1
|
Milman O, Yelin I, Kishony R. Systematic identification of gene-altering programmed inversions across the bacterial domain. Nucleic Acids Res 2023; 51:553-573. [PMID: 36617974 PMCID: PMC9881135 DOI: 10.1093/nar/gkac1166] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/22/2022] [Accepted: 01/05/2023] [Indexed: 01/10/2023] Open
Abstract
Programmed chromosomal inversions allow bacteria to generate intra-population genotypic and functional heterogeneity, a bet-hedging strategy important in changing environments. Some programmed inversions modify coding sequences, producing different alleles in several gene families, most notably in specificity-determining genes such as Type I restriction-modification systems, where systematic searches revealed cross phylum abundance. Yet, a broad, gene-independent, systematic search for gene-altering programmed inversions has been absent, and little is known about their genomic sequence attributes and prevalence across gene families. Here, identifying intra-species variation in genomes of over 35 000 species, we develop a predictive model of gene-altering inversions, revealing key attributes of their genomic sequence attributes, including gene-pseudogene size asymmetry and orientation bias. The model predicted over 11,000 gene-altering loci covering known targeted gene families, as well as novel targeted families including Type II restriction-modification systems, a protein of unknown function, and a fusion-protein containing conjugative-pilus and phage tail domains. Publicly available long-read sequencing datasets validated representatives of these newly predicted inversion-targeted gene families, confirming intra-population genetic heterogeneity. Together, these results reveal gene-altering programmed inversions as a key strategy adopted across the bacterial domain, and highlight programmed inversions that modify Type II restriction-modification systems as a possible new mechanism for maintaining intra-population heterogeneity.
Collapse
Affiliation(s)
- Oren Milman
- Faculty of Biology, Technion–Israel Institute of Technology, Haifa, Israel
| | - Idan Yelin
- Faculty of Biology, Technion–Israel Institute of Technology, Haifa, Israel
| | - Roy Kishony
- To whom correspondence should be addressed. Tel: +972 4 8293737;
| |
Collapse
|
2
|
Feng J, Gao L, Li L, Zhang Z, Wu C, Li F, Tong Y. Characterization and genome analysis of novel Klebsiella phage BUCT556A with lytic activity against carbapenemase-producing Klebsiella pneumoniae. Virus Res 2021; 303:198506. [PMID: 34271040 DOI: 10.1016/j.virusres.2021.198506] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 02/07/2023]
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CRKP) have spread globally and led to the limited choice of antimicrobial treatment of K. pneumoniae-induced infections. Bacteriophages are considered as an effective strategy against bacterial infections. In this study, we isolated a novel Klebsiella phage BUCT556A with lytic activity against KPC-producing K. pneumoniae, which was a multi-drug resistant isolate. Phage BUCT556A had a symmetrical head and a long, non-contractile tail, belonging to the family Siphoviridae, order Caudoviridae. Phage BUCT556A had a relatively narrow host range, and a medium burst size of 91 PFU/cell. It was stable at broad temperature/pH range, and exhibited good tolerance to chloroform. The genome of phage BUCT556A was a 49, 376-bp linear double-stranded DNA molecule with average G + C content of 50.2%, and contained 75 open reading frames. There was no tRNA, antibiotic resistance, toxin, virulence related genes or lysogen-formation gene clusters detected in the genome of phage BUCT556A. Phylogenetic analyses based on the major capsid protein Mcp suggested that this phage had a close relationship with Klebsiella phage KLPN1. Together, through phenotypic combined with genomic DNA sequencing and analyses, our study suggests that phage BUCT556A has the potential to be used as a bacterial treatment tool for multidrug-resistant strains K. pneumoniae.
Collapse
Affiliation(s)
- Jiao Feng
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China.
| | - Liting Gao
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - Lu Li
- Physical and chemical laboratory, Taian centers for diseases prevention control, Taian 271000, China
| | - Zhijun Zhang
- Clinical Laboratory center, Taian City Central Hospital, Taian 271000, China
| | - Changxin Wu
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - Fei Li
- Clinical Laboratory center, Taian City Central Hospital, Taian 271000, China; College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
3
|
Phage Proteins Required for Tail Fiber Assembly Also Bind Specifically to the Surface of Host Bacterial Strains. J Bacteriol 2021; 203:JB.00406-20. [PMID: 33139482 DOI: 10.1128/jb.00406-20] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/28/2020] [Indexed: 02/07/2023] Open
Abstract
To initiate their life cycle, phages must specifically bind to the surface of their bacterial hosts. Long-tailed phages often interact with the cell surface using fibers, which are elongated intertwined trimeric structures. The folding and assembly of these complex structures generally requires the activity of an intra- or intermolecular chaperone protein. Tail fiber assembly (Tfa) proteins are a very large family of proteins that serve as chaperones for fiber folding in a wide variety of phages that infect diverse species. A recent structural study showed that the Tfa protein from Escherichia coli phage Mu (TfaMu) mediates fiber folding and stays bound to the distal tip of the fiber, becoming a component of the mature phage particle. This finding revealed the potential for TfaMu to also play a role in cell surface binding. To address this issue, we have here shown that TfaMu binds to lipopolysaccharide (LPS), the cell surface receptor of phage Mu, with a similar strength as to the fiber itself. Furthermore, we have found that TfaMu and the Tfa protein from E. coli phage P2 bind LPS with distinct specificities that mirror the host specificity of these two phages. By comparing the sequences of these two proteins, which are 93% identical, we identified a single residue that is responsible for their distinct LPS-binding behaviors. Although we have not yet found conditions under which Tfa proteins influence host range, the potential for such a role is now evident, as we have demonstrated their ability to bind LPS in a strain-specific manner.IMPORTANCE With the growing interest in using phages to combat antibiotic-resistant infections or manipulate the human microbiome, establishing approaches for the modification of phage host range has become an important research topic. Tfa proteins are a large family of proteins known previously to function as chaperones for the folding of phage fibers, which are crucial determinants of host range for long-tailed phages. Here, we reveal that some Tfa proteins are bi-functional, with the additional activity of binding to LPS, the surface binding receptor for many phages. This discovery opens up new potential avenues for altering phage host range through engineering of the surface binding specificity of Tfa proteins.
Collapse
|
4
|
Sakai K, Iwazaki T, Yamashita E, Nakagawa A, Sakuraba F, Enomoto A, Inagaki M, Takeda S. Observation of unexpected molecular binding activity for Mu phage tail fibre chaperones. J Biochem 2019; 166:529-535. [PMID: 31504613 DOI: 10.1093/jb/mvz068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 08/16/2019] [Indexed: 02/06/2023] Open
Abstract
In the history of viral research, one of the important biological features of bacteriophage Mu is the ability to expand its host range. For extending the host range, the Mu phage encodes two alternate tail fibre genes. Classical amber mutation experiments and genome sequence analysis of Mu phage suggested that gene products (gp) of geneS (gpS = gp49) and gene S' (gpS' = gp52) are tail fibres and that gene products of geneU (gpU = gp50) and geneU' (gpU' = gp51) work for tail fibre assembly or tail fibre chaperones. Depending on the gene orientation, a pair of genes 49-50 or 52-51 is expressed for producing different tail fibres that enable Mu phage to recognize different host cell surface. Since several fibrous proteins including some phage tail fibres employ their specific chaperone to facilitate folding and prevent aggregation, we expected that gp50 or gp51 would be a specific chaperone for gp49 and gp52, respectively. However, heterologous overexpression results for gp49 or gp52 (tail fibre subunit) together with gp51 and gp50, respectively, were also effective in producing soluble Mu tail fibres. Moreover, we successfully purified non-native gp49-gp51 and gp52-gp50 complexes. These facts showed that gp50 and gp51 were fungible and functional for both gp49 and gp52 each other.
Collapse
Affiliation(s)
- Kohei Sakai
- Faculty of Science and Technology, Division of Molecular Science, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Takuma Iwazaki
- Faculty of Science and Technology, Division of Molecular Science, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Eiki Yamashita
- Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Atsushi Nakagawa
- Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Fumiya Sakuraba
- Faculty of Science and Technology, Division of Molecular Science, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Atsushi Enomoto
- Faculty of Science and Technology, Division of Molecular Science, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Minoru Inagaki
- Department of Life Science, Faculty of Bioresources, Mie University, 1577 Kurima-machiya, Tsu, Mie 514-8507, Japan
| | - Shigeki Takeda
- Faculty of Science and Technology, Division of Molecular Science, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| |
Collapse
|
5
|
Phage tail fibre assembly proteins employ a modular structure to drive the correct folding of diverse fibres. Nat Microbiol 2019; 4:1645-1653. [DOI: 10.1038/s41564-019-0477-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 05/01/2019] [Indexed: 12/18/2022]
|
6
|
Letarov AV, Kulikov EE. Adsorption of bacteriophages on bacterial cells. BIOCHEMISTRY (MOSCOW) 2018. [DOI: 10.1134/s0006297917130053] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
7
|
Toussaint A, Rice PA. Transposable phages, DNA reorganization and transfer. Curr Opin Microbiol 2017; 38:88-94. [PMID: 28551392 DOI: 10.1016/j.mib.2017.04.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/13/2017] [Accepted: 04/19/2017] [Indexed: 02/07/2023]
Abstract
Transposable bacteriophages have long been known to necessarily and randomly integrate their DNA in their host genome, where they amplify by successive rounds of replicative transposition, profoundly reorganizing that genome. As a result of such transposition, a conjugative element (plasmid or genomic island), can either become integrated in the chromosome or receive chromosome segments, which can then be transferred to new hosts by conjugation. In recent years, more and more transposable phages have been isolated or detected by sequence similarity searches in a wide range of bacteria, supporting the idea that this mode of HGT may be pervasive in natural bacterial populations.
Collapse
Affiliation(s)
- Ariane Toussaint
- Génétique et Physiologie Bactérienne, Université Libre de Bruxelles, IBMM-DBM, 12 Rue des Professeurs Jeneer et Brachet, B 6041 Gosselies, Belgium.
| | - Phoebe A Rice
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 E. 57th St., Chicago, IL 60637, USA
| |
Collapse
|
8
|
Baltus RE, Badireddy AR, Delavari A, Chellam S. Free Diffusivity of Icosahedral and Tailed Bacteriophages: Experiments, Modeling, and Implications for Virus Behavior in Media Filtration and Flocculation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:1433-1440. [PMID: 28035813 DOI: 10.1021/acs.est.6b05323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The aqueous bulk diffusivities of several near-spherical (icosahedral) and nonspherical (tailed) bacterial viruses were experimentally determined by measuring their flux across large pore membranes and using dynamic light scattering, with excellent agreement between values measured using the two techniques. For the icosahedral viruses, good agreement was also found between measured diffusivity values and values predicted with the Stokes-Einstein equation. However, when the tailed viruses were approximated as spheres, poor agreement was found between measured values and Stokes-Einstein predictions. The shape of the tailed organisms was incorporated into two modeling approaches used to predict diffusivity. Model predictions were found to be in good agreement with measured values, demonstrating the importance of the tail in the diffusive transport of these viruses. Our calculations also show that inaccurate estimates of virus diffusion can lead to significant errors when predicting diffusive contributions to flocculation and to single collector efficiency in media filtration.
Collapse
Affiliation(s)
- Ruth E Baltus
- Department of Chemical and Biomolecular Engineering, Clarkson University , Potsdam, New York 13699-5705, United States
| | - Appala Raju Badireddy
- Department of Civil and Environmental Engineering, University of Vermont , Burlington, Vermont 05405, United States
| | - Armin Delavari
- Department of Chemical and Biomolecular Engineering, Clarkson University , Potsdam, New York 13699-5705, United States
| | - Shankararaman Chellam
- Department of Civil Engineering, Texas A&M University , College Station, Texas 77843-3136, United States
- Department of Chemical Engineering, Texas A&M University , College Station, Texas 77843-3122, United States
| |
Collapse
|
9
|
Abstract
Reversible site-specific DNA inversion reactions are widely distributed in bacteria and their viruses. They control a range of biological reactions that most often involve alterations of molecules on the surface of cells or phage. These programmed DNA rearrangements usually occur at a low frequency, thereby preadapting a small subset of the population to a change in environmental conditions, or in the case of phages, an expanded host range. A dedicated recombinase, sometimes with the aid of additional regulatory or DNA architectural proteins, catalyzes the inversion of DNA. RecA or other components of the general recombination-repair machinery are not involved. This chapter discusses site-specific DNA inversion reactions mediated by the serine recombinase family of enzymes and focuses on the extensively studied serine DNA invertases that are stringently controlled by the Fis-bound enhancer regulatory system. The first section summarizes biological features and general properties of inversion reactions by the Fis/enhancer-dependent serine invertases and the recently described serine DNA invertases in Bacteroides. Mechanistic studies of reactions catalyzed by the Hin and Gin invertases are then discussed in more depth, particularly with regards to recent advances in our understanding of the function of the Fis/enhancer regulatory system, the assembly of the active recombination complex (invertasome) containing the Fis/enhancer, and the process of DNA strand exchange by rotation of synapsed subunit pairs within the invertasome. The role of DNA topological forces that function in concert with the Fis/enhancer controlling element in specifying the overwhelming bias for DNA inversion over deletion and intermolecular recombination is emphasized.
Collapse
Affiliation(s)
- Reid C. Johnson
- Department of Biological Chemistry, UCLA School of Medicine, Los Angeles, CA 90095-1737, Phone: 310 825-7800, Fax: 310 206-5272
| |
Collapse
|
10
|
Goldberg A, Fridman O, Ronin I, Balaban NQ. Systematic identification and quantification of phase variation in commensal and pathogenic Escherichia coli. Genome Med 2014; 6:112. [PMID: 25530806 PMCID: PMC4272514 DOI: 10.1186/s13073-014-0112-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 11/14/2014] [Indexed: 11/10/2022] Open
Abstract
Bacteria have been shown to generate constant genetic variation in a process termed phase variation. We present a tool based on whole genome sequencing that allows detection and quantification of coexisting genotypes mediated by genomic inversions in bacterial cultures. We tested our method on widely used strains of Escherichia coli, and detected stable and reproducible phase variation in several invertible loci. These are shown here to be responsible for maintaining constant variation in populations grown from a single colony. Applying this tool on other bacterial strains can shed light on how pathogens adjust to hostile environments by diversifying their genomes.
Collapse
Affiliation(s)
- Amir Goldberg
- Racah Institute of Physics and the Sudarsky Center for Computational Biology, The Hebrew University, Edmond J. Safra Campus, Jerusalem, 91904 Israel
| | - Ofer Fridman
- Racah Institute of Physics and the Sudarsky Center for Computational Biology, The Hebrew University, Edmond J. Safra Campus, Jerusalem, 91904 Israel
| | - Irine Ronin
- Racah Institute of Physics and the Sudarsky Center for Computational Biology, The Hebrew University, Edmond J. Safra Campus, Jerusalem, 91904 Israel
| | - Nathalie Q Balaban
- Racah Institute of Physics and the Sudarsky Center for Computational Biology, The Hebrew University, Edmond J. Safra Campus, Jerusalem, 91904 Israel
| |
Collapse
|
11
|
Phylogenomic network and comparative genomics reveal a diverged member of the ΦKZ-related group, marine vibrio phage ΦJM-2012. J Virol 2013; 87:12866-78. [PMID: 24067958 DOI: 10.1128/jvi.02656-13] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Bacteriophages are the largest reservoir of genetic diversity. Here we describe the novel phage ΦJM-2012. This natural isolate from marine Vibrio cyclitrophicus possesses very few gene contents relevant to other well-studied marine Vibrio phages. To better understand its evolutionary history, we built a mathematical model of pairwise relationships among 1,221 phage genomes, in which the genomes (nodes) are linked by edges representing the normalized number of shared orthologous protein families. This weighted network revealed that ΦJM-2012 was connected to only five members of the Pseudomonas ΦKZ-like phage family in an isolated network, strongly indicating that it belongs to this phage group. However, comparative genomic analyses highlighted an almost complete loss of colinearity with the ΦKZ-related genomes and little conservation of gene order, probably reflecting the action of distinct evolutionary forces on the genome of ΦJM-2012. In this phage, typical conserved core genes, including six RNA polymerase genes, were frequently displaced and the hyperplastic regions were rich in both unique genes and predicted unidirectional promoters with highly correlated orientations. Further, analysis of the ΦJM-2012 genome showed that segments of the conserved N-terminal parts of ΦKZ tail fiber paralogs exhibited evidence of combinatorial assortment, having switched transcriptional orientation, and there was recruitment and/or structural changes among phage endolysins and tail spike protein. Thus, this naturally occurring phage appears to have branched from a common ancestor of the ΦKZ-related groups, showing a distinct genomic architecture and unique genes that most likely reflect adaptation to its chosen host and environment.
Collapse
|
12
|
Ritacco CJ, Kamtekar S, Wang J, Steitz TA. Crystal structure of an intermediate of rotating dimers within the synaptic tetramer of the G-segment invertase. Nucleic Acids Res 2013; 41:2673-82. [PMID: 23275567 PMCID: PMC3575834 DOI: 10.1093/nar/gks1303] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The serine family of site-specific DNA recombination enzymes accomplishes strand cleavage, exchange and religation using a synaptic protein tetramer. A double-strand break intermediate in which each protein subunit is covalently linked to the target DNA substrate ensures that the recombination event will not damage the DNA. The previous structure of a tetrameric synaptic complex of γδ resolvase linked to two cleaved DNA strands had suggested a rotational mechanism of recombination in which one dimer rotates 180° about the flat exchange interface for strand exchange. Here, we report the crystal structure of a synaptic tetramer of an unliganded activated mutant (M114V) of the G-segment invertase (Gin) in which one dimer half is rotated by 26° or 154° relative to the other dimer when compared with the dimers in the synaptic complex of γδ resolvase. Modeling shows that this rotational orientation of Gin is not compatible with its being able to bind uncleaved DNA, implying that this structure represents an intermediate in the process of strand exchange. Thus, our structure provides direct evidence for the proposed rotational mechanism of site-specific recombination.
Collapse
Affiliation(s)
- Christopher J. Ritacco
- Department of Molecular Biophysics and Biochemistry, Department of Chemistry and Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA
| | - Satwik Kamtekar
- Department of Molecular Biophysics and Biochemistry, Department of Chemistry and Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA
| | - Jimin Wang
- Department of Molecular Biophysics and Biochemistry, Department of Chemistry and Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA
| | - Thomas A. Steitz
- Department of Molecular Biophysics and Biochemistry, Department of Chemistry and Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA
- *To whom correspondence should be addressed. Tel: +203 432 5617; Fax: +203 432 3282;
| |
Collapse
|
13
|
Harshey RM. The Mu story: how a maverick phage moved the field forward. Mob DNA 2012; 3:21. [PMID: 23217166 PMCID: PMC3562280 DOI: 10.1186/1759-8753-3-21] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 11/13/2012] [Indexed: 01/12/2023] Open
Abstract
This article traces the pioneering contributions of phage Mu to our current knowledge of how movable elements move/transpose. Mu provided the first molecular evidence of insertion elements in E. coli, postulated by McClintock to control gene activity in maize in the pre-DNA era. An early Mu-based model successfully explained all the DNA rearrangements associated with transposition, providing a blueprint for navigating the deluge of accumulating reports on transposable element activity. Amplification of the Mu genome via transposition meant that its transposition frequencies were orders of magnitude greater than any rival, so it was only natural that the first in vitro system for transposition was established for Mu. These experiments unraveled the chemistry of the phosphoryl transfer reaction of transposition, and shed light on the nucleoprotein complexes within which they occur. They hastened a similar analysis of other transposons and ushered in the structural era where many transpososomes were crystallized. While it was a lucky break that the mechanism of HIV DNA integration turned out to be similar to that of Mu, it is no accident that current drugs for HIV integrase inhibitors owe their discovery to trailblazing experiments done with Mu. Shining the light on how movable elements restructure genomes, Mu has also given of itself generously to understanding the genome.
Collapse
Affiliation(s)
- Rasika M Harshey
- Section of Molecular Genetics and Microbiology and Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
14
|
Nowacki M, Shetty K, Landweber LF. RNA-Mediated Epigenetic Programming of Genome Rearrangements. Annu Rev Genomics Hum Genet 2011; 12:367-89. [PMID: 21801022 DOI: 10.1146/annurev-genom-082410-101420] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
RNA, normally thought of as a conduit in gene expression, has a novel mode of action in ciliated protozoa. Maternal RNA templates provide both an organizing guide for DNA rearrangements and a template that can transport somatic mutations to the next generation. This opportunity for RNA-mediated genome rearrangement and DNA repair is profound in the ciliate Oxytricha, which deletes 95% of its germline genome during development in a process that severely fragments its chromosomes and then sorts and reorders the hundreds of thousands of pieces remaining. Oxytricha's somatic nuclear genome is therefore an epigenome formed through RNA templates and signals arising from the previous generation. Furthermore, this mechanism of RNA-mediated epigenetic inheritance can function across multiple generations, and the discovery of maternal template RNA molecules has revealed new biological roles for RNA and has hinted at the power of RNA molecules to sculpt genomic information in cells.
Collapse
Affiliation(s)
- Mariusz Nowacki
- Institute of Cell Biology, University of Bern, CH-3012 Bern, Switzerland.
| | | | | |
Collapse
|
15
|
The core oligosaccharide and thioredoxin of Vibrio cholerae are necessary for binding and propagation of its typing phage VP3. J Bacteriol 2009; 191:2622-9. [PMID: 19201789 DOI: 10.1128/jb.01370-08] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
VP3 is a T7-like phage and was used as one of the typing phages in a phage-biotyping scheme that has been used for the typing of Vibrio cholerae O1 biotype El Tor. Here, we studied the receptor and other host genes of V. cholerae necessary for the lytic propagation of VP3. Six mutants resistant to VP3 infection were obtained from the random transposon insertion mutant bank of the sensitive strain N16961. The genes VC0229 and VC0231, which belong to the wav gene cluster encoding the core oligosaccharide (OS) region of lipopolysaccharide, were found to be interrupted by the transposon in five mutants, and the sixth mutant had the transposon inserted between the genes rhlB and trxA, which encode the ATP-dependent RNA helicase RhlB and thioredoxin, respectively. Gene complementation, transcription analysis, and the loss of VP3 sensitivity by the gene deletion mutants confirmed the relationship between VP3 resistance and VC0229, VC0231, and trxA mutation. The product of VP3 gene 44 (gp44) was predicted to be a tail fiber protein. gp44 could bind to the sensitive wild-type strain and the trxA mutant, but not to VC0229 and VC0231 mutants. The results showed that OS is a VP3 receptor on the surface of N16961, thioredoxin of the host strain is involved in the propagation of the phage, and gp44 is the tail fiber protein of VP3. This revealed the first step in the infection mechanism of the T7-like phage VP3 in V. cholerae.
Collapse
|
16
|
Lima-Mendez G, Toussaint A, Leplae R. Analysis of the phage sequence space: the benefit of structured information. Virology 2007; 365:241-9. [PMID: 17482656 DOI: 10.1016/j.virol.2007.03.047] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Revised: 03/07/2007] [Accepted: 03/28/2007] [Indexed: 11/26/2022]
Abstract
Phages are the most abundant biological entities on Earth and are central players in the evolution of their bacterial hosts and the emergence of new pathogens. In addition, they bear an enormous potential for the development of new drugs, therapies or nanotechnologies. As a result, interest in phages is reviving. In the genomic era, our perspective on the phage sequence space remains incredibly sparse. The modular and combinatorial structure of phage genomes is largely documented. It is confirmed by new sequence information and it fuels a recurrent debate on the need to revise phage taxonomy. The absence of structured, computer readable information on phages is a major bottleneck for an extensive global analysis of phage genomes and their relationships, but such information is essential to reassess phage classification. Based on the ACLAME database, which is dedicated to the organization and analysis of prokaryotic mobile genetic elements, we discuss here how structured information on phage-encoded proteins helps global in silico analysis and allows the prediction of prophages in bacterial genome sequences, providing access to additional phage sequence information.
Collapse
Affiliation(s)
- Gipsi Lima-Mendez
- Service de Conformation de Macromolécules Biologiques et de Bioinformatique, Université Libre de Bruxelles, CP 263, Boulevard du Triomphe, 1050, Bruxelles, Belgium.
| | | | | |
Collapse
|
17
|
Weigele PR, Pope WH, Pedulla ML, Houtz JM, Smith AL, Conway JF, King J, Hatfull GF, Lawrence JG, Hendrix RW. Genomic and structural analysis of Syn9, a cyanophage infecting marineProchlorococcusandSynechococcus. Environ Microbiol 2007; 9:1675-95. [PMID: 17564603 DOI: 10.1111/j.1462-2920.2007.01285.x] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cyanobacteriophage Syn9 is a large, contractile-tailed bacteriophage infecting the widespread, numerically dominant marine cyanobacteria of the genera Prochlorococcus and Synechococcus. Its 177,300 bp genome sequence encodes 226 putative proteins and six tRNAs. Experimental and computational analyses identified genes likely involved in virion formation, nucleotide synthesis, and DNA replication and repair. Syn9 shows significant mosaicism when compared with related cyanophages S-PM2, P-SSM2 and P-SSM4, although shared genes show strong purifying selection and evidence for large population sizes relative to other phages. Related to coliphage T4 - which shares 19% of Syn9's genes - Syn9 shows evidence for different patterns of DNA replication and uses homologous proteins to assemble capsids with a different overall structure that shares topology with phage SPO1 and herpes virus. Noteworthy bacteria-related sequences in the Syn9 genome potentially encode subunits of the photosynthetic reaction centre, electron transport proteins, three pentose pathway enzymes and two tryptophan halogenases. These genes suggest that Syn9 is well adapted to the physiology of its photosynthetic hosts and may affect the evolution of these sequences within marine cyanobacteria.
Collapse
Affiliation(s)
- Peter R Weigele
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Kondou Y, Kitazawa D, Takeda S, Tsuchiya Y, Yamashita E, Mizuguchi M, Kawano K, Tsukihara T. Structure of the central hub of bacteriophage Mu baseplate determined by X-ray crystallography of gp44. J Mol Biol 2005; 352:976-85. [PMID: 16125724 DOI: 10.1016/j.jmb.2005.07.044] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2005] [Revised: 07/13/2005] [Accepted: 07/15/2005] [Indexed: 11/29/2022]
Abstract
Bacteriophage Mu is a double-stranded DNA phage that consists of an icosahedral head, a contractile tail with baseplate and six tail fibers, similar to the well-studied T-even phages. The baseplate of bacteriophage Mu, which recognizes and attaches to a host cell during infection, consists of at least eight different proteins. The baseplate protein, gp44, is essential for bacteriophage Mu assembly and the generation of viable phages. To investigate the role of gp44 in baseplate assembly and infection, the crystal structure of gp44 was determined at 2.1A resolution by the multiple isomorphous replacement method. The overall structure of the gp44 trimer is similar to that of the T4 phage gp27 trimer, which forms the central hub of the T4 baseplate, although these proteins share very little primary sequence homology. Based on these data, we confirm that gp44 exists as a trimer exhibiting a hub-like structure with an inner diameter of 25A through which DNA can presumably pass during infection. The molecular surface of the gp44 trimer that abuts the host cell membrane is positively charged, and it is likely that Mu phage interacts with the membrane through electrostatic interactions mediated by gp44.
Collapse
Affiliation(s)
- Youhei Kondou
- Institute for Protein Research, Osaka University, Yamada-oka Suita, 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Kitazawa D, Takeda S, Kageyama Y, Tomihara M, Fukada H. Expression and Characterization of a Baseplate Protein for Bacteriophage Mu, gp44. ACTA ACUST UNITED AC 2005; 137:601-6. [PMID: 15944413 DOI: 10.1093/jb/mvi076] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The gene product of gene 44 of Mu phage (gp44) is an essential protein for baseplate assembly and has been designated as gpP, a traditional genetic assignment. The function of gp44 during the assembly or infection process is not known. In the present study, we purified the recombinant gp44 and characterized it by analytical ultracentrifugation and differential scanning microcalorimetry. The results indicate that gp44 forms a trimer comprising a complex consisting of the 42 kDa and 40 kDa subunits that had been cleaved in the C-terminal region. Thermodynamic analysis also suggested that the C-terminal region forms a flexible domain.
Collapse
Affiliation(s)
- Daisuke Kitazawa
- Department of Nano-Material Systems, Graduate School of Engineering, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515
| | | | | | | | | |
Collapse
|
20
|
Braid MD, Silhavy JL, Kitts CL, Cano RJ, Howe MM. Complete genomic sequence of bacteriophage B3, a Mu-like phage of Pseudomonas aeruginosa. J Bacteriol 2004; 186:6560-74. [PMID: 15375138 PMCID: PMC516594 DOI: 10.1128/jb.186.19.6560-6574.2004] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Bacteriophage B3 is a transposable phage of Pseudomonas aeruginosa. In this report, we present the complete DNA sequence and annotation of the B3 genome. DNA sequence analysis revealed that the B3 genome is 38,439 bp long with a G+C content of 63.3%. The genome contains 59 proposed open reading frames (ORFs) organized into at least three operons. Of these ORFs, the predicted proteins from 41 ORFs (68%) display significant similarity to other phage or bacterial proteins. Many of the predicted B3 proteins are homologous to those encoded by the early genes and head genes of Mu and Mu-like prophages found in sequenced bacterial genomes. Only two of the predicted B3 tail proteins are homologous to other well-characterized phage tail proteins; however, several Mu-like prophages and transposable phage D3112 encode approximately 10 highly similar proteins in their predicted tail gene regions. Comparison of the B3 genomic organization with that of Mu revealed evidence of multiple genetic rearrangements, the most notable being the inversion of the proposed B3 immunity/early gene region, the loss of Mu-like tail genes, and an extreme leftward shift of the B3 DNA modification gene cluster. These differences illustrate and support the widely held view that tailed phages are genetic mosaics arising by the exchange of functional modules within a diverse genetic pool.
Collapse
Affiliation(s)
- Michael D Braid
- Biological Sciences Department and Environmental Biotechnology Institute, California Polytechnic State University, San Luis Obispo, California, USA
| | | | | | | | | |
Collapse
|
21
|
Abstract
Phase and antigenic variation result in a heterogenic phenotype of a clonal bacterial population, in which individual cells either express the phase-variable protein(s) or not, or express one of multiple antigenic forms of the protein, respectively. This form of regulation has been identified mainly, but by no means exclusively, for a wide variety of surface structures in animal pathogens and is implicated as a virulence strategy. This review provides an overview of the many bacterial proteins and structures that are under the control of phase or antigenic variation. The context is mainly within the role of the proteins and variation for pathogenesis, which reflects the main body of literature. The occurrence of phase variation in expression of genes not readily recognizable as virulence factors is highlighted as well, to illustrate that our current knowledge is incomplete. From recent genome sequence analysis, it has become clear that phase variation may be more widespread than is currently recognized, and a brief discussion is included to show how genome sequence analysis can provide novel information, as well as its limitations. The current state of knowledge of the molecular mechanisms leading to phase variation and antigenic variation are reviewed, and the way in which these mechanisms form part of the general regulatory network of the cell is addressed. Arguments both for and against a role of phase and antigenic variation in immune evasion are presented and put into new perspective by distinguishing between a role in bacterial persistence in a host and a role in facilitating evasion of cross-immunity. Finally, examples are presented to illustrate that phase-variable gene expression should be taken into account in the development of diagnostic assays and in the interpretation of experimental results and epidemiological studies.
Collapse
Affiliation(s)
- Marjan W van der Woude
- Department of Microbiology, University of Pennsylvania, 202A Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104-6076, USA.
| | | |
Collapse
|
22
|
Rössler N, Klein R, Scholz H, Witte A. Inversion within the haloalkaliphilic virus φCh1 DNA results in differential expression of structural proteins. Mol Microbiol 2004; 52:413-26. [PMID: 15066030 DOI: 10.1111/j.1365-2958.2003.03983.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The sequence of phi Ch1 contains an open reading frame (int1) in the central part of its genome that belongs to the lambda integrase family of site-specific recombinases. Sequence similarities to known integrases include the highly conserved tetrad R-H-R-Y. The flanking sequences of int1 contain several direct repeats of 30 bp in length (IR-L and IR-R), which are orientated in an inverted direction. Here, we show that a recombination active region exists in the genome of phi Ch1: the number of those repeats, non-homologous regions within the repeat clusters IR-L and IR-R and the orientation of the int1 gene vary in a given virus population. Within this study, we identified circular intermediates, composed of the int1 gene and the inwards orientated repeat regions IR-L and IR-R, which could be involved in the recombination process itself. IR-L and IR-R are embedded within ORF34 and ORF36 respectively. As a consequence of the inversion within this region of phi Ch1, the C-terminal parts of the proteins encoded by ORF34 and 36 are exchanged. Both proteins, expressed in Escherichia coli, interact with specific antisera against whole virus particles, indicating that they could be parts of phi Ch1 virions. Expression of the protein(s) in Natrialba magadii could be detected 98 h after inoculation, which is similar to other structural proteins of phi Ch1. Taken together, the data show that the genome of phi Ch1 contains an invertible region that codes for a recombinase and structural proteins. Inversion of this segment results in a variation of these structural proteins.
Collapse
MESH Headings
- Amino Acid Sequence
- Archaea/virology
- Bacteriophages/genetics
- Bacteriophages/isolation & purification
- Bacteriophages/metabolism
- Cloning, Molecular
- DNA, Viral/chemistry
- DNA, Viral/genetics
- Escherichia coli/genetics
- Gene Expression Regulation, Viral
- Genes, Viral
- Integrases/genetics
- Molecular Sequence Data
- Myoviridae/genetics
- Myoviridae/isolation & purification
- Myoviridae/metabolism
- Open Reading Frames
- RNA, Viral/chemistry
- RNA, Viral/physiology
- Recombination, Genetic
- Repetitive Sequences, Nucleic Acid
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
- Viral Structural Proteins/biosynthesis
- Viral Structural Proteins/chemistry
- Viral Structural Proteins/genetics
Collapse
Affiliation(s)
- N Rössler
- Institute of Microbiology and Genetics, University of Vienna, Dr Bohr-Gasse 9, A-1030 Vienna, Austria
| | | | | | | |
Collapse
|
23
|
Morgan GJ, Hatfull GF, Casjens S, Hendrix RW. Bacteriophage Mu genome sequence: analysis and comparison with Mu-like prophages in Haemophilus, Neisseria and Deinococcus. J Mol Biol 2002; 317:337-59. [PMID: 11922669 DOI: 10.1006/jmbi.2002.5437] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We report the complete 36,717 bp genome sequence of bacteriophage Mu and provide an analysis of the sequence, both with regard to the new genes and other genetic features revealed by the sequence itself and by a comparison to eight complete or nearly complete Mu-like prophage genomes found in the genomes of a diverse group of bacteria. The comparative studies confirm that members of the Mu-related family of phage genomes are genetically mosaic with respect to each other, as seen in other groups of phages such as the phage lambda-related group of phages of enteric hosts and the phage L5-related group of mycobacteriophages. Mu also possesses segments of similarity, typically gene-sized, to genomes of otherwise non-Mu-like phages. The comparisons show that some well-known features of the Mu genome, including the invertible segment encoding tail fiber sequences, are not present in most members of the Mu genome sequence family examined here, suggesting that their presence may be relatively volatile over evolutionary time. The head and tail-encoding structural genes of Mu have only very weak similarity to the corresponding genes of other well-studied phage types. However, these weak similarities, and in some cases biochemical data, can be used to establish tentative functional assignments for 12 of the head and tail genes. These assignments are strongly supported by the fact that the order of gene functions assigned in this way conforms to the strongly conserved order of head and tail genes established in a wide variety of other phages. We show that the Mu head assembly scaffolding protein is encoded by a gene nested in-frame within the C-terminal half of another gene that encodes the putative head maturation protease. This is reminiscent of the arrangement established for phage lambda.
Collapse
Affiliation(s)
- Gregory J Morgan
- Pittsburgh Bacteriophage Institute and Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | | | |
Collapse
|
24
|
Affiliation(s)
- Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
25
|
Nguyen HA, Tomita T, Hirota M, Kaneko J, Hayashi T, Kamio Y. DNA inversion in the tail fiber gene alters the host range specificity of carotovoricin Er, a phage-tail-like bacteriocin of phytopathogenic Erwinia carotovora subsp. carotovora Er. J Bacteriol 2001; 183:6274-81. [PMID: 11591670 PMCID: PMC100113 DOI: 10.1128/jb.183.21.6274-6281.2001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Carotovoricin Er is a phage-tail-like bacteriocin produced by Erwinia carotovora subsp. carotovora strain Er, a causative agent for soft rot disease in plants. Here we studied binding and killing spectra of carotovoricin Er preparations for various strains of the bacterium (strains 645Ar, EC-2, N786, and P7) and found that the preparations contain two types of carotovoricin Er with different host specificities; carotovoricin Era possessing a tail fiber protein of 68 kDa killed strains 645Ar and EC-2, while carotovoricin Erb with a tail fiber protein of 76 kDa killed strains N786 and P7. The tail fiber proteins of 68 and 76 kDa had identical N-terminal amino acid sequences for at least 11 residues. A search of the carotovoricin Er region in the chromosome of strain Er indicated the occurrence of a DNA inversion system for the tail fiber protein consisting of (i) two 26-bp inverted repeats inside and downstream of the tail fiber gene that flank a 790-bp fragment and (ii) a putative DNA invertase gene with a 90-bp recombinational enhancer sequence. In fact, when a 1,400-bp region containing the 790-bp fragment was amplified by a PCR using the chromosomal DNA of strain Er as the template, both the forward and the reverse nucleotide sequences of the 790-bp fragment were detected. DNA inversion of the 790-bp fragment also occurred in Escherichia coli DH5alpha when two compatible plasmids carrying either the 790-bp fragment or the invertase gene were cotransformed into the bacterium. Furthermore, hybrid carotovoricin CGE possessing the tail fiber protein of 68 or 76 kDa exhibited a host range specificity corresponding to that of carotovoricin Era or Erb, respectively. Thus, a DNA inversion altered the C-terminal part of the tail fiber protein of carotovoricin Er, altering the host range specificity of the bacteriocin.
Collapse
Affiliation(s)
- H A Nguyen
- Department of Molecular and Cell Biology, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumi-dori Amamiya-machi, Aoba-ku, Sendai 981-8555, Japan
| | | | | | | | | | | |
Collapse
|
26
|
Takeda S, Sasaki T, Ritani A, Howe MM, Arisaka F. Discovery of the tail tube gene of bacteriophage Mu and sequence analysis of the sheath and tube genes. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1399:88-92. [PMID: 9714755 DOI: 10.1016/s0167-4781(98)00102-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The nucleotide sequence was determined for 2.75 kbp of phage Mu DNA encoding the contractile tail sheath protein L. N-terminal sequence analysis of Mu tail tube and sheath proteins identified the open reading frame just downstream of gene L as the tube gene. This clustering and order of the sheath and tube genes appear to be common among the myoviridae. Database homology searches revealed high similarity between the Mu sheath and tube proteins and two proteins in a Haemophilus influenzae Mu-like prophage, suggesting that they are the sheath and tube proteins of that prophage.
Collapse
Affiliation(s)
- S Takeda
- Department of Life Science, Faculty of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | | | | | | | | |
Collapse
|
27
|
Grimaud R, Toussaint A. Assembly of both the head and tail of bacteriophage Mu is blocked in Escherichia coli groEL and groES mutants. J Bacteriol 1998; 180:1148-53. [PMID: 9495752 PMCID: PMC107001 DOI: 10.1128/jb.180.5.1148-1153.1998] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/1996] [Accepted: 12/18/1997] [Indexed: 02/06/2023] Open
Abstract
Like several other Escherichia coli bacteriophages, transposable phage Mu does not develop normally in groE hosts (M. Pato, M. Banerjee, L. Desmet, and A. Toussaint, J. Bacteriol. 169:5504-5509, 1987). We show here that lysates obtained upon induction of groE Mu lysogens contain free inactive tails and empty heads. GroEL and GroES are thus essential for the correct assembly of both Mu heads and Mu tails. Evidence is presented that groE mutations inhibit processing of the phage head protein gpH as well as the formation of a 25S complex suspected to be an early Mu head assembly intermediate.
Collapse
Affiliation(s)
- R Grimaud
- Unité Transposition Bactérienne, Université Libre de Bruxelles, Rhode St Genèse, Belgium.
| | | |
Collapse
|
28
|
Howe MM. Bacteriophage Mu. Mol Microbiol 1998. [DOI: 10.1007/978-3-642-72071-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
29
|
Abstract
Lytic development of bacteriophage Mu proceeds through three phases of transcription: early, middle, and late. Initiation of middle transcription from Pm requires the phage-encoded activator, Mor. An examination of the sequences surrounding the promoter revealed possible binding sites for Mu proteins A and c, as well as for Escherichia coli integration host factor. Promoter fragments containing 5' and 3' deletions were fused to the lacZ reporter gene and assayed for activity after induction of a Mu prophage or a plasmid-borne mor gene. Sequences upstream of position -62 and downstream of +10 were dispensable for promoter activity. In DNase I footprinting with both crude extract and purified protein, Mor protected Pm sequences from position -56 to -33. Mutations disrupting the dyad symmetry of the terminator of early transcription overlapping the Mor binding site did not reduce promoter activity, suggesting that the symmetry per se is not required for Mor binding or Pm activation. Purified Mu lysogenic repressor (c) also bound to Pm, overlapping the Mor binding site. Production of large amounts of repressor in vivo reduced Mor-dependent promoter activity nearly 10-fold. Promoters with mutations in the repressor binding site showed a reduction in this repressor-mediated inhibition of Pm activity.
Collapse
Affiliation(s)
- M Kahmeyer-Gabbe
- Department of Microbiology and Immunology, University of Tennessee-Memphis 38163, USA
| | | |
Collapse
|
30
|
Zha J, Zhao Z, Howe MM. Identification and characterization of the terminators of the lys and P transcripts of bacteriophage Mu. J Bacteriol 1994; 176:1111-20. [PMID: 8106322 PMCID: PMC205163 DOI: 10.1128/jb.176.4.1111-1120.1994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Transcription during the lytic cycle of phage Mu occurs in three phases: early, middle, and late. Late transcription requires the Mu C protein and initiates at four promoters: Plys, PI, PP, and Pmom. Northern blot analysis of total RNA isolated 30 min after heat induction of Mu cts lysogens demonstrated that the full-length lys and P transcripts were approximately 7.6 and 6.3 kb long, respectively. The 3' ends of the lys and P transcripts were further localized by S1 nuclease mapping to intergenic regions between G and I and between U and U' in both the G(+) and G(-) orientations of the invertible G segment, respectively. As expected, when DNA fragments containing these termination regions were cloned into plasmids between Pgal and the galK gene, they showed efficient termination activity, even in a Rho-deficient background. Deletion analysis indicated that efficient termination required the presence of potential RNA stem-loop structures immediately preceding the RNA 3' ends. For the P transcript from phage with the G(-) orientation, full termination activity required both the region containing the stem-loop structure and upstream sequences. Taken together, these results suggest that the transcription termination sites of the lys and P transcripts are Rho-independent terminators.
Collapse
Affiliation(s)
- J Zha
- Department of Microbiology and Immunology, University of Tennessee, Memphis 38163
| | | | | |
Collapse
|
31
|
Chiang LW, Kovari I, Howe MM. Mutagenic oligonucleotide-directed PCR amplification (Mod-PCR): an efficient method for generating random base substitution mutations in a DNA sequence element. PCR METHODS AND APPLICATIONS 1993; 2:210-7. [PMID: 8443572 DOI: 10.1101/gr.2.3.210] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Saturation mutagenesis is one approach for determining the contributions of individual base pairs to the structure and function of defined DNA sequence elements. In this paper, we describe a novel method for saturation mutagenesis involving PCR amplification with degenerate synthetic oligonucleotides as primers. The degeneracy is confined to a specific target within the primer by mixing a low percentage of the three non-wild type (non-WT) nucleotide precursors with WT at specific positions during primer synthesis. PCR amplification of WT template DNA with the degenerate primer and an opposing WT primer, followed by subsequent cloning using restriction sites designed into the primers, results in recovery of a population of randomly mutated products. Since primers with multiple mutations hybridize less efficiently to WT template DNA during PCR amplification, the recovery of mutants with multiple base changes is greatly reduced. The efficient generation of random point mutations with this method allows the construction of separate mutant populations, each mutagenized over a different portion of the DNA sequence element. If a phenotypic assay is available, these populations can be screened directly to define those regions within the element that are important for activity. Only those populations containing mutations in the important regions require further characterization by DNA sequence analysis.
Collapse
Affiliation(s)
- L W Chiang
- Department of Microbiology and Immunology, University of Tennessee-Memphis 38163
| | | | | |
Collapse
|
32
|
Verbeek H, Nilsson L, Bosch L. The mechanism of trans-activation of the Escherichia coli operon thrU(tufB) by the protein FIS. A model. Nucleic Acids Res 1992; 20:4077-81. [PMID: 1380692 PMCID: PMC334090 DOI: 10.1093/nar/20.15.4077] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Transcription of the thrU(tufB) operon is trans-activated by the protein FIS which binds to the promoter upstream activator sequence (UAS). Deletions of parts of the UAS and insertions show that optimal trans-activation requires occupation by FIS of the two FIS-binding regions on the UAS and specific helical positioning of these regions. On the basis of these and other data, a model for the mechanism of thrU(tufB) trans-activation by FIS is proposed. This model implies that the mechanisms underlying stimulation by FIS of two totally different processes: inversion of viral DNA segments and transcription of stable RNA operons, are essentially the same.
Collapse
Affiliation(s)
- H Verbeek
- Department of Biochemistry, Leiden University, Gorlaeus Laboratories, The Netherlands
| | | | | |
Collapse
|
33
|
Haggård-Ljungquist E, Halling C, Calendar R. DNA sequences of the tail fiber genes of bacteriophage P2: evidence for horizontal transfer of tail fiber genes among unrelated bacteriophages. J Bacteriol 1992; 174:1462-77. [PMID: 1531648 PMCID: PMC206541 DOI: 10.1128/jb.174.5.1462-1477.1992] [Citation(s) in RCA: 154] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We have determined the DNA sequence of the bacteriophage P2 tail genes G and H, which code for polypeptides of 175 and 669 residues, respectively. Gene H probably codes for the distal part of the P2 tail fiber, since the deduced sequence of its product contains regions similar to tail fiber proteins from phages Mu, P1, lambda, K3, and T2. The similarities of the carboxy-terminal portions of the P2, Mu, ann P1 tail fiber proteins may explain the observation that these phages in general have the same host range. The P2 H gene product is similar to the products of both lambda open reading frame (ORF) 401 (stf, side tail fiber) and its downstream ORF, ORF 314. If 1 bp is inserted near the end of ORF 401, this reading frame becomes fused with ORF 314, creating an ORF that may represent the complete stf gene that encodes a 774-amino-acid-long side tail fiber protein. Thus, a frameshift mutation seems to be present in the common laboratory strain of lambda. Gene G of P2 probably codes for a protein required for assembly of the tail fibers of the virion. The entire G gene product is very similar to the products of genes U and U' of phage Mu; a region of these proteins is also found in the tail fiber assembly proteins of phages TuIa, TuIb, T4, and lambda. The similarities in the tail fiber genes of phages of different families provide evidence that illegitimate recombination occurs at previously unappreciated levels and that phages are taking advantage of the gene pool available to them to alter their host ranges under selective pressures.
Collapse
|
34
|
Maeser S, Kahmann R. The Gin recombinase of phage Mu can catalyse site-specific recombination in plant protoplasts. MOLECULAR & GENERAL GENETICS : MGG 1991; 230:170-6. [PMID: 1836050 DOI: 10.1007/bf00290665] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A mutant Gin recombinase of the phage Mu DNA inversion system was successfully expressed in Arabidopsis thaliana and tobacco protoplasts. Site-specific recombination was monitored both physically and biologically with the help of a recombination assay system in which expression of a beta-glucuronidase (gus) gene requires Gin-mediated recombination. We demonstrate that the wild-type Gin protein is not able to promote recombination in plant protoplasts, presumably because plant cells do not contain a protein that can substitute for the Escherichia coli FIS protein needed for full activity of wild-type Gin in E. coli. A FIS-independent Gin mutant protein on the other hand was efficient in promoting recombination on recombination substrates introduced transiently and on substrates stably integrated into the plant genome. We discuss the various advantages this system can provide for genetic manipulation of plant cells.
Collapse
Affiliation(s)
- S Maeser
- Institut für Genbiologische Forschung Berlin GmbH, FRG
| | | |
Collapse
|
35
|
Temple LM, Forsburg SL, Calendar R, Christie GE. Nucleotide sequence of the genes encoding the major tail sheath and tail tube proteins of bacteriophage P2. Virology 1991; 181:353-8. [PMID: 1825255 DOI: 10.1016/0042-6822(91)90502-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The major structural components of the contractile tail of bacteriophage P2 are proteins FI and FII, which are believed to be the tail sheath and tube proteins, respectively. Both proteins were mapped previously to the P2 late gene F, based on the pattern of protein synthesis in various P2 amber mutants. In order to clarify the gene arrangement and to provide a basis for structural comparisons with other contractile phage tails, we have determined the nucleotide sequence of the region of the P2 genome encoding these two proteins. The coding regions were confirmed by location of the Fam4 mutation and by N-terminal amino acid sequencing of both proteins. The molecular weight and amino acid composition predicted by each of the coding regions correspond well to those determined experimentally for each protein. FII is encoded by a newly identified P2 late gene. These proteins bear little resemblance to their functional homologues in bacteriophage T4.
Collapse
Affiliation(s)
- L M Temple
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond 23298-0678
| | | | | | | |
Collapse
|
36
|
Abstract
Transcription of bacteriophage Mu occurs in a regulatory cascade consisting of three phases: early, middle, and late. The 1.2-kb middle transcript is initiated at Pm and encodes the C protein, the activator of late transcription. A plasmid containing a Pm-lacZ operon fusion was constructed. beta-Galactosidase expression from the plasmid increased 23-fold after Mu prophage induction. Infection of plasmid-containing cells with lambda phages carrying different segment of the Mu early region localized the Pm-lacZ transactivation function to the region containing open reading frames E16 and E17. Deletion and linker insertion analyses of plasmids containing this region identified E17 as the transactivator; therefore we call this gene mor, for middle operon regulator. Expression of mor under the control of a T7 promoter and T7 RNA polymerase resulted in the production of a single polypeptide of 17 kDa as detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Insertion of a linker into mor substantially reduced the ability of Mu to form plaques. When growth of the mor mutant was assayed in liquid, lysis was delayed by about 50 min and the burst size was approximately one-fifth that of wild-type Mu. The mor requirement for plaque formation and normal growth kinetics was abolished when C protein was provided in trans, indicating that the primary function of Mor is to provide sufficient C for late gene expression. Comparison of the predicted amino acid sequence of Mor with other proteins revealed that Mor and C share substantial amino acid sequence homology.
Collapse
Affiliation(s)
- K Mathee
- Department of Microbiology and Immunology, University of Tennesse-Memphis 38163
| | | |
Collapse
|
37
|
Glasgow AC, Miller JL, Howe MM. Bacteriophage Mu sites and functions involved in the inhibition of lambda::mini-Mu growth. Virology 1990; 177:95-105. [PMID: 2141207 DOI: 10.1016/0042-6822(90)90463-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
To better understand the nature of the mini-Mu-directed process which results in inhibition of lambda::mini-Mu growth we characterized spontaneous deletion mutants of the lambda::mini-Mu phage. On the basis of analysis of the deletion endpoints, mini-Mu replication functions, and integration and inhibition properties, the lambda::mini-Mu deletion mutants were divided into five classes which define the Mu sites and functions involved in lambda::mini-Mu growth inhibition. Class 1 mutants, which still exhibit lambda::mini-Mu growth inhibition, collectively delete all the Mu late functions encoded by the mini-Mu. Class 2 and 5 mutants, which show cis-dominant defects in inhibition and integration, delete the right and left mini-Mu attachment sites, respectively. Phages of Classes 3 and 4, which delete the Mu B or A and B genes, respectively, show recessive defects in growth inhibition. The properties of these mutants define the Mu replication functions, A and B, and the Mu attachment sites as essential for the inhibition of lambda::mini-Mu growth. The observation that the sites and functions essential for Mu replication also have requisite roles in the inhibition of lambda::mini-Mu growth suggests that inhibition results from mini-Mu-promoted replicative interference of lambda::mini-Mu development.
Collapse
Affiliation(s)
- A C Glasgow
- Department of Bacteriology, University of Wisconsin, Madison 53706
| | | | | |
Collapse
|
38
|
Abstract
Mu transcription occurs in three phases: early, middle, and late. Middle transcription occurs in the region of the C gene, which encodes the transactivator for late transcription. A middle promoter, Pm, was previously localized between 0.28 and 1.2 kilobase pairs upstream of C. We used S1 nuclease mapping with both unlabeled and radiolabeled capped RNAs from induced lysogens to characterize C transcription and identify its promoter. The C transcription initiation site was localized to a 4-base-pair region, approximately 740 base pairs upstream of C within the region containing Pm. Transcription of C was activated between 4 and 8 min after induction of cts and Cam lysogens and increased throughout the lytic cycle. Significant C transcription did not occur in replication-defective Aam lysogens. These kinetic and regulatory characteristics identify the C transcript as a middle RNA species and demonstrate that Pm is the C promoter. DNA sequence analysis of the Pm region showed a good -10, but poor -35, site homology to the Escherichia coli RNA polymerase consensus sequence. In addition, the sequence demonstrated that C is the distal gene in a middle operon containing several open reading frames. S1 mapping also showed an upstream transcript with a 3' end in the Pm region at a sequence strongly resembling a Rho-independent terminator. The regulatory characteristics of this RNA are consistent with this terminator, t9.2, being the early operon terminator.
Collapse
Affiliation(s)
- S F Stoddard
- Department of Microbiology and Immunology, University of Tennessee-Memphis 38163
| | | |
Collapse
|
39
|
Abstract
Mu transcription was analyzed by hybridization of [3H]uridine pulse-labeled RNA from heat-induced Mu lysogens to Mu DNA restriction fragments on nitrocellulose blots. Based on their time of appearance and dependence on Mu functions, we have defined three classes of transcripts: early, middle, and late. Replication-defective prophages containing A or B amber mutations or a deletion of the beta (right) end produced only early RNA derived from the left-most 8 to 10 kb of the Mu genome. A replication-proficient C amber mutant exhibited similar early transcription but at later times also produced middle transcripts from a region including C, which encodes the activator of late transcription. The C mutant did not produce late transcripts from the right-most 26 kb of the Mu genome encoding genes involved in phage morphogenesis and release. These results indicate that Mu DNA replication is required for efficient expression of middle RNA, which is itself required for expression of late transcripts. Amber mutations in essential genes other than A, B, and C had no significant effect on transcription except for polarity of one E mutation. Uninduced Mu c+ and Mu cts prophages produced very low levels of Mu-specific RNA derived from several regions including the c (immunity) gene and the region between genes B and C.
Collapse
Affiliation(s)
- C F Marrs
- Department of Bacteriology, University of Wisconsin, Madison 53706
| | | |
Collapse
|
40
|
Kanaar R, van de Putte P, Cozzarelli NR. Gin-mediated recombination of catenated and knotted DNA substrates: implications for the mechanism of interaction between cis-acting sites. Cell 1989; 58:147-59. [PMID: 2546671 DOI: 10.1016/0092-8674(89)90411-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The Gin DNA-inversion system of bacteriophage Mu normally requires a substrate containing two inverted recombination sites (gix) and an enhancer sequence on the same supercoiled DNA molecule. The reaction mechanism was investigated by separating these sites on catenated rings. Catenanes with the gix sites on one circle and the enhancer on the other recombined efficiently. Thus, the enhancer was fully functional even though it was located in trans to the gix sites. Multiple links between the rings are required for recombination. Multiply linked catenanes with gix sites on separate circles, one of which contained the enhancer, were also efficient substrates. Knotted constructs carrying directly repeated gix sites were recombined. Catenated and knotted substrates must also be supercoiled. These experiments eliminate simple tracking or looping models as explanations for why the enhancer and gix sites must be in cis with standard substrates. Rather, the Gin synaptic complex requires the three sites to be mutually intertwined in a right-handed fashion with a unique polarity of the gix sites. This geometry is achieved by branching of the DNA substrate and requires the energy and structure of supercoiling, catenation, or knotting.
Collapse
Affiliation(s)
- R Kanaar
- Department of Biochemistry Leiden University, The Netherlands
| | | | | |
Collapse
|
41
|
Abstract
Mu promoters active during the lytic cycle were located by isolating RNA at various times after induction of Mu prophages, radiolabeling it by capping in vitro, and hybridizing it to Mu DNA fragments on Southern blots. Signals were detected from four new promoters in addition to the previously characterized Pe (early), PcM (repressor), and Pmom (late) promoters. A major signal upstream of C was first observed at 12 min and intensified thereafter with RNA from cts and C amber but not replication-defective prophages; these characteristics indicate that this signal arises from a middle promoter, which we designate Pm. With 20- and 40-min RNA, four additional major signals originated in the C-lys, F-G-I, N-P, and com-mom regions. These signals were missing with RNA from C amber and replication-defective prophages and therefore reflected the activity of late promoters, one of which we presume was Pmom. Uninduced lysogens showed weak signals from five regions, one from the early regulatory region, three between genes B and lys, and one near the late genes K, L, and M. The first of these probably resulted from PcM activity; the others remain to be identified.
Collapse
Affiliation(s)
- S F Stoddard
- Department of Bacteriology, University of Wisconsin-Madison 53706
| | | |
Collapse
|
42
|
Margolin W, Rao G, Howe MM. Bacteriophage Mu late promoters: four late transcripts initiate near a conserved sequence. J Bacteriol 1989; 171:2003-18. [PMID: 2522923 PMCID: PMC209851 DOI: 10.1128/jb.171.4.2003-2018.1989] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Late transcription of bacteriophage Mu, which results in the expression of phage morphogenetic functions, is dependent on Mu C protein. Earlier experiments indicated that Mu late RNAs originate from four promoters, including the previously characterized mom promoter. S1 nuclease protection experiments were used to map RNA 5' ends in the three new regions. Transcripts were initiated at these points only in the presence of C and were synthesized in a rightward direction on the Mu genome. Amber mutant marker rescue analysis of plasmid clones and limited DNA sequencing demonstrated that these new promoters are located between C and lys, upstream of I, and upstream of P within the N gene. A comparison of the promoter sequences upstream from the four RNA 5' ends yielded two conserved sequences: the first (tA . . cT, where capital and lowercase letters indicate 100 and 75% base conservation, respectively), at approximately -10, shares some similarity with the consensus Escherichia coli sigma 70 -10 region, while the second (ccATAAc CcCPuG/Cac, where Pu indicates a purine), in the -35 region, bears no resemblance to the E. coli -35 consensus. We propose that these conserved Mu late promoter consensus sequences are important for C-dependent promoter activity. Plasmids containing transcription fusions of these late promoters to lacZ exhibited C-dependent beta-galactosidase synthesis in vivo, and C was the only Mu product needed for this transactivation. As expected, the late promoter-lacZ fusions were activated only at late times after induction of a Mu prophage. The C-dependent activation of lacZ fusions containing only a few bases of the 5' end of Mu late RNA and the presence of altered promoter sequences imply that C acts at the level of transcription initiation.
Collapse
Affiliation(s)
- W Margolin
- Department of Bacteriology, University of Wisconsin-Madison 53706
| | | | | |
Collapse
|
43
|
Marrs CF, Ruehl WW, Schoolnik GK, Falkow S. Pilin-gene phase variation of Moraxella bovis is caused by an inversion of the pilin genes. J Bacteriol 1988; 170:3032-9. [PMID: 2898471 PMCID: PMC211245 DOI: 10.1128/jb.170.7.3032-3039.1988] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Moraxella bovis Epp63 can express either of two different pilin proteins, called alpha and beta. We have previously cloned and sequenced the beta-pilin gene and now report that DNAs isolated from bacteria expressing alpha pilin have hybridization patterns consistently different from those of bacteria expressing beta pilin. The phase variation between alpha- and beta-pilin gene expression appears to be associated with an inversion of about 2 kilobases of DNA, whose endpoints occur within the coding region of the expressed pilin gene. Comparisons of the beta-pilin gene sequence with those of well-studied bacterial inversion systems revealed a stretch of 58% sequence similarity (21 of 36 base pairs) between the left inverted repeat of the Salmonella typhimurium flagellar hin control region and the amino-terminal portion of the beta-pilin gene.
Collapse
Affiliation(s)
- C F Marrs
- Department of Epidemiology, University of Michigan, Ann Arbor 48109
| | | | | | | |
Collapse
|
44
|
Thompson JF, Moitoso de Vargas L, Koch C, Kahmann R, Landy A. Cellular factors couple recombination with growth phase: characterization of a new component in the lambda site-specific recombination pathway. Cell 1987; 50:901-8. [PMID: 2957063 DOI: 10.1016/0092-8674(87)90516-2] [Citation(s) in RCA: 165] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Here we characterize FIS (factor for inversion stimulation), a new cellular component of the lambda site-specific recombination pathway. This host protein binds to a specific region in the lambda attP overlapping the Xis binding sites and can bind cooperatively with Xis to these sites. FIS stimulates lambda excision up to 20-fold in vitro in the presence of suboptimal Xis concentrations, but has no effect in the presence of saturating Xis; FIS has no effect on integrative recombination. FIS can replace one Xis molecule in a series of cooperative and competitive interactions but cannot carry out excision in the absence of Xis. FIS's role in the regulation of recombination has been inferred from in vivo modification of DNA. In exponentially growing cells the lambda FIS site is fully occupied, whereas in stationary-phase cells this binding site is vacant.
Collapse
|
45
|
Szatmari GB, Lapointe M, DuBow MS. The right end of transposable bacteriophage D108 contains a 520 base pair protein-encoding sequence not present in bacteriophage Mu. Nucleic Acids Res 1987; 15:6691-704. [PMID: 2957646 PMCID: PMC306132 DOI: 10.1093/nar/15.16.6691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We have cloned and characterized the right end terminal 796 bp of the transposable Mu-like bacteriophage D108. This region encompasses a 520 bp region of D108-specific sequences not present in phage Mu that contain an open reading frame encoding a 12 KDa protein. This protein can be visualized in vivo when the region is placed downstream from the strong lac UV5 promoter. The open reading frame can be expressed from the dam-regulated mod promoter (for modification of D108 DNA), yet also contains its own dam-independent promoter for expression that is detectable by northern blot analysis late in the D108 lytic cycle. Comparison of this region of D108 DNA with the corresponding region of Mu DNA suggests that a complex rearrangement has occurred at the phages' right ends during their evolution.
Collapse
|
46
|
Mintz CS, Shuman HA. Transposition of bacteriophage Mu in the Legionnaires disease bacterium. Proc Natl Acad Sci U S A 1987; 84:4645-9. [PMID: 3037523 PMCID: PMC305147 DOI: 10.1073/pnas.84.13.4645] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Legionnaires disease is an acute respiratory disease that is often fatal for immunocompromised patients. The causative agent of this disease, Legionella pneumophila, is a Gram-negative bacterium that is present in a variety of aquatic environments. L. pneumophila is a facultative intracellular parasite; it grows within human phagocytic cells and eventually causes their destruction. In contrast to many other intracellular parasites, L. pneumophila is a Gram-negative bacterium that can be grown in standard microbiological culture medium. To determine the factors that enable this organism to enter, survive, and multiply within human mononuclear phagocytes, we chose bacteriophage Mu, a powerful genetic tool that transposes within the host cell genome, to generate insertion mutations and gene fusions in the Legionella genome. Certain derivatives of Mu are able to generate fusions between target genes and the lac operon from Escherichia coli. We have determined that although Mu is unable to attach to L. pneumophila or complete its life cycle within Legionella, it does transpose within the Legionella genome. Transposition was detected with a mini-Mu phage that carries the lac operon of E. coli.
Collapse
|
47
|
Gardiol AE, Hollingsworth RI, Dazzo FB. Alteration of surface properties in a Tn5 mutant strain of Rhizobium trifolii 0403. J Bacteriol 1987; 169:1161-7. [PMID: 3029022 PMCID: PMC211914 DOI: 10.1128/jb.169.3.1161-1167.1987] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
A symbiotically defective mutant strain of Rhizobium trifolii, UR251, was obtained by transposon Tn5 mutagenesis of R. trifolii 0403 rif and recognized by its partially ineffective (Fix +/-) phenotype on white clover plants. UR251 had a single Tn5 insertion in plasmid DNA, a wild-type plasmid pattern, and no detectable Mu DNA sequences originally present in the vector used for Tn5 mutagenesis. Agglutination by the clover lectin trifoliin A and attachment to clover root hairs was higher with UR251 than with the wild-type strain. The capsular polysaccharide (CPS) of UR251 was altered, as shown by a slower rate of CPS depolymerization with a CPS beta-lyase, PD-I; more pyruvate and less acetate and 3-hydroxybutanoate noncarbohydrate substitutions as quantitated by 1H nuclear magnetic resonance; and a higher pyruvyl transferase activity (enzymatic pyruvylation of lipid-bound saccharides). The site of increased pyruvylation in the CPS of UR251 was on the terminal galactose of the branch of the repeating oligosaccharide unit. These results show that the level of noncarbohydrate substitutions of the CPS as well as pyruvyl transferase activity are altered in R. trifolii UR251 and that trifoliin A-binding ability and clover root hair attachment are improved in this mutant strain of R. trifolii 0403 rif.
Collapse
|
48
|
Koch C, Kahmann R. Purification and properties of the Escherichia coli host factor required for inversion of the G segment in bacteriophage Mu. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(18)66770-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
49
|
Tominaga A, Enomoto M. Magnesium-dependent plaque formation by bacteriophage P1cinC(-) on Escherichia coli C and Shigella sonnei. Virology 1986; 155:284-8. [PMID: 3535235 DOI: 10.1016/0042-6822(86)90190-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Phage P1C(-), in a state of the phage not infective to Escherichia coli K12, was able to form plaques on a wild-type strain of E. coli C and on Shigella sonnei in the presence of Mg2+. Citrobacter freundii, Enterobacter aerogenes, and a Salmonella typhimurium galE mutant were not lysed by, but were lysogenized with P1cinC(-), whereas Klebsiella pneumoniae, Proteus rettgeri, and S. typhimurium LT2 were not susceptible to either P1cinC(-) or P1cinC(+). The lipopolysaccharide structure of E. coli C and Sh. sonnei is discussed with reference to receptors for P1cinC(-) and P1cinC(+).
Collapse
|
50
|
Ross W, Shore SH, Howe MM. Mutants of Escherichia coli defective for replicative transposition of bacteriophage Mu. J Bacteriol 1986; 167:905-19. [PMID: 3017919 PMCID: PMC215958 DOI: 10.1128/jb.167.3.905-919.1986] [Citation(s) in RCA: 37] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We isolated 142 Hir- (host inhibition of replication) mutants of an Escherichia coli K-12 Mu cts Kil- lysogen that survived heat induction and the killing effect of Mu replicative transposition. All the 86 mutations induced by insertion of Tn5 or a kanamycin-resistant derivative of Tn10 and approximately one-third of the spontaneous mutations were found by P1 transduction to be linked to either zdh-201::Tn10 or Tn10-1230, indicating their location in or near himA or hip, respectively. For a representative group of these mutations, complementation by a plasmid carrying the himA+ gene or by a lambda hip+ transducing phage confirmed their identification as himA or hip mutations, respectively. Some of the remaining spontaneously occurring mutations were located in gyrA or gyrB, the genes encoding DNA gyrase. Mutations in gyrA were identified by P1 linkage to zei::Tn10 and a Nalr gyrA allele; those in gyrB were defined by linkage to tna::Tn10 and to a gyrB(Ts) allele. In strains carrying these gyrA or gyrB mutations, pBR322 plasmid DNA exhibited altered levels of supercoiling. The extent of growth of Mu cts differed in the various gyrase mutants tested. Phage production in one gyrA mutant was severely reduced, but it was only delayed and slightly reduced in other gyrA and gyrB mutants. In contrast, growth of a Kil- Mu was greatly reduced in all gyrase mutant hosts tested.
Collapse
|