme was obtained. Although the genomic RNA of TYMV could not be transcribed completely during an in vitro RdRp assay, a complete double-stranded product was obtained when a 3' terminal RNA fragment of 83 nucleotides was used as a template. The reaction product was identified as being of negative polarity by complete digestion with ribonuclease T1. Antibodies directed to part of the N-terminal (Ab140) or C-terminal (Ab66) in vitro autocleavage products of the large non-structural polyprotein of TYMV, could both partially inhibit RdRp activity. Further purification of the RdRp preparation by ion-exchange chromatography resulted in two activity peaks with different protein compositions. Both peak fractions retained high specificity for transcription of TYMV RNA. A protein of approximately 115 kDa was detected by both Ab140 and Ab66.
Collapse
Affiliation(s)
- B A Deiman
- Leiden Institute of Chemistry, Leiden University, The Netherlands
| | | | | | | |
Collapse
|
11
|
cis-Acting Signals in Bromovirus RNA Replication and Gene Expression: Networking with Viral Proteins and Host Factors. ACTA ACUST UNITED AC 1997. [DOI: 10.1006/smvy.1997.0125] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Interactions of 3′ terminal and 5′ terminal regions of physalis mottle virus genomic RNA with its replication complex. J Biosci 1996. [DOI: 10.1007/bf02704715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
Abstract
Membrane-containing extracts isolated from tobacco plants infected with the plus-strand RNA virus, potato virus X (PVX), supported synthesis of four major, high-molecular-weight PVX RNA products (R1 to R4). Nuclease digestion and hybridization studies indicated that R1 and R2 are a mixture of partially single-stranded replicative intermediates and double-stranded replicative forms. R3 and R4 are double-stranded products containing sequences typical of the two major PVX subgenomic RNAs. The newly synthesized RNAs were demonstrated to have predominantly plus-strand polarity. Synthesis of these products was remarkably stable in the presence of ionic detergents.
Collapse
Affiliation(s)
- S V Doronin
- Department of Biochemistry, North Carolina State University, Raleigh, North Carolina 27695-7622, USA
| | | |
Collapse
|
14
|
Abstract
It is clear from the experimental data that there are some similarities in RNA replication for all eukaryotic positive-stranded RNA viruses—that is, the mechanism of polymerization of the nucleotides is probably similar for all. It is noteworthy that all mechanisms appear to utilize host membranes as a site of replication. Membranes appear to function not only as a way of compartmentalizing virus RNA replication but also appear to have a central role in the organization and functioning of the replication complex, and further studies in this area are needed. Within virus supergroups, similarities are evident between animal and plant viruses—for example, in the nature and arrangements of replication genes and in sequence similarities of functional domains. However, it is also clear that there has been considerable divergence, even within supergroups. For example, the animal alpha-viruses have evolved to encode proteinases which play a central controlling function in the replication cycle, whereas this is not common in the plant alpha-like viruses and even when it occurs, as in the tymoviruses, the strategies that have evolved appear to be significantly different. Some of the divergence could be host-dependent and the increasing interest in the role of host proteins in replication should be fruitful in revealing how different systems have evolved. Finally, there are virus supergroups that appear to have no close relatives between animals and plants, such as the animal coronavirus-like supergroup and the plant carmo-like supergroup.
Collapse
Affiliation(s)
- K W Buck
- Department of Biology, Imperial College of Science, Technology and Medicine, London, England
| |
Collapse
|
15
|
Abstract
RNA-dependent RNA polymerase from turnip crinkle virus-infected turnip transcribes both strands of a virus-associated satellite RNA, sat-RNA C (356 bases), in vitro. While both plus- and minus-strand sat-RNA C can direct the synthesis of full-length complementary-strand products, transcription of minus-strand RNA also generates two non-template-sized products, L-RNA and S-RNA (C. Song and A. E. Simon, Proc. Natl. Acad. Sci. USA 91:8792-8796, 1994). Here we report that synthesis of L-RNA and S-RNA results from terminal elongation of the 3' end of the template. L-RNA has a panhandle structure and is composed of minus-strand template covalently linked to newly synthesized RNA complementary to its 5' 190 bases. S-RNA is composed of template covalently linked to its full-length complementary strand. All minus-strand templates tested yielded S-RNA. However, synthesis of L-RNA was affected by deletion of the 3' end of the minus-strand template or several internal regions and base alterations near the 5' end or in an internal sequence immediately upstream from the template-product junction that could potentially form a heteroduplex with the 3' end. Furthermore, mutations that disrupted or restored a stem-loop involved in RNA recombination in vivo affected the level of L-RNA produced in vitro, suggesting that the mechanisms for intramolecular formation of panhandle RNAs and intermolecular RNA recombination involve similar features.
Collapse
Affiliation(s)
- C Song
- Department of Biochemistry and Molecular Biology, University of Massachusetts at Amherst 01003, USA
| | | |
Collapse
|
16
|
Abstract
It is well known that DNA-based organisms rearrange and repair their genomic DNA through recombination processes, and that these rearrangements serve as a powerful source of variability and adaptation for these organisms. In RNA viruses' genetic recombination is defined as any process leading to the exchange of information between viral RNAs. There are two types of recombination events: legitimate and illegitimate. While legitimate (homologous) recombination occurs between closely related sequences at corresponding positions, illegitimate (nonhomologous) recombination could happen at any position among the unrelated RNA molecules. In order to differentiate between the symmetrical and asymmetrical homologous crosses, Lai defined the former as homologous recombination and the latter as aberrant homologous recombination. This chapter uses brome mosaic virus (BMV), a multicomponent plant RNA virus, as an example to discuss the progress in studying the mechanism of genetic recombination in positive-stranded RNA viruses. Studies described in this chapter summarize the molecular approaches used to increase the frequency of recombination among BMV RNA segments and, more importantly, to target the sites of crossovers to specific BMV RNA regions. It demonstrates that the latter can be accomplished by introducing local complementarities to the recombining substrates.
Collapse
Affiliation(s)
- J J Bujarski
- Plant Molecular Biology Center, Northern Illinois University, De Kalb 60115
| | | | | |
Collapse
|
17
|
Abstract
Ongoing characterization of cis-acting sequences in bromovirus RNA-dependent RNA replication and transcription has been complemented in the past year by progress in elucidating the roles of virus-encoded replication factors 1a and 2a. Recent studies suggest that the helicase-like 1a and polymerase-like 2a proteins may participate in a well organized replication complex in which polymerase, helicase, and possibly capping functions operate in a highly coordinated manner.
Collapse
Affiliation(s)
- P Ahlquist
- Institute for Molecular Virology, University of Wisconsin-Madison
| |
Collapse
|
18
|
David C, Gargouri-Bouzid R, Haenni AL. RNA replication of plant viruses containing an RNA genome. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1992; 42:157-227. [PMID: 1574587 DOI: 10.1016/s0079-6603(08)60576-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- C David
- Institut Jacques Monod, Paris, France
| | | | | |
Collapse
|
19
|
Pacha RF, Ahlquist P. Use of bromovirus RNA3 hybrids to study template specificity in viral RNA amplification. J Virol 1991; 65:3693-703. [PMID: 2041089 PMCID: PMC241387 DOI: 10.1128/jvi.65.7.3693-3703.1991] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Brome mosaic virus (BMV) and cowpea chlorotic mottle virus (CCMV) are related positive-strand RNA viruses with genomes divided among RNAs 1, 2, and 3. RNAs 1 and 2 encode the viral RNA replication factors, which share extensive conservation with proteins encoded by the animal alphaviruses and diverse plant viruses. In barley protoplasts, CCMV RNAs 1 and 2 support high but distinguishable amplification of either BMV RNA3 (B3) or CCMV RNA3 (C3), while BMV RNAs 1 and 2 show even greater discrimination, amplifying C3 poorly relative to B3. To identify the cis-acting determinants of these template-specific and virus-specific differences in RNA3 accumulation, we constructed and tested a series of B3/C3 hybrids that exchange in turn the 5',3', and intercistronic noncoding regions, which contain all sequences required in cis for efficient B3 and C3 amplification. Despite suggestive prior in vitro results, the 3' noncoding regions were not the major determinant of the differences in amplification of B3 and C3 in vivo. Rather, 3' exchanges had relatively modest effects and did not transfer the distinctive asymmetry of amplification between B3 and C3. Intercistronic exchanges produced larger effects on RNA3 accumulation and transferred some of the polarized characteristics of the wild-type B3 and C3 behaviors. 5' exchanges revealed context-specific effects showing that the contribution of the B3 5' region to RNA3 amplification is dependent on some other B3 segment or segments. Together with previous results implicating the BMV and CCMV 1a genes in trans-acting discrimination between B3 and C3 (P. Traynor and P. Ahlquist, J. Virol. 64:69-77, 1990), these observations should help to guide studies of protein-RNA interactions governing template specificity in bromovirus RNA replication.
Collapse
Affiliation(s)
- R F Pacha
- Institute for Molecular Virology, University of Wisconsin, Madison 53706
| | | |
Collapse
|
20
|
Ishikawa M, Kroner P, Ahlquist P, Meshi T. Biological activities of hybrid RNAs generated by 3'-end exchanges between tobacco mosaic and brome mosaic viruses. J Virol 1991; 65:3451-9. [PMID: 2041076 PMCID: PMC241328 DOI: 10.1128/jvi.65.7.3451-3459.1991] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Sequences within the conserved, aminoacylatable 3' noncoding regions of brome mosaic virus (BMV) genomic RNAs 1, 2, and 3 direct initiation of negative-strand synthesis by BMV polymerase extracts and, like sequences at the structurally divergent but aminoacylatable 3' end of tobacco mosaic virus (TMV) RNA, are required in cis for RNA replication in vivo. A series of chimeric RNAs in which selected 3' segments were exchanged between the tyrosine-accepting BMV and histidine-accepting TMV RNAs were constructed and their amplification was examined in protoplasts inoculated with or without other BMV and TMV RNAs. TMV derivatives whose 3' noncoding region was replaced by sequences from BMV RNA3 were independently replication competent when the genes for the TMV 130,000-M(r) and 180,000-M(r) replication factors remained intact. TMV replicase can thus utilize the BMV-derived 3' end, though at lower efficiency than the wild-type (wt) TMV 3' end. Providing functional BMV RNA replicase by coinoculation with BMV genomic RNAs 1 and 2 did not improve the amplification of these hybrid genomic RNAs. By contrast, BMV RNA3 derivatives carrying the 3' noncoding region of TMV were not amplified when coinoculated with wt BMV RNA1 and RNA2, wt TMV RNA, or all three. Thus, BMV replicase appeared to be unable to utilize the TMV 3' end, and there was no evidence of intervirus complementation in the replication of any of the hybrid RNAs. In protoplasts coinoculated with BMV RNA1 and RNA2, the nonamplifiable RNA3 derivatives bearing TMV 3' sequences gave rise to diverse new rearranged or recombined RNA species that were amplifiable.
Collapse
Affiliation(s)
- M Ishikawa
- Department of Biophysics and Biochemistry, Faculty of Science, University of Tokyo, Japan
| | | | | | | |
Collapse
|
21
|
Hayes RJ, Buck KW. Complete replication of a eukaryotic virus RNA in vitro by a purified RNA-dependent RNA polymerase. Cell 1990; 63:363-8. [PMID: 2208291 DOI: 10.1016/0092-8674(90)90169-f] [Citation(s) in RCA: 192] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A soluble RNA-dependent RNA polymerase was isolated from Nicotiana tabacum plants infected with cucumber mosaic virus (CMV), which has a genome of three positive-strand RNA components, 1, 2, and 3. The purified polymerase contained two virus-encoded polypeptides and one host polypeptide. Polymerase activity was completely dependent on addition of CMV RNA as template, and the products of reaction were single-stranded (ss) RNA and double-stranded (ds) RNA, corresponding to RNAs 1, 2, and 3, and a subgenomic RNA (RNA 4) derived from RNA 3. The ratio of ssRNA to dsRNA was about 5:1, and the ssRNA was shown to be predominantly the positive strand. This demonstrates the complete replication of a eukaryotic virus RNA in vitro by a template-dependent RNA polymerase.
Collapse
Affiliation(s)
- R J Hayes
- Department of Biology, Imperial College of Science, Technology and Medicine, London, England
| | | |
Collapse
|
22
|
Kroner P, Richards D, Traynor P, Ahlquist P. Defined mutations in a small region of the brome mosaic virus 2 gene cause diverse temperature-sensitive RNA replication phenotypes. J Virol 1989; 63:5302-9. [PMID: 2585606 PMCID: PMC251196 DOI: 10.1128/jvi.63.12.5302-5309.1989] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The central portion of the brome mosaic virus (BMV) 2a protein represents the most conserved element among the related RNA replication components of a large group of positive-strand RNA viruses of humans, animals, and plants. To characterize the functions of the 2a protein, mutations were targeted to a conserved portion of the 2a gene, resulting in substitutions between amino acids 451 and 484. After the temperature profile of wild-type BMV RNA replication was defined, RNA replication by nine selected mutants was tested in barley protoplasts at permissive (24 degrees C) and nonpermissive (34 degrees C) temperatures. Four mutants did not direct RNA synthesis at either temperature. Various levels of temperature-sensitive (ts) replication occurred in the remaining five mutants. For two ts mutants, no viral RNA synthesis was detected at 34 degrees C, while for two others, an equivalent reduction in positive- and negative-strand RNA accumulation was observed. For one mutant, positive-strand accumulation was preferentially reduced over negative-strand accumulation at 34 degrees C. Moreover, this mutant and another displayed preferential suppression of genomic over subgenomic RNA accumulation at both 24 and 34 degrees C. The combination of phenotypes observed suggests that the 2a protein may play a role in the differential initiation of specific classes of viral RNA in addition to a previously suggested role in RNA elongation.
Collapse
Affiliation(s)
- P Kroner
- Department of Plant Pathology, University of Wisconsin-Madison 53706
| | | | | | | |
Collapse
|
23
|
Richards OC, Eggen R, Goldbach R, van Kammen A. High-level synthesis of cowpea mosaic virus RNA polymerase and protease in Escherichia coli. Gene X 1989; 78:135-46. [PMID: 2548928 DOI: 10.1016/0378-1119(89)90321-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
An expression system for the production of polymerase proteins of cowpea mosaic virus (CPMV) in Escherichia coli cells is described. High-level synthesis of proteins containing protease and polymerase moieties (110-kDa protein) and polymerase alone (87-kDa protein) were obtained from cells containing different plasmid constructions. Precursor and processed forms of CPMV proteins were detected by immunoblotting with antisera directed against 170-kDa precursor polyprotein and 24-kDa viral protease. Crude lysates and supernatant fractions of the lysates from E. coli cells harboring the various plasmid constructions were analysed for poly(A)-oligo(U) polymerase activity and found to be negative for CPMV activity under conditions where similar expression systems for the production of poliovirus RNA polymerase activity were positive. Thus, conditions for CPMV RNA replication may indeed be different from those for poliovirus even though the genomic organization of these viruses is similar.
Collapse
Affiliation(s)
- O C Richards
- Department of Molecular Biology, Agricultural University, Wageningen, The Netherlands
| | | | | | | |
Collapse
|
24
|
Allison RF, Janda M, Ahlquist P. Infectious in vitro transcripts from cowpea chlorotic mottle virus cDNA clones and exchange of individual RNA components with brome mosaic virus. J Virol 1988; 62:3581-8. [PMID: 3418781 PMCID: PMC253497 DOI: 10.1128/jvi.62.10.3581-3588.1988] [Citation(s) in RCA: 138] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Complete cDNA copies of genomic RNA1, RNA2, and RNA3 of cowpea chlorotic mottle virus (CCMV) were cloned 1 base downstream from a T7 RNA polymerase promoter. The mixture of capped in vitro transcripts from all three clones produced normal CCMV infections in barley protoplasts and cowpea plants. By using transcripts from these clones and from a similar set of biologically active clones of the related brome mosaic virus (BMV), all possible single component exchanges between the BMV and CCMV tripartite genomes were tested. Viral RNA replication was not observed with any heterologous combination of RNA1 and RNA2, which encode trans-acting viral RNA replication factors. However, substitution of the heterologous RNA3 into either genome produced viable hybrid viruses, both of which replicated in barley protoplasts and produced lesions on Chenopodium hybridum, a local lesion host for both parent viruses. In hybrid infections, BMV and CCMV coat proteins each readily packaged RNAs from the heterologous virus, but BMV RNAs were replicated to a higher level than CCMV RNAs, even when trans-acting RNA replication factors were provided by CCMV genes. Neither hybrid systemically infected the natural host of either parent virus, suggesting that host specificity determinants in BMV and CCMV are encoded by RNA3 and at least one other genomic RNA.
Collapse
Affiliation(s)
- R F Allison
- Institute of Molecular Virology, University of Wisconsin-Madison 53706
| | | | | |
Collapse
|
25
|
Quadt R, Verbeek HJ, Jaspars EM. Involvement of a nonstructural protein in the RNA synthesis of brome mosaic virus. Virology 1988; 165:256-61. [PMID: 3388771 DOI: 10.1016/0042-6822(88)90679-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
RNA-dependent RNA polymerase (RdRp) was prepared from brome mosaic virus (BMV)-infected barley by a procedure including Nonidet-P40 treatment. The enzyme proved to be highly active, specific, and almost completely template dependent without the need for nuclease treatment [W. A. Miller, and T. C. Hall (1983) Virology 125, 236-241] or DEAE ion exchange chromatography [K. Maekawa and I. Furusawa (1984) Ann. Phytopathol. Soc. Japan 50, 491-499]. Two C-terminal peptides P1C and P2C derived from the nonstructural BMV proteins P1 and P2, respectively, were synthesized. Antibodies raised against these peptides were able to recognize the corresponding native proteins present in RdRp preparations. Antibodies directed against P1C were capable of completely blocking the transcription of BMV RNA in vitro. This is the first experimental evidence that a nonstructural viral protein is present in an enzyme complex involved in tricornaviral RNA synthesis.
Collapse
Affiliation(s)
- R Quadt
- Department of Biochemistry, Leiden University, The Netherlands
| | | | | |
Collapse
|
26
|
Dreher TW, Hall TC. Mutational analysis of the sequence and structural requirements in brome mosaic virus RNA for minus strand promoter activity. J Mol Biol 1988; 201:31-40. [PMID: 3418698 DOI: 10.1016/0022-2836(88)90436-6] [Citation(s) in RCA: 138] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
An RNA-dependent RNA polymerase (replicase) activity that specifically copies brome mosaic virus (BMV) RNAs in vitro can be prepared from BMV-infected barley leaves. The signals directing complementary (minus) strand synthesis reside within the 3' 134-nucleotide-long tRNA-like structure that is common to each of the virion RNAs. By studying the influence of minus strand synthesis of numerous mutations introduced throughout this region of the RNA, we have mapped in detail the sequence and structural elements necessary for minus strand promoter activity. Sequence alterations (either substitutions or small, structurally discrete deletions) in most parts of the tRNA-like structure resulted in decreased minus strand synthesis. This suggests that BMV replicase is a large enzyme, possibly composed of several subunits. The lowest activities, 5 to 8% of wild type, were observed for mutants with substitutions at three separate loci, identifying one structural and two sequence-specific elements essential for optimal promoter activity. (1) Destabilization of the pseudoknot structure in the aminoacyl acceptor stem resulted in low promoter activity, demonstrating the importance of a tRNA-like conformation. (2) Substitution of the C residue adjacent to the 3' terminus resulted in low promoter activity, probably by interfering with strand initiation. (3) The low activities resulting from substitutions and a small deletion in arm C suggest this region of the RNA to be a major feature involved in replicase binding. In particular, nucleotides within the loop of arm C appear to be involved in a sequence-specific interaction with the replicase.
Collapse
Affiliation(s)
- T W Dreher
- Department of Biology, Texas A & M University, College Station 77843-3258
| | | |
Collapse
|
27
|
Ishikawa M, Meshi T, Watanabe Y, Okada Y. Replication of chimeric tobacco mosaic viruses which carry heterologous combinations of replicase genes and 3' noncoding regions. Virology 1988; 164:290-3. [PMID: 2452515 DOI: 10.1016/0042-6822(88)90648-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Three tobacco mosaic virus (TMV)-L (tomato strain)-derived chimeras, designated OL1, LG11, or LK31, were constructed by replacing the 3' noncoding region with the corresponding sequence of TMV-OM (common strain), cucumber green mottle mosaic virus (CGMMV), or TMV-Cc (cowpea strain), respectively. The genomic RNAs of TMV-L, -OM, and CGMMV carry histidine-accepting tRNA-like structures at their 3' termini, while the genome of TMV-Cc accepts valine. The three chimeric viruses were able to multiply in both tobacco protoplasts and plants. Multiplication of OL1 in protoplasts was similar to that of the parental strain, L, but in the cases of LG11 and LK31 multiplication was decreased. Sequence analyses of progeny RNAs revealed that viruses with chimeric sequences propagated. These data suggested that TMV-L replicase recognizes the 3' terminal structures of TMV-OM, CGMMV, and TMV-Cc and can initiate minus-strand RNA synthesis. The relationship between the virus-coded component(s) of TMV replicase and the 3' terminal region may not be so stringent.
Collapse
Affiliation(s)
- M Ishikawa
- Department of Biophysics and Biochemistry, Faculty of Science, University of Tokyo, Japan
| | | | | | | |
Collapse
|
28
|
Horikoshi M, Nakayama M, Yamaoka N, Furusawa I, Shishiyama J. Brome mosaic virus coat protein inhibits viral RNA synthesis in vitro. Virology 1987; 158:15-9. [DOI: 10.1016/0042-6822(87)90232-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/1986] [Accepted: 01/05/1987] [Indexed: 10/26/2022]
|
29
|
French R, Ahlquist P. Intercistronic as well as terminal sequences are required for efficient amplification of brome mosaic virus RNA3. J Virol 1987; 61:1457-65. [PMID: 3573144 PMCID: PMC254123 DOI: 10.1128/jvi.61.5.1457-1465.1987] [Citation(s) in RCA: 159] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The genome of brome mosaic virus (BMV) is divided among messenger polarity RNA1, RNA2, and RNA3 (3.2, 2.9, and 2.1 kilobases, respectively). cis-Acting sequences required for BMV RNA amplification were investigated with RNA3. By using expressible cDNA clones, deletions were constructed throughout RNA3 and tested in barley protoplasts coinoculated with RNA1 and RNA2. In contrast to requirements for 5'- and 3'-terminal noncoding sequences, either of the two RNA3 coding regions can be deleted individually and both can be simultaneously inactivated by N-terminal frameshift mutations without significantly interfering with amplification of RNA3 or production of its subgenomic mRNA. However, simultaneous major deletions in both coding regions greatly attenuate RNA3 accumulation. RNA3 levels can be largely restored by insertion of a heterologous, nonviral sequence in such mutants, suggesting that RNA3 requires physical separation of its terminal domains or a minimum overall size for normal replication or stability. Unexpectedly, deletions in a 150-base segment of the intercistronic noncoding region drastically reduce RNA3 accumulation. This segment contains a sequence element homologous to sequences found near the 5' ends of BMV RNA1 and RNA2 and in analogous positions in the three genomic RNAs of the related cucumber mosaic virus, suggesting a possible role in plus-strand synthesis.
Collapse
|
30
|
Young ND, Zaitlin M. An analysis of tobacco mosaic virus replicative structures synthesized in vitro. PLANT MOLECULAR BIOLOGY 1986; 6:455-465. [PMID: 24307422 DOI: 10.1007/bf00027137] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/1985] [Revised: 03/12/1986] [Accepted: 03/18/1986] [Indexed: 06/02/2023]
Abstract
The RNA structures synthesized in vitro by a crude enzyme complex from tobacco mosaic virus (TMV)-infected leaves have been analyzed; the major viral-specific products were similar to TMV-replicative form (RF) and-replicative intermediate (RI) in electrophoretic behavior and ribonuclease sensitivity. Synthesis of these RF-like and RI-like structures neither required nor responded to added viral RNA, but did require all four ribonucleotide triphosphates. Enriched radiolabeled RF-like and RI-like RNA fractions were isolated from non-denaturing agarose gels by electroelution and hybridized to a collection of TMV sequences cloned into bacteriophage M13. Enriched RF-RNA hybridized to sequences of both plus and minus polarity, while enriched RI-RNA hybridized only to inserts of minus polarity, indicating only plus strand synthesis in this fraction. Most of the label incorporated into the plus strand of the enriched RF-RNA was found near the 3'-end of this strand, while most of the label incorporated into enriched RI-RNA was found several hundred bases from the 5'-end of the plus strand.
Collapse
Affiliation(s)
- N D Young
- Department of Plant Pathology, Cornell University, Ithaca, NY, 14853, U.S.A
| | | |
Collapse
|
31
|
Miller WA, Bujarski JJ, Dreher TW, Hall TC. Minus-strand initiation by brome mosaic virus replicase within the 3' tRNA-like structure of native and modified RNA templates. J Mol Biol 1986; 187:537-46. [PMID: 3754904 DOI: 10.1016/0022-2836(86)90332-3] [Citation(s) in RCA: 164] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
An RNA-dependent RNA polymerase (replicase) extract from brome mosaic virus-infected barley leaves has been shown to initiate synthesis of (-) sense RNA from (+) sense virion RNA. Initiation occurred de novo, as demonstrated by the incorporation of [gamma-32P]GTP into the product. Sequencing using cordycepin triphosphate to terminate (-) strands during their synthesis by the replicase generated sequence ladders that confirmed that copying was accurate, and that initiation occurred very close to the 3' end. The precise site of initiation was further defined by testing the replicase template activity after stepwise removal of 3'-terminal nucleotides. Whereas removal of the terminal A did not decrease template activity, removal of the next nucleotide (C-2) did. Thus, initiation almost certainly occurs opposite the penultimate 3'-nucleotide (C-2) in vitro. The structure of the double-stranded replicative form of RNA isolated from brome mosaic virus-infected leaves was consistent with such a mechanism occurring in vivo, in that it lacked the 3'-terminal A found on virion RNAs. The specific site of (-) strand initiation and normal template activity were retained for RNAs with as many as 15 to 30 A residues added to the 3' end. However, only limited oligonucleotide 3' extensions can be present on active templates. In order to assess the 5' extent of sequences required for an active template, a 134-nucleotide-long fragment of brome mosaic virus RNA, corresponding to the tRNA-like structure, was generated. This RNA had high template activity, but a shorter 3' (85-nucleotide) fragment was inactive. RNAs with various heterologous sequences 5' to position 134 also showed high template activity. Thus, the 3'-terminal tRNA-like structure common to all four brome mosaic virus virion RNAs contains all of the signals required for initiation of replication, and sequences 5' to it do not play a role in template selection.
Collapse
|
32
|
Saunders K, Kaesberg P. Template-dependent RNA polymerase from black beetle virus-infected Drosophila melanogaster cells. Virology 1985; 147:373-81. [PMID: 2416118 DOI: 10.1016/0042-6822(85)90139-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Infection of cultured cells of Drosophila melanogaster with black beetle virus (BBV) induces an RNA polymerase that is bound to cellular particulate material in a complex with a template RNA. We have solubilized the polymerase by treatment of the relevant particulates with detergents such as dodecyl-beta-D-maltoside. The polymerase activity was made dependent upon exogenous RNA by destruction of the endogenous template RNA with micrococcal nuclease. Addition of BBV RNA1 or RNA2 induced synthesis of full-length negative-strand RNA isolated as a double-stranded complex with the added RNA. Newly synthesized plus strands were also detected in the RNA2 complexes. Certain other viral RNAs also induced synthesis of their negative strands.
Collapse
|
33
|
Miller WA, Dreher TW, Hall TC. Synthesis of brome mosaic virus subgenomic RNA in vitro by internal initiation on (-)-sense genomic RNA. Nature 1985; 313:68-70. [PMID: 3838107 DOI: 10.1038/313068a0] [Citation(s) in RCA: 222] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The genomes of many (+)-stranded RNA viruses, including plant viruses and alphaviruses, consist of polycistronic RNAs whose internal genes are expressed via subgenomic messenger RNAs. The mechanism(s) by which these subgenomic mRNAs arise are poorly understood. Based on indirect evidence, three models have been proposed: (1) internal initiation by the replicase on the (-)-strand of genomic RNA, (2) premature termination during (-)-strand synthesis, followed by independent replication of the subgenomic RNA and (3) processing by nuclease cleavage of genome-length RNA. Using an RNA-dependent RNA polymerase (replicase) preparation from barley leaves infected with brome mosaic virus (BMV) to synthesize the viral subgenomic RNA in vitro, we now provide evidence that subgenomic RNA arises by internal initiation on the (-)-strand of genomic RNA. We believe that this also represents the first in vitro demonstration of a replicase from a eukaryotic (+)-stranded RNA virus capable of initiating synthesis of (+)-sense RNA.
Collapse
|
34
|
Dreher TW, Bujarski JJ, Hall TC. Mutant viral RNAs synthesized in vitro show altered aminoacylation and replicase template activities. Nature 1984; 311:171-5. [PMID: 6472477 DOI: 10.1038/311171a0] [Citation(s) in RCA: 95] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A remarkable feature of the genomic RNAs of several plant viruses is the presence at the 3' end of a region that exhibits tRNA-like functions, including aminoacylation. The three genomic and single subgenomic RNAs of brome mosaic virus (BMV) accept tyrosine in vitro and in vivo, the smallest 3' fragment that can be aminoacylated being about 135 nucleotides long. The roles of the tRNA-like properties are incompletely understood, but an involvement in replication rather than translational functions is likely. We have recently shown (J.J.B. et al., in preparation) that the features recognized by the BMV RNA-specific RNA-dependent RNA polymerase (replicase) for the use of BMV RNA for complementary strand synthesis also lie within the tRNA-like structure. To distinguish between the roles of BMV RNA as a substrate for tyrosyl-tRNA synthetase and BMV replicase, we have now produced BMV RNAs with mutations at two separate loci within the tRNA-like structure. This has been achieved by transcription in vitro from specifically mutagenized cDNA, an approach permitting the generation of targeted mutants without regard to their viability in vivo.
Collapse
|
35
|
Miller W, Hall T. RNA-dependent RNA polymerase isolated from cowpea chlorotic mottle virus-infected cowpeas is specific for bromoviral RNA. Virology 1984; 132:53-60. [DOI: 10.1016/0042-6822(84)90090-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/1983] [Accepted: 09/27/1983] [Indexed: 11/25/2022]
|
36
|
Ahlquist P, Bujarski JJ, Kaesberg P, Hall TC. Localization of the replicase recognition site within brome mosaic virus RNA by hybrid-arrested RNA synthesis. PLANT MOLECULAR BIOLOGY 1984; 3:37-44. [PMID: 24310258 DOI: 10.1007/bf00023414] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/1983] [Revised: 12/14/1983] [Accepted: 12/14/1983] [Indexed: 06/02/2023]
Abstract
3' terminal fragments of BMV RNA as short as 153 bases in length serve as efficient templates in vitro for BMV-specific RNA polymerase. Template activity of such fragments or of native BMV RNA is abolished when cDNA fragments as short as 39 bases are hybridized to their 3' termini. Hybridization of cDNa fragments to regions of BMV RNA 200 or more bases distal to the 3' end has no discernible effect on initiation and little effect on elongation. We conclude that BMV RNA polymerase initiates binding with an RNA template through a mechanism mediated by the tRNA-like 3' end of BMV RNA, requiring at least some of the last 39, but no more than the last 153 bases.
Collapse
Affiliation(s)
- P Ahlquist
- Biophysics Laboratory of the Graduate School, University of Wisconsin-Madison, 53706, Madison, WI, U.S.A
| | | | | | | |
Collapse
|
37
|
|