1
|
Nemerow G, Flint J. Lessons learned from adenovirus (1970-2019). FEBS Lett 2019; 593:3395-3418. [PMID: 31777951 DOI: 10.1002/1873-3468.13700] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/24/2019] [Accepted: 11/24/2019] [Indexed: 12/11/2022]
Abstract
Animal viruses are well recognized for their ability to uncover fundamental cell and molecular processes, and adenovirus certainly provides a prime example. This review illustrates the lessons learned from studying adenovirus over the past five decades. We take a look back at the key studies of adenovirus structure and biophysical properties, which revealed the mechanisms of adenovirus association with antibody, cell receptor, and immune molecules that regulate infection. In addition, we discuss the critical contribution of studies of adenovirus gene expression to elucidation of fundamental reactions in pre-mRNA processing and its regulation. Other pioneering studies furnished the first examples of protein-primed initiation of DNA synthesis and viral small RNAs. As a nonenveloped virus, adenoviruses have furnished insights into the modes of virus attachment, entry, and penetration of host cells, and we discuss the diversity of cell receptors that support these processes, as well as membrane penetration. As a result of these extensive studies, adenovirus vectors were among the first to be developed for therapeutic applications. We highlight some of the early (unsuccessful) trials and the lessons learned from them.
Collapse
Affiliation(s)
- Glen Nemerow
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA
| | - Jane Flint
- Department of Molecular Biology, Princeton University, NJ, USA
| |
Collapse
|
2
|
Butcher SJ, Manole V, Karhu NJ. Lipid-containing viruses: bacteriophage PRD1 assembly. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 726:365-77. [PMID: 22297522 DOI: 10.1007/978-1-4614-0980-9_16] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
PRD1 is a tailless icosahedrally symmetric virus containing an internal lipid membrane beneath the protein capsid. Its linear dsDNA genome and covalently attached terminal proteins are delivered into the cell where replication occurs via a protein-primed mechanism. Extensive studies have been carried out to decipher the roles of the 37 viral proteins in PRD1 assembly, their association in virus particles and lately, especially the functioning of the unique packaging machinery that translocates the genome into the procapsid. These issues will be addressed in this chapter especially in the context of the structure of PRD1. We will also discuss the major challenges still to be addressed in PRD1 assembly.
Collapse
Affiliation(s)
- Sarah J Butcher
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland.
| | | | | |
Collapse
|
3
|
Rydman PS, Caldentey J, Butcher SJ, Fuller SD, Rutten T, Bamford DH. Bacteriophage PRD1 contains a labile receptor-binding structure at each vertex. J Mol Biol 1999; 291:575-87. [PMID: 10448038 DOI: 10.1006/jmbi.1999.2978] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bacteriophage PRD1 is a membrane-containing virus with an unexpected similarity to adenovirus. We mutagenized unassigned PRD1 genes to identify minor capsid proteins that could be structural or functional analogs to adenovirus proteins. We report here the identification of an amber mutant, sus525, in an essential PRD1 gene XXXI. The gene was cloned and the gene product was overexpressed and purified to near homogeneity. Analytical ultracentrifugation and gel filtration showed that P31 is a homopentamer of about 70 kDa. The protein was shown to be accessible on the virion surface and its absence in the sus525 particles led to the deficiency of two other viral coat proteins, protein P5 and the adsorption protein P2. Cryo-electron microscopy and image reconstruction of the sus525 particles indicate that these proteins are located on the capsid vertices, because in these particles the entire vertex structure was missing along with the peripentonal major capsid protein P3 trimers. Sus525 particles package DNA effectively but loose it upon purification. All of the PRD1 vertex structures are labile and potentially capable of mediating DNA delivery; this is in contrast to other dsDNA phages which employ a single vertex for packaging and delivery. We propose that this arises from a symmetry mismatch between protein P2 and the pentameric P31 in analogy to that between the adenovirus penton base and the receptor-binding spike.
Collapse
Affiliation(s)
- P S Rydman
- Department of Biosciences and Institute of Biotechnology Viikki Biocenter, University of Helsinki, Helsinki, FIN-00014, Finland
| | | | | | | | | | | |
Collapse
|
4
|
Bamford DH, Caldentey J, Bamford JK. Bacteriophage PRD1: a broad host range DSDNA tectivirus with an internal membrane. Adv Virus Res 1995; 45:281-319. [PMID: 7793328 DOI: 10.1016/s0065-3527(08)60064-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- D H Bamford
- Institute of Biotechnology, University of Helsinki, Finland
| | | | | |
Collapse
|
5
|
Zhu W, Ito J. Family A and family B DNA polymerases are structurally related: evolutionary implications. Nucleic Acids Res 1994; 22:5177-83. [PMID: 7816603 PMCID: PMC332057 DOI: 10.1093/nar/22.24.5177] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In order to establish the evolutionary relationship between the family A and B DNA polymerases, we have closely compared the 3'-->5' exonuclease domains between the Klenow fragment of E.coli DNA polymerase I (a family A DNA polymerase) and the bacteriophage PRD1 DNA polymerase, the smallest member of the DNA polymerase family B. Although the PRD1 DNA polymerase has a smaller 3'-->5' exonuclease domain, its active sites appear to be very similar to those of the Klenow fragment. Site-directed mutagenesis studies revealed that the residues important for the 3'-->5' exonuclease activity, particularly metal binding ligands for the Klenow fragment, are all conserved in the PRD1 DNA polymerase as well. The metal binding ligands are also essential for the strand-displacement activity of the PRD1 DNA polymerase. Based on these results and the studies by others in various systems, we conclude that family A and B DNA polymerases, at least in the 3'-->5' exonuclease domain, are structurally as well as evolutionarily related.
Collapse
Affiliation(s)
- W Zhu
- Department of Microbiology and Immunology, College of Medicine, University of Arizona, Tucson 85724
| | | |
Collapse
|
6
|
Zhu W, Leavitt MC, Jung G, Ito J. Mutagenesis of a highly conserved lysine 340 of the PRD1 DNA polymerase. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1219:260-6. [PMID: 7918620 DOI: 10.1016/0167-4781(94)90047-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
All known family B DNA polymerases contain a conserved region of amino acids, KX6-7YG, which appears to be correspond to the 'finger' alpha helix O of the Klenow fragment of E. coli DNA polymerase I, a family A DNA polymerase. Toward the goal of establishing the evolutionary relationship between the family A and B DNA polymerases, we have employed site-directed mutagenesis to access the functional role of the invariant amino acid lysine-340 of the PRD1 DNA polymerase. We have replaced the lysine-340 with three amino acids: histidine, asparagine and glutamic acid, respectively. Mutant DNA polymerases were overexpressed and purified to near homogeneity. Our results showed that the modification of the lysine-340 of the PRD1 DNA polymerase abolishes the polymerase activity without affecting the 3' to 5' exonuclease activity. These results support the proposal that the KX6-7YG motif of the family B DNA polymerases may be analogous to the KX7YG motif of the family A DNA polymerases, suggesting that two family DNA polymerases share a common ancestor.
Collapse
Affiliation(s)
- W Zhu
- Department of Microbiology and Immunology, College of Medicine, University of Arizona, Tucson 85724
| | | | | | | |
Collapse
|
7
|
Zhu W, Ito J. Purification and characterization of PRD1 DNA polymerase. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1219:267-76. [PMID: 7918621 DOI: 10.1016/0167-4781(94)90048-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A small lipid-containing bacteriophage PRD1 encodes a DNA polymerase that utilizes a protein primer for the initiation of DNA replication. The purification of the PRD1 DNA polymerase has been hampered by the insolubility of the overexpressed enzyme in Escherichia coli cells. We have developed a simple and rapid procedure for purification of the overexpressed PRD1 DNA polymerase. This method is based on guanidine hydrochloride denaturation and renaturation of the insoluble PRD1 DNA polymerase overexpressed in E. coli containing the recombinant plasmid pEJG. The purified DNA polymerase was extensively characterized and found to be indistinguishable from the normal soluble PRD1 DNA polymerase as judged by enzymatic properties. These properties include: protein-primed initiation of PRD1 DNA replication, strand-displacement DNA synthesis, DNA polymerase processivity, 3' to 5' exonuclease activity and filling-in repair type DNA synthesis. Furthermore, the kinetic parameters determined for dNTPs and primer-terminus were of the same order of magnitude. The availability of a simple purification procedure for the PRD1 DNA polymerase should permit detailed structure-function analysis of this enzyme.
Collapse
Affiliation(s)
- W Zhu
- Department of Microbiology and Immunology, College of Medicine, University of Arizona, Tucson 85724
| | | |
Collapse
|
8
|
Savilahti H, Bamford DH. Protein-primed DNA replication: role of inverted terminal repeats in the Escherichia coli bacteriophage PRD1 life cycle. J Virol 1993; 67:4696-703. [PMID: 8331725 PMCID: PMC237855 DOI: 10.1128/jvi.67.8.4696-4703.1993] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Escherichia coli bacteriophage PRD1 and its relatives contain linear double-stranded DNA genomes, the replication of which proceeds via a protein-primed mechanism. Characteristically, these molecules contain 5'-covalently bound terminal proteins and inverted terminal nucleotide sequences (inverted terminal repeats [ITRs]). The ITRs of each PRD1 phage species have evolved in parallel, suggesting communication between the molecule ends during the life cycle of these viruses. This process was studied by constructing chimeric PRD1 phage DNA molecules with dissimilar end sequences. These molecules were created by combining two closely related phage genomes (i) in vivo by homologous recombination and (ii) in vitro by ligation of appropriate DNA restriction fragments. The fate of the ITRs after propagation of single genomes was monitored by DNA sequence analysis. Recombinants created in vivo showed that phages with nonidentical genome termini are viable and relatively stable, and hybrid phages made in vitro verified this observation. However, genomes in which the dissimilar DNA termini had regained identical sequences were also detected. These observations are explained by a DNA replication model involving two not mutually exclusive pathways. The generality of this model in protein-primed DNA replication is discussed.
Collapse
Affiliation(s)
- H Savilahti
- Department of Genetics, University of Helsinki, Finland
| | | |
Collapse
|
9
|
Pakula TM, Caldentey J, Gutiérrez C, Olkkonen VM, Salas M, Bamford DH. Overproduction, purification, and characterization of DNA-binding protein P19 of bacteriophage PRD1. Gene 1993; 126:99-104. [PMID: 8472964 DOI: 10.1016/0378-1119(93)90595-t] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The early protein, P19, of bacteriophage PRD1 was purified after overexpression of the cloned gene, XIX, in Escherichia coli DH5 alpha cells. The purified protein binds as multimers to single-stranded DNA (ssDNA), and with a lower affinity to double-stranded DNA (dsDNA), without sequence-specificity. Two distinct P19-ssDNA complexes were discovered in gel- mobility-shift assays at different protein:DNA ratios. P19 was capable of fully protecting ssDNA against nuclease P1. Electron microscopy of protein P19-ssDNA complexes showed DNA molecules which were extensively coated with protein and whose contour length was clearly reduced by P19 binding. The results suggest that P19 binds to ssDNA with moderate cooperativity and are consistent with the DNA being wrapped around the P19 multimers.
Collapse
Affiliation(s)
- T M Pakula
- Department of Genetics, University of Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
10
|
Court DA, Bertrand H. Genetic organization and structural features of maranhar, a senescence-inducing linear mitochondrial plasmid of Neurospora crassa. Curr Genet 1992; 22:385-97. [PMID: 1423726 DOI: 10.1007/bf00352440] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The nucleotide sequence of maranhar, a senescence-inducing linear mitochondrial plasmid of Neurospora crassa, was determined. The termini of the 7-kb plasmid are 349-bp inverted repeats (TIRs). Each DNA strand contains a long open reading frame (ORF) which begins within the TIR and extends toward the centre of the plasmid. ORF-1 codes for a single-subunit RNA polymerase that is not closely related to that encoded by another Neurospora plasmid, kalilo. The ORF-2 product may be a B-type DNA polymerase resembling those encoded by terminal protein-linked linear genetic elements, including linear mitochondrial plasmids and linear bacteriophages. A separate coding sequence for the terminal protein could not be identified; however, the DNA polymerase of maranhar has an amino-terminal extension with features that are also present in the terminal proteins of linear bacteriophages. The N-terminal extensions of the DNA polymerases of other linear mitochondrial plasmids contain similar features, suggesting that the terminal proteins of linear plasmids may be comprised, at least in part, of these cryptic domains. The terminal protein-DNA bond of maranhar is resistant to mild alkaline hydrolysis, indicating that it might involve a tyrosine or a lysine residue. Although maranhar and the senescence-inducing kalilo plasmid of N. intermedia are structurally similar, and integrate into mitochondrial DNA by a mechanism thus far unique to these two plasmids, they are not closely related to each other and they do not have any nucleotide sequence features, or ORFs, that distinguish them clearly from mitochondrial plasmids which are not associated with senescence and most of which are apparently non-integrative.
Collapse
Affiliation(s)
- D A Court
- Department of Microbiology, University of Guelph, Ontario, Canada
| | | |
Collapse
|
11
|
Abstract
In vitro studies have demonstrated that single-stranded DNA molecules containing the 3' terminal nucleotides of the PRD1 DNA replication origin can support initiation by a protein-primed mechanism. We have determined the minimal requirements for priming by analyzing the template activity of various deletion derivatives. Our results showed that the 3'-terminal 15 nucleotides of the replication origin are sufficient for priming. The finding that the requirements for recognition of replication origin are different from those for priming suggests that there are two distinct steps during initiation of PRD1 DNA replication: first, recognition of the replication origin on double-stranded DNA and second, the priming event on single-stranded DNA. In addition our results showed that additional bases at the 3' end of templates did not affect priming activity, suggesting that the priming site is searched for from inside the template.
Collapse
Affiliation(s)
- S K Yoo
- Department of Microbiology and Immunology, College of Medicine, University of Arizona Tucson 85724
| | | |
Collapse
|
12
|
Savilahti H, Caldentey J, Lundström K, Syväoja J, Bamford D. Overexpression, purification, and characterization of Escherichia coli bacteriophage PRD1 DNA polymerase. In vitro synthesis of full-length PRD1 DNA with purified proteins. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)55125-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
13
|
Abstract
In vitro studies have demonstrated that linear duplex, protein-free DNA molecules containing an inverted terminal repeat (ITR) sequence of the PRD1 genome at one end can undergo replication by a protein-primed mechanism. No DNA replication was observed when the ITR sequence was deleted or was not exposed at the terminus of the template DNA. We have determined the minimal origin of replication by analyzing the template activity of various deletion derivatives. Our results showed that the terminal 20 base-pairs of ITR are required for efficient in vitro DNA replication. We have found that, within the minimal replication origin region, there are complementary sequences. A site-specific mutagenesis analysis showed that most of the point mutations in the complementary sequences markedly reduced the template activity. The analyses of the results obtained with synthetic oligonucleotides have revealed that the specificity of the replication origin is strand specific and even on a single-stranded template a particular DNA sequence including a 3'-terminal C residue is required for the initiation of PRD1 DNA replication in vitro.
Collapse
Affiliation(s)
- S K Yoo
- Department of Microbiology and Immunology, College of Medicine, University of Arizona, Tucson 85724
| | | |
Collapse
|
14
|
Jung GH, Leavitt MC, Schultz M, Ito J. Site-specific mutagenesis of PRD1 DNA polymerase: mutations in highly conserved regions of the family B DNA polymerase. Biochem Biophys Res Commun 1990; 170:1294-300. [PMID: 2202298 DOI: 10.1016/0006-291x(90)90534-t] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The PRD1 DNA polymerase is a small multifunctional enzyme containing three major conserved amino acid sequences shared by family B DNA polymerases. Thus, the PRD1 DNA polymerase provides an useful model system with which to study structure-function relationships of DNA polymerase molecules. In order to investigate the functional and structural roles of the highly conserved amino acid sequences, we have introduced mutations into each of the 3 conserved regions of the PRD1 DNA polymerase. Genetic complementation study as well as DNA polymerase assay indicated that each mutation inactivated DNA polymerase catalytic activity, but not the 3' to 5' exonuclease activity.
Collapse
Affiliation(s)
- G H Jung
- Department of Microbiology and Immunology, College of Medicine, University of Arizona, Tucson
| | | | | | | |
Collapse
|
15
|
Gerendasy D, Ito J. Nucleotide sequence and transcription of the right early region of bacteriophage PRD1. J Bacteriol 1990; 172:1889-98. [PMID: 2180910 PMCID: PMC208683 DOI: 10.1128/jb.172.4.1889-1898.1990] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We have sequenced the rightmost 1,700 base pairs of bacteriophage PRD1. This region encompasses the right early region and completes the sequence of all PRD1 early functions. We have also mapped the 5' initiation site of right early transcripts in vivo and in vitro. This has allowed us to assign gene XII to an open reading frame and suggests that another open reading frame may also be expressed. Gene XII, which has been implicated in the replication process and the regulation of gene expression, is predicted to encode a protein with a molecular mass of 16.7 kilodaltons. Data base searches have revealed no significant homology between the product of this gene and other proteins. Transcription mapping studies have revealed that right early transcripts elongate from right to left and have enabled us to identify the right early promoter. This promoter behaves identically in vivo and in vitro. We also demonstrate that this promoter directs the transcription of two RNAs of different sizes in vitro.
Collapse
Affiliation(s)
- D Gerendasy
- Department of Microbiology and Immunology, University of Arizona Health Sciences Center, Tucson 85724
| | | |
Collapse
|