1
|
Wang K, Dropulic L, Bozekowski J, Pietz HL, Jegaskanda S, Dowdell K, Vogel JS, Garabedian D, Oestreich M, Nguyen H, Ali MA, Lumbard K, Hunsberger S, Reifert J, Haynes WA, Sawyer JR, Shon JC, Daugherty PS, Cohen JI. Serum and Cervicovaginal Fluid Antibody Profiling in Herpes Simplex Virus (HSV) Seronegative Recipients of the HSV529 Vaccine. J Infect Dis 2021; 224:1509-1519. [PMID: 33718970 DOI: 10.1093/infdis/jiab139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 03/12/2021] [Indexed: 11/14/2022] Open
Abstract
Previous HSV2 vaccines have not prevented genital herpes. Concerns have been raised about the choice of antigen, the type of antibody induced by the vaccine, and whether antibody is present in the genital tract where infection occurs. We reported results of a trial of an HSV2 replication-defective vaccine, HSV529, that induced serum neutralizing antibody responses in 78% of HSV1 -/HSV2 - vaccine recipients. Here we show that HSV1 -/HSV2 - vaccine recipients developed antibodies to epitopes of several viral proteins; however, fewer antibody epitopes were detected in vaccine recipients compared with naturally infected persons. HSV529 induced antibodies that mediated HSV2-specific NK cell activation. Depletion of gD-binding antibody from sera reduced neutralizing titers by 62% and NK cell activation by 81%. HSV2 gD antibody was detected in cervicovaginal fluid at about one-third the level of that in serum. A vaccine that induces potent serum antibodies transported to the genital tract might reduce HSV genital infection.
Collapse
Affiliation(s)
- Kening Wang
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lesia Dropulic
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Harlan L Pietz
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sinthujan Jegaskanda
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kennichi Dowdell
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Joshua S Vogel
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Doreen Garabedian
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Makinna Oestreich
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Hanh Nguyen
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mir A Ali
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Keith Lumbard
- Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Sally Hunsberger
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | - Jeffrey I Cohen
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
2
|
Glycoprotein B of herpes simplex virus 2 has more than one intracellular conformation and is altered by low pH. J Virol 2012; 86:6444-56. [PMID: 22514344 DOI: 10.1128/jvi.06668-11] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The crystal structure of herpes simplex virus (HSV) gB identifies it as a class III fusion protein, and comparison with other such proteins suggests this is the postfusion rather than prefusion conformation, although this is not proven. Other class III proteins undergo a pH-dependent switch between pre- and postfusion conformations, and a low pH requirement for HSV entry into some cell types suggests that this may also be true for gB. Both gB and gH undergo structural changes at low pH, but there is debate about the extent and significance of the changes in gB, possibly due to the use of different soluble forms of the protein and different assays for antigenic changes. In this study, a complementary approach was taken, examining the conformations of full-length intracellular gB by quantitative confocal microscopy with a panel of 26 antibodies. Three conformations were distinguished, and low pH was found to be a major influence. Comparison with previous studies indicates that the intracellular conformation in low-pH environments may be the same as that of the soluble form known as s-gB at low pH. Interestingly, the antibodies whose binding was most affected by low pH both have neutralizing activity and consequently must block either the function of a neutral pH conformation or its switch from an inactive form to an activated form. If one of the intracellular conformations is the fusion-active form, another factor required for fusion is presumably absent from wherever that conformation is present in infected cells so that inappropriate fusion is avoided.
Collapse
|
3
|
Lang SM, Means RE. Characterization of cytoplasmic motifs important in rhesus rhadinovirus gB processing and trafficking. Virology 2010; 398:233-42. [PMID: 20060555 DOI: 10.1016/j.virol.2009.12.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Revised: 11/09/2009] [Accepted: 12/02/2009] [Indexed: 12/13/2022]
Abstract
Rhesus monkey rhadinovirus (RRV) is highly related to Kaposi's sarcoma-associated herpesvirus (KSHV), a human gamma-herpesvirus etiologically-linked with several cancers. Glycoprotein B (gB) homologues are encoded by all herpesviruses and play a role in virus attachment, entry, and in egress. We have found that RRV gB, like KSHV gB, is cleaved at a consensus furin cleavage site and is modified by both N-linked and O-linked glycosylation. Mutagenesis of three tyrosine- based trafficking motifs, a diacidic tyrosine motif, and a di-lucine motif in the cytoplasmic region revealed a role for these sequences in both ER export and endocytosis from the plasma membrane. These experiments provide a basis for further experiments looking at gB incorporation and role in gamma-herpesvirus assembly and egress.
Collapse
Affiliation(s)
- Sabine M Lang
- Department Of Pathology, Yale University School of Medicine, P.O. Box 208023, New Haven, CT 06520, USA
| | | |
Collapse
|
4
|
Multiple peptides homologous to herpes simplex virus type 1 glycoprotein B inhibit viral infection. Antimicrob Agents Chemother 2008; 53:987-96. [PMID: 19104014 DOI: 10.1128/aac.00793-08] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The 773-residue ectodomain of the herpes simplex virus type 1 (HSV-1) glycoprotein B (gB) has been resistant to the use of mutagenic strategies because the majority of the induced mutations result in defective proteins. As an alternative strategy for the identification of functionally important regions and novel inhibitors of infection, we prepared a library of overlapping peptides homologous to the ectodomain of gB and screened for the ability of the peptides to block infection. Seven of 138 15-mer peptides inhibited infection by more than 50% at a concentration of 100 microM. Three peptides (gB94, gB122, and gB131) with 50% effective concentrations (EC(50)s) below 20 microM were selected for further studies. The gB131 peptide (residues 681 to 695 in HSV-1 gB [gB-1]) was a specific entry inhibitor (EC(50), approximately 12 microM). The gB122 peptide (residues 636 to 650 in gB-1) blocked viral entry (EC(50), approximately 18 microM), protected cells from infection (EC(50), approximately 72 microM), and inactivated virions in solution (EC(50), approximately 138 microM). We were unable to discern the step or steps inhibited by the gB94 peptide, which is homologous to residues 496 to 510 in gB-1. Substitution of a tyrosine in the gB122 peptide (Y640 in full-length gB-1) reduced the antiviral activity eightfold, suggesting that this residue is critical for inhibition. This peptide-based strategy could lead to the identification of functionally important regions of gB or other membrane proteins and identify novel inhibitors of HSV-1 entry.
Collapse
|
5
|
Roller DG, Dollery SJ, Doyle JL, Nicola AV. Structure-function analysis of herpes simplex virus glycoprotein B with fusion-from-without activity. Virology 2008; 382:207-16. [PMID: 18950828 DOI: 10.1016/j.virol.2008.09.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 09/18/2008] [Accepted: 09/18/2008] [Indexed: 10/21/2022]
Abstract
Fusion-from-without (FFWO) is the rapid induction of cell fusion by virions in the absence of viral protein synthesis. The combination of two amino acid mutations in envelope glycoprotein B (gB), one in the ectodomain and one in the cytoplasmic tail, can confer FFWO activity to wild type herpes simplex virus (HSV). In this report, we analyzed the entry and cell fusion phenotypes of HSV that contains FFWO gB, with emphasis on the cellular receptors for HSV, nectin-1, nectin-2 and HVEM. The ability of an HSV strain with FFWO gB to efficiently mediate FFWO via a specific gD-receptor correlated with its ability to mediate viral entry by that receptor. A FFWO form of gB was not sufficient to switch the entry of HSV from a pH-dependent, endocytic pathway to a direct fusion, pH-independent pathway. The conformation of gB with FFWO activity was not globally altered relative to wild type. However, distinct monoclonal antibodies had reduced reactivity with FFWO gB, suggesting an altered antigenic structure relative to wild type. FFWO was blocked by preincubation of virions with neutralizing antibodies to gB or gD. Together with previous studies, the results indicate that the roles of gB in FFWO and in virus-cell fusion during entry are related but not identical. This study also suggests that the FFWO function of gB is not a specific determinant for the selection of HSV entry pathway and that antigenic differences in FFWO gB may reflect its enhanced fusion activity.
Collapse
Affiliation(s)
- Devin G Roller
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298-0678, USA
| | | | | | | |
Collapse
|
6
|
Subramanian RP, Geraghty RJ. Herpes simplex virus type 1 mediates fusion through a hemifusion intermediate by sequential activity of glycoproteins D, H, L, and B. Proc Natl Acad Sci U S A 2007; 104:2903-8. [PMID: 17299053 PMCID: PMC1815279 DOI: 10.1073/pnas.0608374104] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Indexed: 11/18/2022] Open
Abstract
Virus-induced membrane fusion can be subdivided into three phases defined by studies of class I and class II fusion proteins. During Phase I, two membranes are brought into close apposition. Phase II marks the mixing of the outer membrane leaflets leading to formation of a hemifusion intermediate. A fusion pore stably forms and expands in Phase III, thereby completing the fusion process. Herpes simplex virus type 1 (HSV-1) requires four glycoproteins to complete membrane fusion, but none has been defined as class I or II. Therefore, we investigated whether HSV-1-induced membrane fusion occurred following the same general phases as those described for class I and II proteins. In this study we demonstrate that glycoprotein D (gD) and the glycoprotein H and glycoprotein L complex (gHL) mediated lipid mixing indicative of hemifusion. However, content mixing and full fusion required glycoprotein B (gB) to be present along with gD and gHL. Our results indicate that, like class I and II fusion proteins, fusion mediated by HSV-1 glycoproteins occurred through a hemifusion intermediate. In addition, both gB and gHL are probably directly involved in the fusion process. From this, we propose a sequential model for fusion via HSV-1 glycoproteins whereby gD is required for Phase I, gHL is required for Phase II, and gB is required for Phase III. We further propose that glycoprotein H and gB are likely to function sequentially to promote membrane fusion in other herpesviruses such as Epstein-Barr virus and human herpesvirus 8.
Collapse
Affiliation(s)
- Ravi P. Subramanian
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, 800 Rose Street, Lexington, KY 40536
| | - Robert J. Geraghty
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, 800 Rose Street, Lexington, KY 40536
| |
Collapse
|
7
|
Rajcáni J, Durmanová V. Developments in herpes simplex virus vaccines: old problems and new challenges. Folia Microbiol (Praha) 2006; 51:67-85. [PMID: 16821715 DOI: 10.1007/bf02932160] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Vaccination has remained the best method for preventing virus spread. The herpes simplex virus (HSV) candidate vaccines tested till now were mostly purified subunit vaccines and/or recombinant envelope glycoproteins (such as gB and gD). In many experiments performed in mice, guinea pigs and rabbits, clear-cut protection against acute virus challenge was demonstrated along with the reduction of the extent of latency, when established in the immunized host. The immunotherapeutic effect of herpes vaccines seems less convincing. However, introduction of new adjuvants, which shift the cytokine production of helper T-cells toward stimulation of cytotoxic T-cells (TH1 type cytokine response), reveals a promising development. Mathematical analysis proved that overall prophylactic vaccination of seronegative women, even when eliciting 40-60 % antibody response only, would reduce the frequency of genital herpes within the vaccinated population. Even when partially effective, immunotherapeutic vaccination might represent a suitable alternative of chronic chemotherapy in recurrent labial and genital herpes.
Collapse
Affiliation(s)
- J Rajcáni
- Institute of Virology, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | | |
Collapse
|
8
|
Jones NA, Geraghty RJ. Fusion activity of lipid-anchored envelope glycoproteins of herpes simplex virus type 1. Virology 2004; 324:213-28. [PMID: 15183068 DOI: 10.1016/j.virol.2004.03.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2003] [Revised: 10/17/2003] [Accepted: 03/24/2004] [Indexed: 11/25/2022]
Abstract
Expression of the herpes simplex virus type 1 (HSV-1) glycoproteins gB, gD, gH, and gL is necessary and sufficient to cause cell fusion. To identify the requirements for a membrane-spanning domain in HSV-1 glycoprotein-induced cell fusion, we created gB, gD, and gH mutants with transmembrane and cytoplasmic domains replaced by a glycosylphosphatidylinositol (gpi)-addition sequence. The corresponding gBgpi, gDgpi, and gHgpi proteins were expressed with wild-type efficiency at the cell surface and were linked to the plasma membrane via a gpi anchor. The gDgpi mutant promoted cell fusion near wild-type gD levels when co-expressed with gB, gH, and gL in a cell-mixing fusion assay, indicating that the gD transmembrane and cytoplasmic domains were not required for fusion activity. A plasma membrane link was required for fusion because a gD mutant lacking a transmembrane and cytoplasmic domain was nonfunctional for fusion. The gDgpi mutant was also able to cooperate with wild-type gB, gH, and gL to form syncytia, albeit at a size smaller than those formed in the wild-type situation. The gBgpi and gHgpi mutants were unable to promote fusion when expressed with the other wild-type viral glycoproteins, highlighting the requirement of the specific transmembrane and cytoplasmic domains for gB and gH function.
Collapse
Affiliation(s)
- Natasha A Jones
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40536-0298, USA
| | | |
Collapse
|
9
|
Domingo C, Gadea I, Pardeiro M, Castilla C, Fernández S, Fernández-Clua MA, De la Cruz Troca JJ, Punzón C, Soriano F, Fresno M, Tabarés E. Immunological properties of a DNA plasmid encoding a chimeric protein of herpes simplex virus type 2 glycoprotein B and glycoprotein D. Vaccine 2003; 21:3565-74. [PMID: 12922084 DOI: 10.1016/s0264-410x(03)00423-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A DNA plasmid containing a chimeric sequence encoding both herpes simplex virus type 2 (HSV-2) glycoprotein B (gB) and glycoprotein D (gD) external domains (pcgDB) was used to immunize BALB/c mice against genital HSV-2 infection. To determine the efficacy of this vaccine, groups of mice immunized with the pcgDB plasmid were compared with animals immunized with plasmids corresponding to the individual proteins (pcgBt or pcgDt), administered separately or in combination (pcgBt + pcgDt). We studied the response of the different mouse groups to viral challenge by analyzing clinical disease (vaginitis), serum antibody levels, as well as lymphoproliferative responses and cytokine production by spleen cells. Increased IFN-gamma levels correlated with prolonged survival in mice immunized with the plasmid pcgDB, relative to mice immunized with plasmids coding for the individual proteins alone or in combination. Our results show that immunization with the plasmid encoding the chimeric protein is advantageous over separate proteins. These findings may have important implications for the development of multivalent DNA vaccines against HSV and other complex pathogens.
Collapse
Affiliation(s)
- C Domingo
- Departamento de Medicina Preventiva y Salud Pública (Microbiología), Facultad de Medicina, Universidad Autónoma de Madrid, Madrid 28029, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Laquerre S, Anderson DB, Argnani R, Glorioso JC. Herpes simplex virus type 1 glycoprotein B requires a cysteine residue at position 633 for folding, processing, and incorporation into mature infectious virus particles. J Virol 1998; 72:4940-9. [PMID: 9573262 PMCID: PMC110055 DOI: 10.1128/jvi.72.6.4940-4949.1998] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) glycoprotein B (gB) resides in the virus envelope in an oligomeric form and plays an essential role in virus entry into susceptible host cells. The oligomerizing domain is a movable element consisting of amino acids 626 to 653 in the gB external domain. This domain contains a single cysteine residue at position 633 (Cys-633) that is predicted to form an intramolecular disulfide bridge with Cys-596. In this study, we examined gB oligomerization, processing, and incorporation into mature virus during infection by two mutant viruses in which either the gB Cys-633 [KgB(C633S)] or both Cys-633 and Cys-596 [KgB(C596S/C633S)] residues were mutated to serine. The result of immunofluorescence studies and analyses of released virus particles showed that the mutant gB molecules were not transported to the cell surface or incorporated into mature virus envelopes and thus infectious virus was not produced. Immunoprecipitation studies revealed that the mutant gB molecules were in an oligomeric configuration and that these mutants produced hetero-oligomers with a truncated form of gB consisting of residues 1 to 43 and 595 to 904, the latter containing the oligomerization domain. Pulse-chase experiments in combination with endoglycosidase H treatment determined that the mutant molecules were improperly processed, having been retained in the endoplasmic reticulum (ER). Coimmunoprecipitation experiments revealed that the cysteine mutations resulted in gB misfolding and retention by the molecular chaperones calnexin, calreticulin, and Grp78 in the ER. The altered conformation of the gB mutant glycoproteins was directly detected by a reduction in monoclonal antibody recognition of two previously defined distinct antigenic sites located within residues 381 to 441 and 595 to 737. The misfolded molecules were not transported to the cell surface as hetero-oligomers with wild-type gB, suggesting that the conformational change could not be corrected by intermolecular interactions with the wild-type molecule. Together, these experiments confirmed that a disulfide bridge involving Cys-633 and Cys-596 is not essential for oligomerization but rather is required for proper folding and maintenance of a gB domain essential to complete posttranslational modification, transport, and incorporation into mature virus particles.
Collapse
Affiliation(s)
- S Laquerre
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | |
Collapse
|
11
|
Norton DD, Dwyer DS, Muggeridge MI. Use of a neural network secondary structure prediction to define targets for mutagenesis of herpes simplex virus glycoprotein B. Virus Res 1998; 55:37-48. [PMID: 9712510 DOI: 10.1016/s0168-1702(98)00030-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Herpes simplex virus glycoprotein B (HSV gB) is essential for penetration of virus into cells, for cell-to-cell spread of virus, and for cell-cell fusion. Every member of the family Herpesviridae has a gB homolog, underlining its importance. The antigenic structure of gB has been studied extensively, but little is known about which regions of the protein are important for its roles in virus entry and spread. In contrast to successes with other HSV glycoproteins, attempts to map functional domains of gB by insertion mutagenesis have been largely frustrated by the misfolding of most mutants. The present study shows that this problem can be overcome by targeting mutations to the loop regions that connect alpha-helices and beta-strands, avoiding the helices and strands themselves. The positions of loops in the primary sequence were predicted by the PHD neural network procedure, using a multiple sequence alignment of 19 alphaherpesvirus gB sequences as input. Comparison of the prediction with a panel of insertion mutants showed that all mutants with insertions in predicted alpha-helices or beta-strands failed to fold correctly and consequently had no activity in virus entry; in contrast, half the mutants with insertions in predicted loops were able to fold correctly. There are 27 predicted loops of four or more residues in gB; targeting of mutations to these regions will minimize the number of misfolded mutants and maximize the likelihood of identifying functional domains of the protein.
Collapse
Affiliation(s)
- D D Norton
- Department of Microbiology and Immunology, Louisiana State University School of Medicine, Shreveport 71130, USA
| | | | | |
Collapse
|
12
|
Hariharan MJ, Driver DA, Townsend K, Brumm D, Polo JM, Belli BA, Catton DJ, Hsu D, Mittelstaedt D, McCormack JE, Karavodin L, Dubensky TW, Chang SM, Banks TA. DNA immunization against herpes simplex virus: enhanced efficacy using a Sindbis virus-based vector. J Virol 1998; 72:950-8. [PMID: 9444987 PMCID: PMC124565 DOI: 10.1128/jvi.72.2.950-958.1998] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Previously we reported the development of a plasmid DNA expression vector system derived from Sindbis virus (T. W. Dubensky, Jr., et al., J. Virol. 70:508-519, 1996). In vitro, such vectors exhibit high-level heterologous gene expression via self-amplifying cytoplasmic RNA replication. In the present study, we demonstrated the in vivo efficacy of the Sindbis virus-based pSIN vectors as DNA vaccines. A single intramuscular immunization of BALB/c mice with pSIN vectors expressing the glycoprotein B of herpes simplex virus type 1 induced a broad spectrum of immune responses, including virus-specific antibodies, cytotoxic T cells, and protection from lethal virus challenge in two different murine models. In addition, dosing studies demonstrated that the pSIN vectors were superior to a conventional plasmid DNA vector in the induction of all immune parameters tested. In general, 100- to 1,000-fold-lower doses of pSIN were needed to induce the same level of responsiveness as that achieved with the conventional plasmid DNA vector. In some instances, significant immune responses were induced with a single dose of pSIN as low as 10 ng/mouse. These results indicate the potential usefulness of alphavirus-based vectors for DNA immunization in general and more specifically as a herpes simplex virus vaccine.
Collapse
Affiliation(s)
- M J Hariharan
- Department of Viral Therapeutics, Center for Gene Therapy, Chiron Technologies, San Diego, California 92121-1204, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Norais N, Tang D, Kaur S, Chamberlain SH, Masiarz FR, Burke RL, Marcus F. Disulfide bonds of herpes simplex virus type 2 glycoprotein gB. J Virol 1996; 70:7379-87. [PMID: 8892856 PMCID: PMC190805 DOI: 10.1128/jvi.70.11.7379-7387.1996] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Glycoprotein B (gB) is the most highly conserved envelope glycoprotein of herpesviruses. The gB protein is required for virus infectivity and cell penetration. Recombinant forms of gB being used for the development of subunit vaccines are able to induce virus-neutralizing antibodies and protective efficacy in animal models. To gain structural information about the protein, we have determined the location of the disulfide bonds of a 696-amino-acid residue truncated, recombinant form of herpes simplex virus type 2 glycoprotein gB (HSV gB2t) produced by expression in Chinese hamster ovary cells. The purified protein, which contains virtually the entire extracellular domain of herpes simplex virus type 2 gB, was digested with trypsin under nonreducing conditions, and peptides were isolated by reversed-phase high-performance liquid chromatography (HPLC). The peptides were characterized by using mass spectrometry and amino acid sequence analysis. The conditions of cleavage (4 M urea, pH 7) induced partial carbamylation of the N termini of the peptides, and each disulfide peptide was found with two or three different HPLC retention times (peptides with and without carbamylation of either one or both N termini). The 10 cysteines of the molecule were found to be involved in disulfide bridges. These bonds were located between Cys-89 (C1) and Cys-548 (C8), Cys-106 (C2) and Cys-504 (C7), Cys-180 (C3) and Cys-244 (C4), Cys-337 (C5) and Cys-385 (C6), and Cys-571 (C9) and Cys-608 (C10). These disulfide bonds are anticipated to be similar in the corresponding gBs from other herpesviruses because the 10 cysteines listed above are always conserved in the corresponding protein sequences.
Collapse
Affiliation(s)
- N Norais
- Chiron Corporation, Emeryville, California 94608, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Goade DE, Bell R, Yamada T, Mertz GJ, Jenison S. Locations of herpes simplex virus type 2 glycoprotein B epitopes recognized by human serum immunoglobulin G antibodies. J Virol 1996; 70:2950-6. [PMID: 8627770 PMCID: PMC190153 DOI: 10.1128/jvi.70.5.2950-2956.1996] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Herpes simplex virus type 2 (HSV-2) glycoprotein B (gB-2) gene segments were expressed as recombinant proteins in Escherichia coli. gB-2 recombinant proteins were reacted with human serum immunoglobulin G (IgG) antibodies in Western immunoblot assays. Initially, samples were tested for the presence of HSV-1-specific antibodies and HSV-2-specific antibodies by using HSV-infected cell lysates as antigen targets in Western blot assays. Serum samples that contained HSV-2-specific IgG (n = 58), HSV-1-specific IgG (n = 33), or no detectable HSV antibodies (n = 31) were tested for reactivities with the gB-2 recombinant proteins. In 58 of 58 samples that contained HSV-2-specific IgG, antibodies were present that reacted strongly with a gB-2 amino-proximal segment between amino acids (aa) 18 and 75. Three of 33 serum samples that contained HSV-1- and not HSV-2-specific IgG (as defined by the HSV lysate Western blot assay) reacted with this segment. Both HSV-2 antibodies and HSV-1 antibodies reacted strongly with a carboxy-terminal gB-2 segment between aa 819 and 904; a second minor cross-reactive region was mapped to a gB-2 segment between aa 564 and 626. The gB-2 segment from aa 18 to 75 may constitute a useful reagent for the virus type-specific serodiagnosis of HSV-2 infections. Further studies will be required to determine the relative sensitivities and specificities of the assay for gB-2 aa 18 to 75, HSV gG assays, and HSV lysate Western blot assays for detecting virus type-specific antibody responses in acute and chronic HSV-2 infections.
Collapse
Affiliation(s)
- D E Goade
- Department of Medicine, University of New Mexico School of Medicine, Albuquerque 87131-5271, USA
| | | | | | | | | |
Collapse
|
15
|
Laquerre S, Person S, Glorioso JC. Glycoprotein B of herpes simplex virus type 1 oligomerizes through the intermolecular interaction of a 28-amino-acid domain. J Virol 1996; 70:1640-50. [PMID: 8627685 PMCID: PMC189988 DOI: 10.1128/jvi.70.3.1640-1650.1996] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Herpes simplex virus type 1 glycoprotein B (gB) is an envelope component that plays an essential role in virus infection. The biologically active form of gB is an oligomer that contributes to the process of viral envelope fusion with the cell surface membrane, resulting in viral penetration and initiation of the replication cycle. In previous studies, two discontinuous sites for oligomer formation were identified: a nonessential upstream site located between residues 93 and 282 and an essential downstream site located between residues 596 and 711. In this study, in vitro-transcribed and -translated gB test molecules were used to characterize the more active essential membrane-proximal domain. A series of gB test polypeptides mutated in this downstream oligomerization domain were assayed for their abilities to form oligomers with a mutant gB capture polypeptide containing the analogous wild-type domain. Detection of oligomers was achieved by coimmunoprecipitation of two gB mutant molecules by using a monoclonal antibody specific for a hemagglutinin epitope tag introduced into the coding sequence of the capture polypeptide. Analysis of the immune-precipitated products by sodium dodecyl sulfate-polyacrylamide gel electrophoresis demonstrated that the downstream oligomerization domain resided within residues 626 to 676. This region was further resolved into two segments, residues 626 to 653 and 653 to 675, each of which was independently sufficient to form oligomers. However, residues 626 to 653 provided for a stronger interaction between gB monomers. Moreover, this stretch of 28 amino acids was shown to form oligomers when introduced into the carboxy-terminal region of gB monomers lacking this domain at the normal site, thus indicating that this domain was functionally independent of its natural location within the gB molecule. Further analysis of the sequence within residues 596 to 653 by using mutant test polypeptides altered in individual amino acids revealed that cysteines 9 and 10 located at positions 596 and 633, respectively, were not required for oligomer formation but contributed to dimer formation and/or stabilization. The results of this study suggest that oligomerization of gB monomers is induced by interactions between contiguous residues localized within the ectodomain near the site of molecule insertion into the viral envelope membrane.
Collapse
Affiliation(s)
- S Laquerre
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh, Pennsylvania 15261, USA
| | | | | |
Collapse
|
16
|
Ramakrishnan M, Tugizov S, Pereira L, Lee AS. Conformation-defective herpes simplex virus 1 glycoprotein B activates the promoter of the grp94 gene that codes for the 94-kD stress protein in the endoplasmic reticulum. DNA Cell Biol 1995; 14:373-84. [PMID: 7748487 DOI: 10.1089/dna.1995.14.373] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
GRP94 is a major glycoprotein in the endoplasmic reticulum with calcium-binding properties. Recently, GRP94 has been shown to bind to unassembled forms of multimeric proteins and peptides. We report here that GRP94 forms a stable association with the mutated form of the herpes simplex type virus 1 (HSV-1) glycoprotein B, but not with the fully processed viral protein. Both the glycosylated and unglycosylated forms of GRP94 are capable of complexing with the mutated, conformation-defective viral glycoprotein. Cotransfection of expression vectors for gB and grp94 promoter fusion genes revealed that the grp94 promoter is strongly activated by the mutant form of gB. Analysis of the grp94 promoter mutants showed that two regions in the promoter, a highly conserved element referred to as grp core and the CCAAT element most proximal to the TATA element (C1), mediate the induction of grp94 by malfolded protein. We further determined that the grp94 core and C1 element bind to common as well distinct nuclear factors from grp78, a commonly coregulated gene. Through UV cross-linking, site competition, and immunocross-reactivity, we identified that the heteromeric CCAAT-binding protein (CBF) is one component of the grp94 C1 complex.
Collapse
Affiliation(s)
- M Ramakrishnan
- Department of Biochemistry and Molecular Biology, University of Southern California School of Medicine, Los Angeles 90033, USA
| | | | | | | |
Collapse
|
17
|
Davidson I, Tanaka A, Nonoyama M. Common antigenic epitopes are present on heat-labile oligomers of MDV glycoprotein B and on HSV glycoprotein B. Virus Res 1995; 35:233-45. [PMID: 7540344 DOI: 10.1016/0168-1702(94)00066-l] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The antigenic cross-reactivity between the Marek's disease virus glycoprotein B (MDV gB) and glycoprotein B (gB) of herpes simplex virus type 1 and 2 (HSV1 and HSV2) was analysed by the immunoblotting method. We studied cell lysates in both denatured and in undenatured form (i.e., unheated) and reacted them with convalescent sera from chickens infected with the RBIB MDV strain and with human anti-HSV1 gB. Both sera detected the heat-labile MDV gB and the HSV gB oligomers. In addition, monospecific antibodies to the MDV gB 230 kDa oligomer (strain CVI988) were immunoaffinity purified from both the chicken and the human sera. The chicken and human monospecific antibodies detected the homologous and the heterologous gB oligomers in native MDV- and HSV1-infected cell lysates. 15 human sera were tested by immunoblotting and by immunofluorescence on HSV1-, CVI988-and herpes virus of turkeys (HVT)-infected cells. By both assays about half of the human sera reacted with MDV-infected cells. This study demonstrates that the MDV gB heat-labile oligomers possess conformational epitopes shared with the human alpha-herpes virus HSV1 and HSV2 gB heat-labile oligomers.
Collapse
Affiliation(s)
- I Davidson
- Tampa Bay Research Institute, St. Petersburg, FL 33716, USA
| | | | | |
Collapse
|
18
|
Kopp A, Blewett E, Misra V, Mettenleiter TC. Proteolytic cleavage of bovine herpesvirus 1 (BHV-1) glycoprotein gB is not necessary for its function in BHV-1 or pseudorabies virus. J Virol 1994; 68:1667-74. [PMID: 8107227 PMCID: PMC236625 DOI: 10.1128/jvi.68.3.1667-1674.1994] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Glycoprotein B homologs represent the most highly conserved group of herpesvirus glycoproteins. They exist in oligomeric forms based on a dimeric structure. Despite the high degree of sequence and structural conservation, differences in posttranslational processing are observed. Whereas gB of herpes simplex virus is not proteolytically processed after oligomerization, most other gB homologs are cleaved by a cellular protease into subunits that remain linked via disulfide bonds. Proteolytic cleavage is common for activation of viral fusion proteins, and it has been shown that herpesvirus gB homologs are essential for membrane fusion events during infection, e.g., virus penetration and direct viral cell-to-cell spread. To analyze the importance of proteolytic cleavage for the function of gB homologs, we isolated a mutant bovine herpesvirus 1 (BHV-1) expressing a BHV-1 gB that is no longer proteolytically processed because of a deletion of the proteolytic cleavage site and analyzed its phenotype in cell culture. We showed previously that BHV-1 gB can functionally substitute for the homologous glycoprotein in pseudorabies virus (PrV), based on the isolation of a PrV gB-negative PrV recombinant that expresses BHV-1 gB (A. Kopp and T. C. Mettenleiter, J. Virol, 66:2754-2762, 1992). Therefore, we also isolated a mutant PrV lacking PrV gB but expressing a noncleavable BHV-1 gB. Our results show that cleavage of BHV-1 gB is not essential for its function in either a BHV-1 or a PrV background. Compared with the PrV recombinant expressing cleavable BHV-1 gB, deletion of the cleavage site in the recombinant PrV did not detectably alter the viral phenotype, as analyzed by plaque assays, one-step growth kinetics, and penetration kinetics. In the BHV-1 mutant, the uncleaved BHV-1 gB was functionally equivalent to the wild-type protein with regard to penetration and showed only slightly delayed one-step growth kinetics compared with parental wild-type BHV-1. However, the resulting plaques were significantly smaller, indicating a role for proteolytic cleavage of BHV-1 gB in cell-to-cell spread of BHV-1.
Collapse
Affiliation(s)
- A Kopp
- Federal Research Centre for Virus Diseases of Animals, Tübingen, Germany
| | | | | | | |
Collapse
|
19
|
Rasile L, Ghosh K, Raviprakash K, Ghosh HP. Effects of deletions in the carboxy-terminal hydrophobic region of herpes simplex virus glycoprotein gB on intracellular transport and membrane anchoring. J Virol 1993; 67:4856-66. [PMID: 8392620 PMCID: PMC237873 DOI: 10.1128/jvi.67.8.4856-4866.1993] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The gB glycoprotein of herpes simplex virus type 1 is involved in viral entry and fusion and contains a predicted membrane-anchoring sequence of 69 hydrophobic amino acids, which can span the membrane three times, near the carboxy terminus. To define the membrane-anchoring sequence and the role of this hydrophobic stretch, we have constructed deletion mutants of gB-1, lacking one, two, or three predicted membrane-spanning segments within the 69 amino acids. Expression of the wild-type and mutant glycoproteins in COS-1 cells show that mutant glycoproteins lacking segment 3 (amino acids 774 to 795 of the gB-1 protein) were secreted from the cells. Protease digestion and alkaline extraction of microsomes containing labeled mutant proteins further showed that segment 3 was sufficient for stable membrane anchoring of the glycoproteins, indicating that this segment may specify the transmembrane domain of the gB glycoprotein. Also, the mutant glycoproteins containing segment 3 were localized in the nuclear envelop, which is the site of virus budding. Deletion of any of the hydrophobic segments, however, affected the intracellular transport and processing of the mutant glycoproteins. The mutant glycoproteins, although localized in the nuclear envelope, failed to complement the gB-null virus (K082). These results suggest that the carboxy-terminal hydrophobic region contains essential structural determinants of the functional gB glycoprotein.
Collapse
Affiliation(s)
- L Rasile
- Department of Biochemistry, McMaster University, Hamilton, Ontario, Canada
| | | | | | | |
Collapse
|
20
|
Becker Y. Computer prediction of antigenic and topogenic domains in HSV-1 and HSV-2 glycoprotein B (gB). Virus Genes 1992; 6:131-41. [PMID: 1375407 DOI: 10.1007/bf01703062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The envelope glycoprotein B (gB) coded for by the herpes simplex virus type 1 (HSV-1) UL27 gene is similar to the amino acid (aa) sequence of the gB coded by a homologous gene in HSV-2 DNA. The putative antigenic domains in HSV-1 and HSV-2 gB glycoproteins were analyzed on a comparative basis by suitable computer programs, which allowed the prediction of putative antigenic and topogenic domains. The computer-derived domains were compared to experimentally reported antigenic domains in HSV-1 gB glycoprotein. The computer-predicted antigenic domains in the HSV-1 gB glycoprotein matched well with the reported experimentally derived antigenic domains. The aa sequence of antigenic domain 1 was noted to resemble the amino acid sequence in ApoE that is involved in the attachment of this protein to LDL receptors. The clusters of hydrophobic aa domains are conserved in the two viral glycoproteins and are signals for transfer of the viral proteins through the cellular membrane.
Collapse
Affiliation(s)
- Y Becker
- Department of Molecular Virology, Faculty of Medicine, Hebrew University of Jerusalem, Israel
| |
Collapse
|
21
|
Peeters B, de Wind N, Hooisma M, Wagenaar F, Gielkens A, Moormann R. Pseudorabies virus envelope glycoproteins gp50 and gII are essential for virus penetration, but only gII is involved in membrane fusion. J Virol 1992; 66:894-905. [PMID: 1309919 PMCID: PMC240790 DOI: 10.1128/jvi.66.2.894-905.1992] [Citation(s) in RCA: 150] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
To investigate the function of the envelope glycoproteins gp50 and gII of pseudorabies virus in the entry of the virus into cells, we used linker insertion mutagenesis to construct mutant viruses that are unable to express these proteins. In contrast to gD mutants of herpes simplex virus, gp50 mutants, isolated from complementing cells, were able to form plaques on noncomplementing cells. However, progeny virus released from these cells was noninfectious, although the virus was able to adsorb to cells. Thus, the virus requires gp50 to penetrate cells but does not require it in order to spread by cell fusion. This finding indicates that fusion of the virus envelope with the cell membrane is not identical to fusion of the cell membranes of infected and uninfected cells. In contrast to the gp50 mutants, the gII mutant was unable to produce plaques on noncomplementing cells. Examination by electron microscopy of cells infected by the gII mutant revealed that enveloped virus particles accumulated between the inner and outer nuclear membranes. Few noninfectious virus particles were released from the cell, and infected cells did not fuse with uninfected cells. These observations indicate that gII is involved in several membrane fusion events, such as (i) fusion of the viral envelope with the cell membrane during penetration, (ii) fusion of enveloped virus particles with the outer nuclear membrane during the release of nucleocapsids into the cytoplasm, and (iii) fusion of the cell membranes of infected and uninfected cells.
Collapse
Affiliation(s)
- B Peeters
- Virology Department, Central Veterinary Institute, Lelystad, The Netherlands
| | | | | | | | | | | |
Collapse
|
22
|
Navarro D, Paz P, Pereira L. Domains of herpes simplex virus I glycoprotein B that function in virus penetration, cell-to-cell spread, and cell fusion. Virology 1992; 186:99-112. [PMID: 1370130 DOI: 10.1016/0042-6822(92)90064-v] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Herpes simplex virus 1 glycoprotein B (gB) is one of 10 glycoproteins in the virion envelope and in the membranes of infected cells. It is required for infection of cells in culture and functions in penetration of the cell by fusing the virion envelope with the plasma membrane. In studies to map the functional domains on HSV-1 gB, we reported that epitopes of potent neutralizing antibodies cluster in three major antigenic domains, D1, D2, and D5a. D1 contains continuous epitopes in the very amino terminus of gB. D2 comprises discontinuous epitopes that are assembled on gB derivatives 457 amino acids in length. D5a contains discontinuous epitopes that map between amino acids 600 and 690. We have now analyzed the function of these domains in virion infectivity by a detailed examination of the effects of 16 neutralizing antibodies on virion adsorption, penetration, plaque development, and cell fusion. Our results are as follows. (i) Ten antibodies with complement-independent neutralizing activity blocked penetration of virions into cells but not their adsorption to the cell surface. Treating cell-bound, neutralized virus with the fusogenic agent polyethylene glycol promoted their entry into cells. (ii) Ten antibodies with complement-dependent and -independent neutralizing activity interfered with plaque development by preventing spread of virus from infected to neighboring uninfected cells. (iii) Nine neutralizing antibodies, all complement-independent, prevented cell fusion induced by strain HFEM syn. We conclude that domains mapping in three regions of gB function in penetration of virions into cells, and that most neutralizing antibodies to these domains also block cell-to-cell spread of virus and cell fusion. The findings that three complement-independent neutralizing antibodies that blocked penetration did not inhibit plaque development, and that only one of these blocked cell fusion, indicate that the cell-to-cell spread of virus and cell fusion are related processes, but not identical to the penetration function.
Collapse
Affiliation(s)
- D Navarro
- Division of Oral Biology, School of Dentistry, University of California San Francisco 94143-0512
| | | | | |
Collapse
|
23
|
Navarro D, Qadri I, Pereira L. A mutation in the ectodomain of herpes simplex virus 1 glycoprotein B causes defective processing and retention in the endoplasmic reticulum. Virology 1991; 184:253-64. [PMID: 1651591 DOI: 10.1016/0042-6822(91)90842-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Herpes simplex virus 1 (HSV-1) glycoprotein B (gB) is one of several envelope glycoproteins required for virion infectivity and is the only one known to oligomerize into homodimers. To study the conformational constraints for translocation of HSV-1 gB to the surface of eukaryotic cells, we analyzed the transport through the exocytic pathway of the wild-type glycoprotein and of mutant forms with insertions in the ectodomain and intracellular carboxy terminus. Transient expression of the glycoproteins in COS-1 cells showed that an insertion at position 479 in the amino-terminal ectodomain of gB, shown previously by reactions with monoclonal antibodies to have altered the conformation of the molecule, also had a drastic effect on transport, precluding exit of the mutant from the endoplasmic reticulum (ER) and transport to the Golgi and the plasma membrane. The fact that the mutant, gB-(Lk479), formed dimers suggests that local changes in assembled regions caused the transport defect. Mutants containing insertions at residues 600 of the ectodomain and 810 in the intracellular domain were slightly retarded in their rate of transport from the ER to the Golgi. The glucose-regulated proteins GRP78 and GRP94, which are resident proteins of the ER, associated with partially glycosylated, faster-migrating forms of gB but not with the fully processed, more slowly migrating product. GRP78 and GRP94 formed complexes with the mutant gB-(Lk479), which was degraded in the ER. Our results indicate that GRP78, and perhaps also GRP94, acts as a chaperone in the assembly of native gB oligomers and also binds to aberrant forms of the molecule, arresting their transport from the ER and possibly serving as markers for protein degradation in this compartment of the exocytic pathway.
Collapse
Affiliation(s)
- D Navarro
- Division of Oral Biology, School of Dentistry, University of California, San Francisco 94143-0512
| | | | | |
Collapse
|
24
|
Highlander SL, Goins WF, Person S, Holland TC, Levine M, Glorioso JC. Oligomer formation of the gB glycoprotein of herpes simplex virus type 1. J Virol 1991; 65:4275-83. [PMID: 1649330 PMCID: PMC248865 DOI: 10.1128/jvi.65.8.4275-4283.1991] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Oligomer formation of the gB glycoprotein of herpes simplex virus type 1 was studied by sedimentation analysis of radioactively labeled infected cell and virion lysates. Fractions from sucrose gradients were precipitated with a pool of gB-specific monoclonal antibodies and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Pulse-labeled gB from infected cell was synthesized as monomers and converted to oligomers posttranslationally. The oligomers from infected cells and from virions sedimented as dimers, and there was no evidence of higher-molecular-weight forms. To identify amino acid sequences of gB that contribute to oligomer formation, pairs of mutant plasmids were transfected into Vero cells and superinfected with a gB-null mutant virus to stimulate plasmid-specified gene expression. Radioactively labeled lysates were precipitated with antibodies and examined by SDS-PAGE. Polypeptides from cotransfections were precipitated with an antibody that recognized amino acid sequences present in only one of the two polypeptides. A coprecipitated polypeptide lacking the antibody target epitope was presumed to contain the sequences necessary for oligomer formation. Using this technique, two noncontiguous sites for oligomer formation were detected. An upstream site was localized between residues 93 and 282, and a downstream site was localized between residues 596 and 711. Oligomer formation resulted from molecular interactions between two upstream sites, between two downstream sites, and between an upstream and a downstream site. A schematic diagram of a gB oligomer is presented that is consistent with these data.
Collapse
Affiliation(s)
- S L Highlander
- Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor 48109
| | | | | | | | | | | |
Collapse
|
25
|
Gompels UA, Carss AL, Saxby C, Hancock DC, Forrester A, Minson AC. Characterization and sequence analyses of antibody-selected antigenic variants of herpes simplex virus show a conformationally complex epitope on glycoprotein H. J Virol 1991; 65:2393-401. [PMID: 1707982 PMCID: PMC240591 DOI: 10.1128/jvi.65.5.2393-2401.1991] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Thirteen antigenic variants of herpes simplex virus which were resistant to neutralization by monoclonal antibody 52S or LP11 were isolated and characterized. The antibodies in the absence of complement potently neutralize infectivity of wild-type virus as well as inhibit the transfer of virus from infected to uninfected cells ("plaque inhibition") and decrease virus-induced cell fusion by syncytial strains. The first variant isolated arose in vivo. Of 66 type 1 isolates analyzed from typing studies of 100 clinical isolates, one was identified as resistant to neutralization by LP11 antibody. The glycoprotein H (gH) sequence was derived and compared with those of wild-type and syncytial laboratory strains SC16, strain 17, and HFEM. The sequences were highly conserved in contrast to the diversity observed between gH sequences from herpesviruses of different subgroups. Only four coding changes were present in any of the comparisons, and only one unique coding change was observed between the laboratory strains and the clinical isolate (Asp-168 to Gly). These sequences were compared with those of antigenic variants selected by antibody in tissue culture. Twelve variants were independently selected with antibody LP11 or 52S from parent strain SC16 or HFEM. For each variant, the gH nucleotide sequence was derived and a point mutation was identified giving rise to a single amino acid substitution. The LP11-resistant viruses encoded gH sequences with amino acid substitutions at sites distributed over one-half of the gH external domain, Glu-86, Asp-168, or Arg-329, while the 52S-resistant mutant viruses had substitutions at adjacent positions Ser-536 and Ala-537. One LP11 mutant virus had a point mutation in the gH gene that was identical to that of the clinical isolate, giving rise to a substitution of Asp-168 with Gly. Both LP11 and 52S appeared to recognize distinct gH epitopes as mutant virus resistant to neutralization and immunoprecipitation with LP11 remained sensitive to 52S and the converse was shown for the 52S-resistant mutant virus. This is consistent with previous studies which showed that while the 52S epitope could be formed in the absence of other virus products, virus gene expression was required for stable presentation of the LP11 epitope, and for transport of gH to the cell surface (Gompels and Minson, J. Virol. 63:4744-4755, 1989). All mutant viruses produced numbers of infectious particles that were similar to those produced by the wild-type virus, with the exception of one variant which produced lower yields.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- U A Gompels
- Department of Pathology, Cambridge University, United Kingdom
| | | | | | | | | | | |
Collapse
|
26
|
Davidson I, Becker Y, Malkinson M. Monospecific antibodies to Marek's disease virus antigen B dimer (200 kDa) and monomer (130 and 60 kDa) glycoproteins neutralize virus infectivity and detect the antigen B proteins in infected cell membranes. Arch Virol 1991; 121:125-39. [PMID: 1662035 DOI: 10.1007/bf01316749] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Monospecific antibodies were prepared by nitrocellulose blot immunoaffinity to 3 polypeptide components of the host-membrane associated B antigen of Marek's disease herpesvirus (MDV) and to its soluble A antigen. The B antigen comprised a 200 kDa dimer which is 2-mercaptoethanol (2-ME) labile, a monomer of 130 kDa and a 60 kDa protein, both of which are 2-ME resistant. Cross-immunoblotting studies showed that the anti-dimer antibody recognized the dimer protein as well as the 130 and 60 kDa components. In contrast, the anti-130 kDa antibody gave the strongest signal on blots of reducing gels indicating that the monomer is largely formed by in vitro reduction with 2-ME. All four antibodies recognized membrane antigens on chicken embryo fibroblasts infected with MDV vaccine viruses representative of the three serotypes and in addition, neutralized the homologous MDV isolate. The anti-dimer antibody was greatest, the anti-monomer antibody was the weakest and the anti-60 kDa antibody intermediate in neutralizing efficacy to all four viruses. We conclude from these studies that the B antigen presents at least two classes of neutralizing epitopes: one is discontinuous and of broad specificity on the intact dimer molecule and the other, on the 130 and 60 kDa proteins, is continuous and of lower avidity.
Collapse
Affiliation(s)
- I Davidson
- Department of Avian Diseases, Kimron Veterinary Institute, Bet Dagan, Israel
| | | | | |
Collapse
|
27
|
Rauh I, Weiland F, Fehler F, Keil GM, Mettenleiter TC. Pseudorabies virus mutants lacking the essential glycoprotein gII can be complemented by glycoprotein gI of bovine herpesvirus 1. J Virol 1991; 65:621-31. [PMID: 1846188 PMCID: PMC239800 DOI: 10.1128/jvi.65.2.621-631.1991] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The genome of pseudorabies virus (PrV) encodes at least seven glycoproteins. The glycoprotein complex gII consists of three related polypeptides, two of them derived by proteolytic cleavage from a common precursor and linked via disulfide bonds. It is homologous to herpes simplex virus (HSV) gB and is therefore thought to be essential for PrV replication, as is gB for HSV replication. To isolate PrV mutants deficient in gII expression, we established cell lines that stably carry the PrV gII gene. Line N7, of Vero cell origin, contains the gII gene under its own promoter and expresses gII after transactivation by herpesviral functions after infection. MDBK-derived line MT3 contains the gII gene under control of the mouse metallothionein promoter. However, it has essentially lost inducibility and constitutively produces high amounts of correctly processed glycoprotein gII. We used a beta-galactosidase expression cassette inserted into a partially deleted cloned copy of the gII gene for cotransfection with PrV DNA. gII- PrV mutants were isolated from viral progeny by taking advantage of their blue-plaque phenotype when incubated under an agarose overlay containing a chromogenic substrate. Analysis of these mutants proved that gII is indeed essential for PrV replication, since the gII- mutants grew normally on gII-complementing cells but were unable to produce plaques on noncomplementing cells. Surprisingly the PrV gII- mutants were also able to grow on a cell line constitutively expressing the gB-homologous glycoprotein gI from bovine herpesvirus 1 (BHV-1) to the same extent as on cells expressing PrV gII. gII- PrV propagated on cells expressing BHV-1 gI became susceptible to neutralization by anti-BHV-1 gI monoclonal antibodies. We also found that BHV-1 gI is present in the envelope of purified gII- pseudorabies virions grown on cells expressing BHV-1 gI, as judged by radioimmunoprecipitation and immunoelectron microscopy. These results prove that BHV-1 gI is integrated into the PrV envelope and can functionally replace glycoprotein gII of PrV.
Collapse
Affiliation(s)
- I Rauh
- Federal Research Centre for Virus Diseases of Animals, Tübingen, Federal Republic of Germany
| | | | | | | | | |
Collapse
|
28
|
Qadri I, Gimeno C, Navarro D, Pereira L. Mutations in conformation-dependent domains of herpes simplex virus 1 glycoprotein B affect the antigenic properties, dimerization, and transport of the molecule. Virology 1991; 180:135-52. [PMID: 1701945 DOI: 10.1016/0042-6822(91)90017-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Glycoprotein B (gB) is a component of the herpes simplex virus 1 envelope that is required for penetration of virions into cells. We constructed 11 mutants in the gB gene by deleting the carboxy terminus of the molecule, inserting linkers into the ectodomain and intracellular region, and creating point mutations in cysteine residues. To identify regions of the molecule that affect the formation of epitopes on gB, we cloned the mutated genes into a eukaryotic expression vector, transfected them in COS-1 cells, and reacted the gene products in immunofluorescence and immunoprecipitation tests with a panel of monoclonal antibodies. Our findings are as follows. (i) The ectodomain of gB between residues 600 and 690 is highly antigenic and contains residues that specify 8 continuous epitopes and affect the conformation of 12 discontinuous epitopes. Residues that form a novel neutralizing domain and affect the assembly of gB dimers are contained in this region. Dimerization of gB does not require the transmembrane region or the intracellular carboxy terminus. (ii) Transport of the insertion mutants was aberrant and depended on the site mutagenized. Insertions of linkers at residues 391, 413, and 479 of the ectodomain precluded the binding of neutralizing antibodies that recognize residues in four discontinuous-epitope domains; the latter mutant in intact gB was not translocated to the cell surface. In contrast, insertions at residue 600 of the ectodomain and 810 of the intracellular domain did not affect the conformation-dependent epitopes or gB transport. (iii) Substitution of serines for cysteine residues in a discontinuous-epitope domain in the midregion of gB altered the conformation of both proximal and distal sites. Seven epitopes were lost by mutagenesis of cysteine 382 and 4 epitopes by mutagenesis of cysteine 334. Together with previous findings, these results indicate that the ectodomain of gB contains three topographically distinct neutralizing regions, one of continuous and two of discontinuous epitopes. The continuous-epitope domains that map at the amino terminus are not altered by distal mutations. In contrast, the domains of discontinuous epitopes, assembled by juxtaposing residues on the surface of gB, are affected by proximal and distal mutations that alter the antigenic structure, processing, and surface transport of gB.
Collapse
Affiliation(s)
- I Qadri
- Division of Oral Biology, School of Dentistry, University of California San Francisco 94143
| | | | | | | |
Collapse
|
29
|
Abstract
Protein blotting was originally described in 1979 as an outgrowth of nucleic acid techniques, and received its commonly used designation of 'Western' blotting in 1981. The use of the technique to render electrophoresed proteins accessible for further analysis has found many roles, the most prominent being subsequent reaction with antibodies or antisera, which has many clinical and research applications. Since the initial development of the system there have been many changes to the techniques involved, but the basic principles remain unaltered. This review discusses these changes, and also provides a summary of current techniques.
Collapse
Affiliation(s)
- D R Harper
- Virology Department, St. Bartholomew's Hospital, London, U.K
| | | | | |
Collapse
|
30
|
Bröker M, Abel KJ, Köhler R, Hilfenhaus J, Amann E. Escherichia coli-derived envelope protein gD but not gC antigens of herpes simplex virus protect mice against a lethal challenge with HSV-1 and HSV-2. Med Microbiol Immunol 1990; 179:145-59. [PMID: 2169577 DOI: 10.1007/bf00202392] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Immunization studies with HSV-1 and HSV-2 envelope proteins expressed in Escherichia coli were performed. After active immunization of mice with a gD-1 antigen (Leu53-Ala312) expressed as a fusion protein, the animals were protected from a lethal challenge with HSV-1 and HSV-2. In addition, antisera from rabbits immunized with the same gD-1 antigen also conferred passive immunity to mice against a challenge infection with either HSV-1 or HSV-2. In contrast to these successful gD-1 protection experiments, various gC-1 and gC-2 fusion proteins from E. coli failed to induce protective immunity. Moreover, the mice sera from immunized animals were not able to react with the authentic, glycosylated gC-1 and gC-2 envelope proteins, whereas sera raised against authentic gC-1 and gC-2 glycoproteins do recognize the gC fusion proteins from E. coli. These results indicate, that E. coli might represent an ideal system for expressing gD antigens as a possible component of a HSV vaccine, whereas gC antigen cannot be produced in an immunocompetent form in E. coli.
Collapse
Affiliation(s)
- M Bröker
- Research Laboratories of Behringwerke AG, Marburg, Federal Republic of Germany
| | | | | | | | | |
Collapse
|
31
|
Kohl S, Strynadka NC, Hodges RS, Pereira L. Analysis of the role of antibody-dependent cellular cytotoxic antibody activity in murine neonatal herpes simplex virus infection with antibodies to synthetic peptides of glycoprotein D and monoclonal antibodies to glycoprotein B. J Clin Invest 1990; 86:273-8. [PMID: 2164044 PMCID: PMC296717 DOI: 10.1172/jci114695] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The role of antibody in neonatal herpes simplex virus (HSV) infection remains controversial. A battery of well-characterized monoclonal antibodies to HSV glycoprotein B (gB), and polyclonal antibodies against synthetic peptides of predicted epitopes of HSV glycoprotein D (gD) were used to determine in vitro functional activity and association with protection against lethal infection in a murine model of neonatal HSV disease. Antiviral neutralization activity of HSV was not associated with antibody-dependent cellular cytotoxicity (ADCC) activity to HSV-infected cells in vitro. In a model of high dose challenge (10(4) PFU), protection was not afforded by any antibody alone, but was by antibody plus human mononuclear cells, and highly associated with ADCC functional activity (P less than 0.001). In a low dose challenge model, neutralizing activity of antibody alone was associated with protection in vivo (P less than 0.001). Of the nine neutralizing epitopes of gD in vitro, eight were predicted surface regions. Four of the five epitopic sites of gD (2-21, 267-276, 288-297, and 303-312) that were determined to be important targets of ADCC and in vivo protection were also predicted to be surface regions. The only exception was the antiserum to region 52-61 which was predicted to be buried and also showed these activities. ADCC as well as neutralizing antibody activity are important in protection against neonatal HSV infection.
Collapse
Affiliation(s)
- S Kohl
- Department of Pediatrics, School of Medicine, University of California 94143
| | | | | | | |
Collapse
|
32
|
Dix RD. Glycoprotein gB of herpes simplex virus expresses type-common and type-specific antigenic determinants in vivo. J Med Virol 1990; 30:192-5. [PMID: 1692872 DOI: 10.1002/jmv.1890300309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Four monoclonal antibodies directed against glycoprotein B of herpes simplex virus were evaluated for their ability to immunize mice passively against acute virus-induced neurological illness and death when administered intraperitoneally 2 hours prior to footpad challenge with type 1 or type 2 virus. Two monoclonal antibodies, H120 and H157, failed to reduce the severity of neurological disease in infected animals. In contrast, H233 and H368 antibodies provided significant protection in type-common and type-specific fashions, respectively. A direct correlation was observed between in vitro neutralization and in vivo protection. These results provide the first in vivo evidence that glycoprotein gB of herpes simplex virus expresses both type-common and type-specific determinants during the evolution of acute virus-induced neurological disease.
Collapse
Affiliation(s)
- R D Dix
- Department of Ophthalmology, University of Miami School of Medicine, Bascom Palmer Eye Institute, Florida 33101
| |
Collapse
|
33
|
Pereira L, Qadri I, Navarro D, Gimeno C. Antigenic and structural properties of mutants in herpes simplex virus 1 glycoprotein B. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1990; 278:165-82. [PMID: 1705078 DOI: 10.1007/978-1-4684-5853-4_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- L Pereira
- Department of Stomatology, School of Dentistry, University of California, San Francisco 94143
| | | | | | | |
Collapse
|
34
|
Pereira L, Ali M, Kousoulas K, Huo B, Banks T. Domain structure of herpes simplex virus 1 glycoprotein B: neutralizing epitopes map in regions of continuous and discontinuous residues. Virology 1989; 172:11-24. [PMID: 2475970 DOI: 10.1016/0042-6822(89)90102-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Herpes simplex virus 1 (HSV-1) glycoprotein B (gB) is a multifunctional glycoprotein required for infectivity; it is thought to promote fusion of the viral envelope with the cell membrane and entry of virions into cells. To map the antigenic and functional domains on gB, we constructed amino terminal derivatives lacking the entire carboxyl terminus and internal deletion mutants lacking defined regions of the extracellular and transmembrane domains. Transient expression of the mutants in COS-1 cells revealed that the amino terminal derivatives were released into the medium whereas those with deletions in the extracellular domain were mostly retained within the transfected cells. Analysis of intact gB and the amino terminal derivatives showed that the intact molecule formed dimers whereas the mutant derivatives did not. Reactions of the derivatives with a panel of well-characterized monoclonal antibodies to gB showed that the neutralizing epitopes cluster in two domains. The first maps in the amino terminal 190 residues and contains seven continuous epitopes, five of which are HSV-1-specific. Reactions of antibodies with a set of oligopeptides fine-mapped the epitopes between residues 1 and 47. The second domain is composed of discontinuous epitopes and was expressed by amino terminal derivatives that were at least 457 residues in length or longer. Eleven epitopes map in this region, including those of four potent neutralizing antibodies whose cognitive sites mapped between residues 273 and 298 in mapping studies using antibody-resistant mutants. Results of the present study indicate that the cognitive sites of these antibodies are assembled into the discontinuous domain by juxtaposing residues from the amino-terminal half of gB monomers.
Collapse
Affiliation(s)
- L Pereira
- Department of Stomatology, School of Dentistry, University of California San Francisco 94143
| | | | | | | | | |
Collapse
|
35
|
Highlander SL, Dorney DJ, Gage PJ, Holland TC, Cai W, Person S, Levine M, Glorioso JC. Identification of mar mutations in herpes simplex virus type 1 glycoprotein B which alter antigenic structure and function in virus penetration. J Virol 1989; 63:730-8. [PMID: 2463380 PMCID: PMC247744 DOI: 10.1128/jvi.63.2.730-738.1989] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Analysis of six monoclonal antibody-resistant (mar) mutants in herpes simplex virus type 1 glycoprotein B identified two type-common (II and III) and two type-specific (I and IV) antigenic sites on this molecule. To derive additional information on the location of these sites, mar mutations were mapped and nucleotide alterations were identified by DNA sequencing. Each mutant carried a single amino acid substitution resulting from a G-to-A base transition. Alterations affecting antibody neutralization were identified at residues 473, 594, 305, and 85 for mutants in sites I through IV, respectively. Two clonally distinct site II antibodies each selected mar mutants (Gly to Arg at residue 594) that exhibited a reduction in the rate of entry (roe) into host cells. A site II mar revertant that regained sensitivity to neutralization by site II antibodies also showed normal entry kinetics. DNA sequencing of this virus identified a single base reversion of the site II mar mutation, resulting in restoration of the wild-type sequence (Arg to Gly). This finding demonstrated that the mar and roe phenotypes were the result of a single mutation. To further define structures that contributed to antibody recognition, monoclonal antibodies specific for all four sites were tested for their ability to immune precipitate a panel of linker-insertion mutant glycoprotein B molecules. Individual polypeptides that contained single insertions of 2 to 28 amino acids throughout the external domain were not recognized or were recognized poorly by antibodies specific for sites II and III, whereas no insertion affected antibody recognition of sites I and IV. mar mutations affecting either site II or III were previously shown to cause temperature-sensitive defects in glycoprotein B glycosylation, and variants altered in both these sites were temperature sensitive for virus production. Taken together, the data indicate that antigenic sites II and III are composed of higher-order structures whose integrity is linked with the ability of glycoprotein B to function in virus infectivity.
Collapse
Affiliation(s)
- S L Highlander
- Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor 48109
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Kousoulas KG, Huo B, Pereira L. Antibody-resistant mutations in cross-reactive and type-specific epitopes of herpes simplex virus 1 glycoprotein B map in separate domains. Virology 1988; 166:423-31. [PMID: 2459843 DOI: 10.1016/0042-6822(88)90513-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
To characterize the domains of HSV-1 glycoprotein B (gB), we isolated mutants resistant to monoclonal antibodies with potent neutralizing activity. Partial nucleotide sequencing of the mutations revealed that gB contains two domains comprising discontinuous and continuous amino acids that bind cross-reactive and type-specific neutralizing antibodies. Four mutations in a discontinuous domain, R1435, R233, R1375, and R126, contained substitutions of Tyr278 for His278, His298 for Arg298, Gln274 for Arg274, and Asn273 for Tyr273, respectively. Two mutations in a continuous domain, R1392 and R1397, contained substitutions of Thr32 for Ala32 and Thr47 for Asn47, respectively, and overlapped two other type-specific epitopes. Analysis of the nucleotide sequence of strain KOS showed differences from strain F at four residues proximal to the R1392 mutation and one residue proximal to the R1397 mutation, which explains the failure of HSV-1(F)-specific antibodies to these epitopes to react with KOS. One target site for proteolytic cleavage of gB by cellular enzymes maps at the amino terminus, partially overlapping four HSV-1-specific epitopes.
Collapse
Affiliation(s)
- K G Kousoulas
- Department of Stomatology, School of Dentistry, University of California, San Francisco 94143
| | | | | |
Collapse
|