1
|
Chkuaseli T, White K. Dimerization of an umbravirus RNA genome activates subgenomic mRNA transcription. Nucleic Acids Res 2023; 51:8787-8804. [PMID: 37395397 PMCID: PMC10484742 DOI: 10.1093/nar/gkad550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/31/2023] [Accepted: 06/16/2023] [Indexed: 07/04/2023] Open
Abstract
Many eukaryotic RNA viruses transcribe subgenomic (sg) mRNAs during infections to control expression of a subset of viral genes. Such transcriptional events are commonly regulated by local or long-range intragenomic interactions that form higher-order RNA structures within these viral genomes. In contrast, here we report that an umbravirus activates sg mRNA transcription via base pair-mediated dimerization of its plus-strand RNA genome. Compelling in vivo and in vitro evidence demonstrate that this viral genome dimerizes via a kissing-loop interaction involving an RNA stem-loop structure located just upstream from its transcriptional initiation site. Both specific and non-specific features of the palindromic kissing-loop complex were found to contribute to transcriptional activation. Structural and mechanistic aspects of the process in umbraviruses are discussed and compared with genome dimerization events in other RNA viruses. Notably, probable dimer-promoting RNA stem-loop structures were also identified in a diverse group of umbra-like viruses, suggesting broader utilization of this unconventional transcriptional strategy.
Collapse
Affiliation(s)
- Tamari Chkuaseli
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| | - K Andrew White
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
2
|
Structure-Based Regulatory Role for the 5′UTR of RCNMV RNA2. Viruses 2023; 15:v15030722. [PMID: 36992432 PMCID: PMC10057905 DOI: 10.3390/v15030722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Red clover necrotic mosaic virus (RCNMV) is a segmented positive-strand RNA virus consisting of RNA1 and RNA2. Previous studies demonstrated that efficient translation of RCNMV RNA2 requires de novo synthesis of RNA2 during infections, suggesting that RNA2 replication is required for its translation. We explored a potential mechanism underlying the regulation of replication-associated translation of RNA2 by examining RNA elements in its 5′ untranslated region (5′UTR). Structural analysis of the 5′UTR suggested that it can form two mutually exclusive configurations: a more thermodynamically stable conformation, termed the 5′-basal stem structure (5′BS), in which 5′-terminal sequences are base paired, and an alternative conformation, where the 5′-end segment is single stranded. Functional mutational analysis of the 5′UTR structure indicated that (i) 43S ribosomal subunits enter at the very 5′-end of RNA2; (ii) the alternative conformation, containing unpaired 5′-terminal nucleotides, mediates efficient translation; (iii) the 5′BS conformation, with a paired 5′-end segment, supresses translation; and (iv) the 5′BS conformation confers stability to RNA2 from 5′-to-3′ exoribonuclease Xrn1. Based on our results, we suggest that during infections, newly synthesized RNA2s transiently adopt the alternative conformation to allow for efficient translation, then refold into the 5′BS conformation, which supresses translation and promotes efficient RNA2 replication. The potential advantages of this proposed 5′UTR-based regulatory mechanism for coordinating RNA2 translation and replication are discussed.
Collapse
|
3
|
Takata S, Mise K, Takano Y, Kaido M. Subcellular dynamics of red clover necrotic mosaic virus double-stranded RNAs in infected plant cells. Virology 2022; 568:126-139. [DOI: 10.1016/j.virol.2022.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/23/2022] [Accepted: 01/29/2022] [Indexed: 11/29/2022]
|
4
|
Im JSH, Newburn LR, Kent G, White KA. Trans-Activator Binding Site Context in RCNMV Modulates Subgenomic mRNA Transcription. Viruses 2021; 13:v13112252. [PMID: 34835058 PMCID: PMC8622197 DOI: 10.3390/v13112252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/29/2021] [Accepted: 11/08/2021] [Indexed: 11/16/2022] Open
Abstract
Many positive-sense RNA viruses transcribe subgenomic (sg) mRNAs during infections that template the translation of a subset of viral proteins. Red clover necrotic mosaic virus (RCNMV) expresses its capsid protein through the transcription of a sg mRNA from RNA1 genome segment. This transcription event is activated by an RNA structure formed by base pairing between a trans-activator (TA) in RNA2 and a trans-activator binding site (TABS) in RNA1. In this study, the impact of the structural context of the TABS in RNA1 on the TA–TABS interaction and sg mRNA transcription was investigated using in vitro and in vivo approaches. The results (i) generated RNA secondary structure models for the TA and TABS, (ii) revealed that the TABS is partially base paired with proximal upstream sequences, which limits TA access, (iii) demonstrated that the aforementioned intra-RNA1 base pairing involving the TABS modulates the TA–TABS interaction in vitro and sg mRNA levels during infections, and (iv) revealed that the TABS in RNA1 can be modified to mediate sg mRNA transcription in a TA-independent manner. These findings advance our understanding of transcriptional regulation in RCNMV and provide novel insights into the origin of the TA–TABS interaction.
Collapse
|
5
|
Sadoch J, Pyc M, Urbanowicz A, Iglewski A, Pilarski R. High-throughput evolutionary optimization of the induction medium towards recombinant protein production in BY-2 tobacco. Biotechnol Bioeng 2021; 118:676-689. [PMID: 33038011 DOI: 10.1002/bit.27594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/05/2020] [Accepted: 10/09/2020] [Indexed: 12/13/2022]
Abstract
Bright yellow (BY-2) tobacco cells combined with the XVE chemically inducible system are one of the most promising plant-based platforms for recombinant protein production. This offers a range of benefits, including the separation of the cell growth and heterologous gene expression, lack of risk of infecting the end product with prions and human viruses or appropriate protein glycosylation and folding. However, low protein productivity remains a major obstacle that limits the extensive commercialization of bioproduction in plants. A number of molecular, cell culture and down processing approaches have been made to overcome this problem. Media development for the specific nutritional and hormonal requirements of transgenic plant cells is one of the most efficient cell-culture approaches. We optimized the induction medium towards recombinant protein production in BY-2 and demonstrated the usefulness of evolutionary medium optimization for high-yield protein production in liquid plant cultures. A reliable XVE/GFP model, parallel conducting experiments in a microscale on 96-well plates, and dedicated Gene Game evolutionary optimization software allowed for an effective search of 7611 possible solutions of 11-component media. Within the 4608 formulations tested, the Induct X medium was found with a significant 107.14% increase in protein expression in relation to the standard BY-2 medium.
Collapse
Affiliation(s)
- Jan Sadoch
- High-throughput Screening Laboratory, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Monika Pyc
- High-throughput Screening Laboratory, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Anna Urbanowicz
- Laboratory of Protein Engineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Adam Iglewski
- Department of Research and Development, Labomatica Ltd., Poznań, Poland
| | - Radosław Pilarski
- High-throughput Screening Laboratory, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| |
Collapse
|
6
|
Newburn LR, White KA. A trans-activator-like structure in RCNMV RNA1 evokes the origin of the trans-activator in RNA2. PLoS Pathog 2020; 16:e1008271. [PMID: 31905231 PMCID: PMC6964918 DOI: 10.1371/journal.ppat.1008271] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/16/2020] [Accepted: 12/10/2019] [Indexed: 11/19/2022] Open
Abstract
The Red clover necrotic mosaic virus (RCNMV) genome consists of two plus-strand RNA genome segments, RNA1 and RNA2. RNA2 contains a multifunctional RNA structure known as the trans-activator (TA) that (i) promotes subgenomic mRNA transcription from RNA1, (ii) facilitates replication of RNA2, and (iii) mediates particle assembly and copackaging of genome segments. The TA has long been considered a unique RNA element in RCNMV. However, by examining results from RCNMV genome analyses in the ViRAD virus (re-)annotation database, a putative functional RNA element in the polymerase-coding region of RNA1 was identified. Structural and functional analyses revealed that the novel RNA element adopts a TA-like structure (TALS) and, similar to the requirement of the TA for RNA2 replication, the TALS is necessary for the replication of RNA1. Both the TA and TALS possess near-identical asymmetrical internal loops that are critical for efficient replication of their corresponding genome segments, and these structural motifs were found to be functionally interchangeable. Moreover, replacement of the TA in RNA2 with a stabilized form of the TALS directed both RNA2 replication and packaging of both genome segments. Based on their comparable properties and considering evolutionary factors, we propose that the TALS appeared de novo in RNA1 first and, subsequently, the TA arose de novo in RNA2 as a functional mimic of the TALS. This and other related information were used to formulate a plausible evolutionary pathway to describe the genesis of the bi-segmented RCNMV genome. The resulting scenario provides an evolutionary framework to further explore and test possible origins of this segmented RNA plant virus.
Collapse
Affiliation(s)
- Laura R. Newburn
- Department of Biology, York University, Toronto, Ontario, Canada
| | - K. Andrew White
- Department of Biology, York University, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
7
|
Newburn LR, White KA. Trans-Acting RNA-RNA Interactions in Segmented RNA Viruses. Viruses 2019; 11:v11080751. [PMID: 31416187 PMCID: PMC6723669 DOI: 10.3390/v11080751] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/08/2019] [Accepted: 08/11/2019] [Indexed: 12/18/2022] Open
Abstract
RNA viruses represent a large and important group of pathogens that infect a broad range of hosts. Segmented RNA viruses are a subclass of this group that encode their genomes in two or more molecules and package all of their RNA segments in a single virus particle. These divided genomes come in different forms, including double-stranded RNA, coding-sense single-stranded RNA, and noncoding single-stranded RNA. Genera that possess these genome types include, respectively, Orbivirus (e.g., Bluetongue virus), Dianthovirus (e.g., Red clover necrotic mosaic virus) and Alphainfluenzavirus (e.g., Influenza A virus). Despite their distinct genomic features and diverse host ranges (i.e., animals, plants, and humans, respectively) each of these viruses uses trans-acting RNA–RNA interactions (tRRIs) to facilitate co-packaging of their segmented genome. The tRRIs occur between different viral genome segments and direct the selective packaging of a complete genome complement. Here we explore the current state of understanding of tRRI-mediated co-packaging in the abovementioned viruses and examine other known and potential functions for this class of RNA–RNA interaction.
Collapse
Affiliation(s)
- Laura R Newburn
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada
| | - K Andrew White
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada.
| |
Collapse
|
8
|
Hyodo K, Nagai H, Okuno T. Dual function of a cis-acting RNA element that acts as a replication enhancer and a translation repressor in a plant positive-stranded RNA virus. Virology 2017; 512:74-82. [PMID: 28941403 DOI: 10.1016/j.virol.2017.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/05/2017] [Accepted: 09/10/2017] [Indexed: 02/07/2023]
Abstract
The genome of red clover necrotic mosaic virus is divided into two positive-stranded RNA molecules of RNA1 and RNA2, which have no 5' cap structure and no 3' poly(A) tail. Previously, we showed that any mutations in the cis-acting RNA replication elements of RNA2 abolished its cap-independent translational activity, suggesting a strong link between RNA replication and translation. Here, we investigated the functions of the 5' untranslated region (UTR) of RNA2 and revealed that the basal stem-structure (5'BS) predicted in the 5' UTR is essential for robust RNA replication. Interestingly, RNA2 mutants with substitution or deletion in the right side of the 5'BS showed strong translational activity, despite their impaired replication competency. Furthermore, nucleotide sequences other than the 5'BS of the 5' UTR were essential to facilitate the replication-associated translation. Overall, these cis-acting RNA elements seem to coordinately regulate the balance between RNA replication and replication-associated translation.
Collapse
Affiliation(s)
- Kiwamu Hyodo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan.
| | - Hikari Nagai
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Tetsuro Okuno
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan; Department of Plant Life Science, Faculty of Agriculture, Ryukoku University, Otsu, Shiga 520-2194, Japan.
| |
Collapse
|
9
|
Dall'Ara M, Ratti C, Bouzoubaa SE, Gilmer D. Ins and Outs of Multipartite Positive-Strand RNA Plant Viruses: Packaging versus Systemic Spread. Viruses 2016; 8:E228. [PMID: 27548199 PMCID: PMC4997590 DOI: 10.3390/v8080228] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/29/2016] [Accepted: 08/09/2016] [Indexed: 11/16/2022] Open
Abstract
Viruses possessing a non-segmented genome require a specific recognition of their nucleic acid to ensure its protection in a capsid. A similar feature exists for viruses having a segmented genome, usually consisting of viral genomic segments joined together into one viral entity. While this appears as a rule for animal viruses, the majority of segmented plant viruses package their genomic segments individually. To ensure a productive infection, all viral particles and thereby all segments have to be present in the same cell. Progression of the virus within the plant requires as well a concerted genome preservation to avoid loss of function. In this review, we will discuss the "life aspects" of chosen phytoviruses and argue for the existence of RNA-RNA interactions that drive the preservation of viral genome integrity while the virus progresses in the plant.
Collapse
Affiliation(s)
- Mattia Dall'Ara
- Institut de Biologie Moléculaire des Plantes, Integrative Virology, CNRS UPR2367, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
- Dipartimento di Scienze Agrarie, Area Patologia Vegetale, Università di Bologna, Viale Fanin 40, 40127 Bologna, Italy.
| | - Claudio Ratti
- Dipartimento di Scienze Agrarie, Area Patologia Vegetale, Università di Bologna, Viale Fanin 40, 40127 Bologna, Italy.
| | - Salah E Bouzoubaa
- Institut de Biologie Moléculaire des Plantes, Integrative Virology, CNRS UPR2367, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
| | - David Gilmer
- Institut de Biologie Moléculaire des Plantes, Integrative Virology, CNRS UPR2367, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
| |
Collapse
|
10
|
Miller WA, Shen R, Staplin W, Kanodia P. Noncoding RNAs of Plant Viruses and Viroids: Sponges of Host Translation and RNA Interference Machinery. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:156-64. [PMID: 26900786 PMCID: PMC5410770 DOI: 10.1094/mpmi-10-15-0226-fi] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Noncoding sequences in plant viral genomes are well-known to control viral replication and gene expression in cis. However, plant viral and viroid noncoding (nc)RNA sequences can also regulate gene expression acting in trans, often acting like 'sponges' that bind and sequester host cellular machinery to favor viral infection. Noncoding sequences of small subgenomic (sg)RNAs of Barley yellow dwarf virus (BYDV) and Red clover necrotic mosaic virus (RCNMV) contain a cap-independent translation element that binds translation initiation factor eIF4G. We provide new evidence that a sgRNA of BYDV can globally attenuate host translation, probably by sponging eIF4G. Subgenomic ncRNA of RCNMV is generated via 5' to 3' degradation by a host exonuclease. The similar noncoding subgenomic flavivirus (sf)RNA, inhibits the innate immune response, enhancing viral pathogenesis. Cauliflower mosaic virus transcribes massive amounts of a 600-nt ncRNA, which is processed into small RNAs that overwhelm the host's RNA interference (RNAi) system. Viroids use the host RNAi machinery to generate viroid-derived ncRNAs that inhibit expression of host defense genes by mimicking a microRNA. More examples of plant viral and viroid ncRNAs are likely to be discovered, revealing fascinating new weaponry in the host-virus arms race.
Collapse
Affiliation(s)
- W. Allen Miller
- Interdepartmental Genetics & Genomics Program, Iowa State University, Ames, IA 50011 USA
- Corresponding author:
| | - Ruizhong Shen
- Interdepartmental Genetics & Genomics Program, Iowa State University, Ames, IA 50011 USA
| | | | - Pulkit Kanodia
- Interdepartmental Genetics & Genomics Program, Iowa State University, Ames, IA 50011 USA
| |
Collapse
|
11
|
Cao J, Guenther RH, Sit TL, Opperman CH, Lommel SA, Willoughby JA. Loading and release mechanism of red clover necrotic mosaic virus derived plant viral nanoparticles for drug delivery of doxorubicin. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:5126-5136. [PMID: 25098668 DOI: 10.1002/smll.201400558] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 06/19/2014] [Indexed: 06/03/2023]
Abstract
Loading and release mechanisms of Red clover necrotic mosaicvirus (RCNMV) derived plant viral nanoparticle (PVN) are shown for controlled delivery of the anticancer drug, doxorubicin (Dox). Previous studies demonstrate that RCNMV's structure and unique response to divalent cation depletion and re-addition enables Dox infusion to the viral capsid through a pore formation mechanism. However, by controlling the net charge of RCNMV outer surface and accessibility of RCNMV interior cavity, tunable release of PVN is possible via manipulation of the Dox loading capacity and binding locations (external surface-binding or internal capsid-encapsulation) with the RCNMV capsid. Bimodal release kinetics is achieved via a rapid release of surface-Dox followed by a slow release of encapsulated Dox. Moreover, the rate of Dox release and the amount of released Dox increases with an increase in environmental pH or a decrease in concentration of divalent cations. This pH-responsive Dox release from PVN is controlled by Fickian diffusion kinetics where the release rate is dependent on the location of the bound or loaded active molecule. In summary, controllable release of Dox-loaded PVNs is imparted by 1) formulation conditions and 2) driven by the capsid's pH- and ion- responsive functions in a given environment.
Collapse
Affiliation(s)
- Jing Cao
- Department of Textile Engineering, Chemistry and Science, North Carolina State University, 2401 Research Drive, Raleigh, NC, 27695, USA
| | | | | | | | | | | |
Collapse
|
12
|
The red clover necrotic mosaic virus capsid protein N-terminal amino acids possess specific RNA binding activity and are required for stable virion assembly. Virus Res 2013; 176:107-18. [PMID: 23747688 DOI: 10.1016/j.virusres.2013.05.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/20/2013] [Accepted: 05/22/2013] [Indexed: 11/21/2022]
Abstract
The red clover necrotic mosaic virus (RCNMV) bipartite RNA genome is packaged into two virion populations containing either RNA-1 and RNA-2 or multiple copies of RNA-2 only. To understand this distinctive packaging scheme, we investigated the RNA-binding properties of the RCNMV capsid protein (CP). Maltose binding protein-CP fusions exhibited the highest binding affinities for RNA probes containing the RNA-2 trans-activator or the 3' non-coding region from RNA-1. Other viral and non-viral RNA probes displayed CP binding but to a much lower degree. Deletion of the highly basic N-terminal 50 residues abolished CP binding to viral RNA transcripts. In planta studies of select CP deletion mutants within this N-terminal region revealed that it was indispensable for stable virion formation and the region spanning CP residues 5-15 is required for systemic movement. Thus, the N-terminal region of the CP is involved in both producing two virion populations due to its RNA binding properties and virion stability.
Collapse
|
13
|
Martin SL, He L, Meilleur F, Guenther RH, Sit TL, Lommel SA, Heller WT. New insight into the structure of RNA in red clover necrotic mosaic virus and the role of divalent cations revealed by small-angle neutron scattering. Arch Virol 2013; 158:1661-9. [PMID: 23483344 DOI: 10.1007/s00705-013-1650-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 01/24/2013] [Indexed: 11/25/2022]
Abstract
Red clover necrotic mosaic virus (RCNMV) is a 36-nm-diameter, T = 3 icosahedral plant virus with a genome that is split between two single-stranded RNA molecules of approximately 3.9 kb and 1.5 kb, as well as a 400-nucleotide degradation product. The structure of the virus capsid and its response to removing Ca(2+) and Mg(2+) was previously studied by cryo-electron microscopy (cryo-EM) (Sherman et al. J Virol 80:10395-10406, 2006) but the structure of the RNA was only partially resolved in that study. To better understand the organization of the RNA and conformational changes resulting from the removal of divalent cations, small-angle neutron scattering with contrast variation experiments were performed. The results expand upon the cryo-EM results by clearly showing that virtually all of the RNA is contained in a thin shell that is in contact with the interior domains of the viral capsid protein, and they provide new insight into changes in the RNA packing that result from removal of divalent cations.
Collapse
Affiliation(s)
- Stanton L Martin
- Department of Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Hyodo K, Mine A, Taniguchi T, Kaido M, Mise K, Taniguchi H, Okuno T. ADP ribosylation factor 1 plays an essential role in the replication of a plant RNA virus. J Virol 2013; 87:163-76. [PMID: 23097452 PMCID: PMC3536388 DOI: 10.1128/jvi.02383-12] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 10/16/2012] [Indexed: 01/31/2023] Open
Abstract
Eukaryotic positive-strand RNA viruses replicate using the membrane-bound replicase complexes, which contain multiple viral and host components. Virus infection induces the remodeling of intracellular membranes. Virus-induced membrane structures are thought to increase the local concentration of the components that are required for replication and provide a scaffold for tethering the replicase complexes. However, the mechanisms underlying virus-induced membrane remodeling are poorly understood. RNA replication of red clover necrotic mosaic virus (RCNMV), a positive-strand RNA plant virus, is associated with the endoplasmic reticulum (ER) membranes, and ER morphology is perturbed in RCNMV-infected cells. Here, we identified ADP ribosylation factor 1 (Arf1) in the affinity-purified RCNMV RNA-dependent RNA polymerase fraction. Arf1 is a highly conserved, ubiquitous, small GTPase that is implicated in the formation of the coat protein complex I (COPI) vesicles on Golgi membranes. Using in vitro pulldown and bimolecular fluorescence complementation analyses, we showed that Arf1 interacted with the viral p27 replication protein within the virus-induced large punctate structures of the ER membrane. We found that inhibition of the nucleotide exchange activity of Arf1 using the inhibitor brefeldin A (BFA) disrupted the assembly of the viral replicase complex and p27-mediated ER remodeling. We also showed that BFA treatment and the expression of dominant negative Arf1 mutants compromised RCNMV RNA replication in protoplasts. Interestingly, the expression of a dominant negative mutant of Sar1, a key regulator of the biogenesis of COPII vesicles at ER exit sites, also compromised RCNMV RNA replication. These results suggest that the replication of RCNMV depends on the host membrane traffic machinery.
Collapse
Affiliation(s)
- Kiwamu Hyodo
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Akira Mine
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Takako Taniguchi
- Institute for Enzyme Research, University of Tokushima, Tokushima, Japan
| | - Masanori Kaido
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Kazuyuki Mise
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Hisaaki Taniguchi
- Institute for Enzyme Research, University of Tokushima, Tokushima, Japan
| | - Tetsuro Okuno
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
15
|
Abstract
The genus Dianthovirus is one of eight genera in the family Tombusviridae. All the genera have monopartite positive-stranded RNA genomes, except the dianthoviruses which have bipartite genomes. The dianthoviruses are distributed worldwide. Although they share common structural features with the other Tombusviridae viruses in their virions and the terminal structure of the genomic RNAs, the bipartite nature of the dianthovirus genome offers an ideal experimental system with which to study basic issues of virology. The two genomic RNAs seem to use distinct strategies to regulate their translation, transcription, genome replication, genome packaging, and cell-to-cell movement during infection. This review summarizes the current state of our knowledge of the dianthoviruses, with its main emphasis on the molecular biology of the virus, including the viral and host factors required for its infection of host plants. The epidemiology of the virus and the possible viral impacts on agriculture and the environment are also discussed.
Collapse
Affiliation(s)
- Tetsuro Okuno
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan.
| | | |
Collapse
|
16
|
Kusumanegara K, Mine A, Hyodo K, Kaido M, Mise K, Okuno T. Identification of domains in p27 auxiliary replicase protein essential for its association with the endoplasmic reticulum membranes in Red clover necrotic mosaic virus. Virology 2012; 433:131-41. [PMID: 22898643 DOI: 10.1016/j.virol.2012.07.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2012] [Revised: 06/22/2012] [Accepted: 07/19/2012] [Indexed: 11/18/2022]
Abstract
Positive-strand RNA viruses require host intracellular membranes for replicating their genomic RNAs. In this study, we determined the domains and critical amino acids in p27 of Red clover necrotic mosaic virus (RCNMV) required for its association with and targeting of ER membranes in Nicotiana benthamiana plants using a C-terminally GFP-fused and biologically functional p27. Confocal microscopy and membrane-flotation assays using an Agrobacterium-mediated expression system showed that a stretch of 20 amino acids in the N-terminal region of p27 is essential for the association of p27 with membranes. We identified the amino acids in this domain required for the association of p27 with membranes using alanine-scanning mutagenesis. We also found that this domain contains amino acids not critical for the membrane association but required for the formation of viral RNA replication complexes and negative-strand RNA synthesis. Our results extend our understanding of the multifunctional role of p27 in RCNMV replication.
Collapse
Affiliation(s)
- Kusumawaty Kusumanegara
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | | | |
Collapse
|
17
|
Mine A, Hyodo K, Tajima Y, Kusumanegara K, Taniguchi T, Kaido M, Mise K, Taniguchi H, Okuno T. Differential roles of Hsp70 and Hsp90 in the assembly of the replicase complex of a positive-strand RNA plant virus. J Virol 2012; 86:12091-104. [PMID: 22933272 PMCID: PMC3486462 DOI: 10.1128/jvi.01659-12] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 08/21/2012] [Indexed: 02/06/2023] Open
Abstract
Assembly of viral replicase complexes of eukaryotic positive-strand RNA viruses is a regulated process: multiple viral and host components must be assembled on intracellular membranes and ordered into quaternary complexes capable of synthesizing viral RNAs. However, the molecular mechanisms underlying this process are poorly understood. In this study, we used a model virus, Red clover necrotic mosaic virus (RCNMV), whose replicase complex can be detected readily as the 480-kDa functional protein complex. We found that host heat shock proteins Hsp70 and Hsp90 are required for RCNMV RNA replication and that they interact with p27, a virus-encoded component of the 480-kDa replicase complex, on the endoplasmic reticulum membrane. Using a cell-free viral translation/replication system in combination with specific inhibitors of Hsp70 and Hsp90, we found that inhibition of p27-Hsp70 interaction inhibits the formation of the 480-kDa complex but instead induces the accumulation of large complexes that are nonfunctional in viral RNA synthesis. In contrast, inhibition of p27-Hsp90 interaction did not induce such large complexes but rendered p27 incapable of binding to a specific viral RNA element, which is a critical step for the assembly of the 480-kDa replicase complex and viral RNA replication. Together, our results suggest that Hsp70 and Hsp90 regulate different steps in the assembly of the RCNMV replicase complex.
Collapse
Affiliation(s)
- Akira Mine
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Park SH, Sit TL, Kim KH, Lommel SA. The Red clover necrotic mosaic virus capsid protein N-terminal lysine-rich motif is a determinant of symptomatology and virion accumulation. MOLECULAR PLANT PATHOLOGY 2012; 13:744-54. [PMID: 22292426 PMCID: PMC6638805 DOI: 10.1111/j.1364-3703.2011.00784.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The interaction between viral capsid protein (CP) and its cognate viral RNA modulates many steps in the virus infection cycle, such as replication, translation and assembly. The N-terminal 50 amino acids of the Red clover necrotic mosaic virus (RCNMV) CP are rich in basic residues (especially lysine) and are essential for the core functions of the CP, namely RNA binding and virion assembly. To further elucidate additional biological roles for these basic residues, a series of alanine substitution mutations was introduced into infectious clones of RCNMV RNA-1 and assayed for symptomatology, virion formation and systemic infection. Infectivity assays conducted in Nicotiana benthamiana revealed that all nine alanine substitution mutants (ASMs) were competent for systemic infection. Two ASMs (K4A and K7A/K8A) induced severe symptoms and delayed the systemic spread of viral genomes when compared with wild-type RCNMV. However, these ASMs were still competent for virion formation. Three other ASMs (K25A, K33A and K38A) displayed milder symptoms and significant reductions in virion accumulation when compared with wild-type RCNMV, but retained the ability to spread systemically. Evidence from these last three ASMs, as well as a CP null mutant, showed that RCNMV is able to move systemically in N. benthamiana as a nonvirion form. These observations reaffirm the necessity of the N-terminal lysine-rich residues of the RCNMV CP for efficient virion accumulation. They also reveal additional roles for the CP in the modulation of host symptomatology, independent of its role in virion assembly and the rate of systemic viral movement in N. benthamiana.
Collapse
Affiliation(s)
- Sang-Ho Park
- Department of Agricultural Biotechnology and Plant Genomics and Breeding Institute, Seoul National University, Seoul 151-921, South Korea
| | | | | | | |
Collapse
|
19
|
Wang R, Lockney DM, Goshe MB, Franzen S. Mass Spectrometric Detection of Targeting Peptide Bioconjugation to Red clover necrotic mosaic virus. Bioconjug Chem 2011; 22:1970-82. [DOI: 10.1021/bc2001769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Tajima Y, Iwakawa HO, Kaido M, Mise K, Okuno T. A long-distance RNA-RNA interaction plays an important role in programmed -1 ribosomal frameshifting in the translation of p88 replicase protein of Red clover necrotic mosaic virus. Virology 2011; 417:169-78. [PMID: 21703656 PMCID: PMC7111920 DOI: 10.1016/j.virol.2011.05.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2011] [Revised: 05/20/2011] [Accepted: 05/21/2011] [Indexed: 11/26/2022]
Abstract
Programmed -1 ribosomal frameshifting (-1 PRF) is one viral translation strategy to express overlapping genes in positive-strand RNA viruses. Red clover necrotic mosaic virus (RCNMV) uses this strategy to express its replicase component protein p88. In this study, we used a cell-free translation system to map cis-acting RNA elements required for -1 PRF. Our results show that a small stem-loop structure adjacent to the cap-independent translation element in the 3' untranslated region (UTR) of RCNMV RNA1 is required for -1 PRF. Site-directed mutagenesis experiments suggested that this stem-loop regulates -1 PRF via base-pairing with complementary sequences in a bulged stem-loop adjacent to the shifty site. The existence of RNA elements responsible for -1 PRF and the cap-independent translation of replicase proteins in the 3' UTR of RNA1 might be important for switching translation to replication and for regulating the ratio of p88 to p27.
Collapse
Affiliation(s)
| | | | | | | | - Tetsuro Okuno
- Corresponding author at: Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kitashirakawa, Kyoto, 606-8502, Japan. Fax: + 81 75 753 6131
| |
Collapse
|
21
|
Identification of amino acids in auxiliary replicase protein p27 critical for its RNA-binding activity and the assembly of the replicase complex in Red clover necrotic mosaic virus. Virology 2011; 413:300-9. [PMID: 21440279 DOI: 10.1016/j.virol.2011.02.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 02/04/2011] [Accepted: 02/20/2011] [Indexed: 01/17/2023]
Abstract
The specific recognition of genomic RNAs by viral replicase proteins is a key regulatory step during the early replication process in positive-strand RNA viruses. In this study, we characterized the RNA-binding activity of the auxiliary replicase protein p27 of Red clover necrotic mosaic virus (RCNMV), which has a bipartite genome consisting of RNA1 and RNA2. Aptamer pull-down assays identified the amino acid residues of p27 involved in its specific interaction with RNA2. The RNA-binding activity of p27 correlated with its activity in recruiting RNA2 to membranes. We also identified the amino acids required for the formation of the 480-kDa replicase complex, a key player of RCNMV RNA replication. These amino acids are not involved in the functions of p27 that bind viral RNA or replicase proteins, suggesting an additional role for p27 in the assembly of the replicase complex. Our results demonstrate that p27 has multiple functions in RCNMV replication.
Collapse
|
22
|
Mine A, Hyodo K, Takeda A, Kaido M, Mise K, Okuno T. Interactions between p27 and p88 replicase proteins of Red clover necrotic mosaic virus play an essential role in viral RNA replication and suppression of RNA silencing via the 480-kDa viral replicase complex assembly. Virology 2010; 407:213-24. [PMID: 20828775 DOI: 10.1016/j.virol.2010.07.038] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 07/13/2010] [Accepted: 07/23/2010] [Indexed: 11/16/2022]
Abstract
Red clover necrotic mosaic virus (RCNMV), a positive-sense RNA virus with a bipartite genome, encodes p27 and p88 replicase proteins that are required for viral RNA replication and suppression of RNA silencing. In this study, we identified domains in p27 and p88 responsible for their protein-protein interactions using in vitro pull-down assays with the purified recombinant proteins. Coimmunoprecipitation analysis in combination with blue-native polyacrylamide gel electrophoresis using mutated p27 proteins showed that both p27-p27 and p27-p88 interactions are essential for the formation of the 480-kDa complex, which has RCNMV-specific RNA-dependent RNA polymerase activity. Furthermore, we found a good correlation between the accumulated levels of the 480-kDa complex and replication levels and the suppression of RNA silencing activity. Our results indicate that interactions between RCNMV replicase proteins play an essential role in viral RNA replication and in suppressing RNA silencing via the 480-kDa replicase complex assembly.
Collapse
Affiliation(s)
- Akira Mine
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Martin SL, Guenther RH, Sit TL, Swartz PD, Meilleur F, Lommel SA, Rose RB. Crystallization and preliminary X-ray diffraction analysis of red clover necrotic mosaic virus. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:1458-62. [PMID: 21045294 PMCID: PMC3001647 DOI: 10.1107/s1744309110032483] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Accepted: 08/12/2010] [Indexed: 11/10/2022]
Abstract
Red clover necrotic mosaic virus (RCNMV) is a species that belongs to the Tombusviridae family of plant viruses with a T = 3 icosahedral capsid. RCNMV virions were purified and were crystallized for X-ray analysis using the hanging-drop vapor-diffusion method. Self-rotation functions and systematic absences identified the space group as I23, with two virions in the unit cell. The crystals diffracted to better than 4 Å resolution but were very radiation-sensitive, causing rapid decay of the high-resolution reflections. The data were processed to 6 Å in the analysis presented here.
Collapse
Affiliation(s)
- Stanton L. Martin
- Department of Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
| | - Richard H. Guenther
- Department of Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
| | - Tim L. Sit
- Department of Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
| | - Paul D. Swartz
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina, USA
| | - Flora Meilleur
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina, USA
- Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Steven A. Lommel
- Department of Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
| | - Robert B. Rose
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
24
|
A Y-shaped RNA structure in the 3′ untranslated region together with the trans-activator and core promoter of Red clover necrotic mosaic virus RNA2 is required for its negative-strand RNA synthesis. Virology 2010; 405:100-9. [DOI: 10.1016/j.virol.2010.05.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 05/01/2010] [Accepted: 05/19/2010] [Indexed: 11/23/2022]
|
25
|
Identification and characterization of the 480-kilodalton template-specific RNA-dependent RNA polymerase complex of red clover necrotic mosaic virus. J Virol 2010; 84:6070-81. [PMID: 20375154 DOI: 10.1128/jvi.00054-10] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Replication of positive-strand RNA viruses occurs through the assembly of membrane-associated viral RNA replication complexes that include viral replicase proteins, viral RNA templates, and host proteins. Red clover necrotic mosaic virus (RCNMV) is a positive-strand RNA plant virus with a genome consisting of RNA1 and RNA2. The two proteins encoded by RNA1, a 27-kDa protein (p27) and an 88-kDa protein containing an RNA-dependent RNA polymerase (RdRP) motif (p88), are essential for RCNMV RNA replication. To analyze RCNMV RNA replication complexes, we used blue-native polyacrylamide gel electrophoresis (BN/PAGE), which enabled us to analyze detergent-solubilized large membrane protein complexes. p27 and p88 formed a complex of 480 kDa in RCNMV-infected plants. As a result of sucrose gradient sedimentation, the 480-kDa complex cofractionated with both endogenous template-bound and exogenous template-dependent RdRP activities. The amount of the 480-kDa complex corresponded to the activity of exogenous template-dependent RdRP, which produced RNA fragments by specifically recognizing the 3'-terminal core promoter sequences of RCNMV RNAs, but did not correspond to the activity of endogenous template-bound RdRP, which produced genome-sized RNAs without the addition of RNA templates. These results suggest that the 480-kDa complex contributes to template-dependent RdRP activities. We subjected those RdRP complexes to affinity purification and analyzed their components using two-dimensional BN/sodium dodecyl sulfate-PAGE (BN/SDS-PAGE) and mass spectrometry. The 480-kDa complex contained p27, p88, and possible host proteins, and the original affinity-purified RdRP preparation contained HSP70, HSP90, and several ribosomal proteins that were not detected in the 480-kDa complex. A model for the formation of RCNMV RNA replication complexes is proposed.
Collapse
|
26
|
Kaido M, Tsuno Y, Mise K, Okuno T. Endoplasmic reticulum targeting of the Red clover necrotic mosaic virus movement protein is associated with the replication of viral RNA1 but not that of RNA2. Virology 2009; 395:232-42. [PMID: 19819513 DOI: 10.1016/j.virol.2009.09.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 07/29/2009] [Accepted: 09/16/2009] [Indexed: 12/15/2022]
Abstract
Red clover necrotic mosaic virus (RCNMV) is a positive-strand RNA virus with a bipartite genome. The movement protein (MP) encoded by RNA2 is essential for viral movement. To obtain further insights into the viral movement mechanism, subcellular localizations of RCNMV MP fused with green fluorescent protein (MP:GFP) were examined in Nicotiana benthamiana epidermal cells and protoplasts. The MP:GFP expressed from the recombinant virus first appeared in the cell wall and subsequently was observed on the cortical endoplasmic reticulum (ER) as punctate spots. In contrast, the MP:GFP expressed transiently in the absence of other viral components was localized exclusively in the cell wall. Transient expression of the MP:GFP with a variety of RCNMV components revealed that the ER localization of the MP:GFP was associated with RNA1 replication, or its negative-strand RNA synthesis, but not those of RNA2 or replicase proteins per se. A model of RCNMV cell-to-cell movement is discussed.
Collapse
Affiliation(s)
- Masanori Kaido
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| | | | | | | |
Collapse
|
27
|
Weng Z, Xiong Z. Three discontinuous loop nucleotides in the 3' terminal stem-loop are required for Red clover necrotic mosaic virus RNA-2 replication. Virology 2009; 393:346-54. [PMID: 19733887 DOI: 10.1016/j.virol.2009.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 07/29/2009] [Accepted: 08/04/2009] [Indexed: 10/20/2022]
Abstract
The genome of Red clover necrotic mosaic virus (RCNMV) consists of positive-sense, single-stranded RNA-1 and RNA-2. The 29 nucleotides at the 3' termini of both RNAs are nearly identical and are predicted to form a stable stem-loop (SL) structure, which is required for RCNMV RNA replication. Here we performed a systematic mutagenesis of the RNA-2 3' SL to identify the nucleotides critical for replication. Infectivity and RNA replication assays indicated that the secondary structure of the 3' SL and its loop sequence UAUAA were required for RNA replication. Single-nucleotide substitution analyses of the loop further pinpointed three discontinuous nucleotides (L1U, L2A, and L4A) that were vital for RNA replication. A 3-D model of the 3' SL predicted the existence of a pocket formed by these three nucleotides that could be involved in RNA-protein interaction. The functional groups of the bases participating in this interaction at these positions are discussed.
Collapse
Affiliation(s)
- Ziming Weng
- Department of Plant Sciences, Division of Plant Pathology and Microbiology, and BIO5 Institute, Forbes 303, University of Arizona, Tucson, AZ 85721, USA
| | | |
Collapse
|
28
|
Basnayake VR, Sit TL, Lommel SA. The Red clover necrotic mosaic virus origin of assembly is delimited to the RNA-2 trans-activator. Virology 2008; 384:169-78. [PMID: 19062064 DOI: 10.1016/j.virol.2008.11.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 10/01/2008] [Accepted: 11/05/2008] [Indexed: 11/25/2022]
Abstract
The bipartite RNA genome of Red clover necrotic mosaic virus (RCNMV) is encapsidated into icosahedral virions that exist as two populations: i) virions that co-package both genomic RNAs and ii) virions packaging multiple copies of RNA-2. To elucidate the packaging mechanism, we sought to identify the RCNMV origin of assembly sequence (OAS). RCNMV RNA-1 cannot package in the absence of RNA-2 suggesting that it does not contain an independent packaging signal. A 209 nt RNA-2 element expressed from the Tomato bushy stunt virus CP subgenomic promoter is co-assembled with genomic RNA-1 into virions. Deletion mutagenesis delimited the previously characterized 34 nt trans-activator (TA) as the minimal RCNMV OAS. From this study we hypothesize that RNA-1 must be base-paired with RNA-2 at the TA to initiate co-packaging. The addition of viral assembly illustrates the critical importance of the multifunctional TA element as a key regulatory switch in the RCNMV life cycle.
Collapse
Affiliation(s)
- Veronica R Basnayake
- Department of Plant Pathology, North Carolina State University, Raleigh, NC 27695-7342, USA
| | | | | |
Collapse
|
29
|
Powers JG, Sit TL, Heinsohn C, George CG, Kim KH, Lommel SA. The Red clover necrotic mosaic virus RNA-2 encoded movement protein is a second suppressor of RNA silencing. Virology 2008; 381:277-86. [PMID: 18838152 DOI: 10.1016/j.virol.2008.09.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 08/22/2008] [Accepted: 09/02/2008] [Indexed: 11/30/2022]
Abstract
The replication complex of Red clover necrotic mosaic virus (RCNMV) has been shown to possess silencing suppression activity. Here a newly developed viral-based assay for the identification of silencing suppression activity was used to provide evidence for a second, mechanistically distinct method of silencing suppression provided for by the RCNMV movement protein (MP). This new assay relies on Turnip crinkle virus with its capsid protein replaced with green fluorescent protein to act as a reporter (TCV-sGFP). In the presence of a protein with silencing suppression activity TCV-sGFP readily moves from cell-to-cell, but in the absence of such a protein TCV-sGFP is confined to small foci of infection. This TCV-sGFP assay was used to identify MP as a suppressor of RNA silencing, to delimit essential amino acids for this activity and uncouple silencing and movement functions.
Collapse
Affiliation(s)
- Jason G Powers
- Department of Genetics, North Carolina State University, Box 7614, Raleigh, NC 27695-7614, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Iwakawa HO, Mizumoto H, Nagano H, Imoto Y, Takigawa K, Sarawaneeyaruk S, Kaido M, Mise K, Okuno T. A viral noncoding RNA generated by cis-element-mediated protection against 5'->3' RNA decay represses both cap-independent and cap-dependent translation. J Virol 2008; 82:10162-74. [PMID: 18701589 PMCID: PMC2566255 DOI: 10.1128/jvi.01027-08] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Accepted: 08/05/2008] [Indexed: 11/20/2022] Open
Abstract
Positive-strand RNA viruses use diverse mechanisms to regulate viral and host gene expression for ensuring their efficient proliferation or persistence in the host. We found that a small viral noncoding RNA (0.4 kb), named SR1f, accumulated in Red clover necrotic mosaic virus (RCNMV)-infected plants and protoplasts and was packaged into virions. The genome of RCNMV consists of two positive-strand RNAs, RNA1 and RNA2. SR1f was generated from the 3' untranslated region (UTR) of RNA1, which contains RNA elements essential for both cap-independent translation and negative-strand RNA synthesis. A 58-nucleotide sequence in the 3' UTR of RNA1 (Seq1f58) was necessary and sufficient for the generation of SR1f. SR1f was neither a subgenomic RNA nor a defective RNA replicon but a stable degradation product generated by Seq1f58-mediated protection against 5'-->3' decay. SR1f efficiently suppressed both cap-independent and cap-dependent translation both in vitro and in vivo. SR1f trans inhibited negative-strand RNA synthesis of RCNMV genomic RNAs via repression of replicase protein production but not via competition of replicase proteins in vitro. RCNMV seems to use cellular enzymes to generate SR1f that might play a regulatory role in RCNMV infection. Our results also suggest that Seq1f58 is an RNA element that protects the 3'-side RNA sequences against 5'-->3' decay in plant cells as reported for the poly(G) tract and stable stem-loop structure in Saccharomyces cerevisiae.
Collapse
|
31
|
cis-Preferential requirement of a -1 frameshift product p88 for the replication of Red clover necrotic mosaic virus RNA1. Virology 2008; 375:205-12. [PMID: 18308359 PMCID: PMC7103404 DOI: 10.1016/j.virol.2008.02.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Revised: 01/12/2008] [Accepted: 02/07/2008] [Indexed: 11/26/2022]
Abstract
The genome of Red clover necrotic mosaic virus (RCNMV) consists of RNA1 and RNA2. RNA1 encodes N-terminally overlapping replication proteins, p27 and p88, which are translated in a cap-independent manner. The 3′ untranslated region of RNA1 contains RNA elements essential for cap-independent translation and negative-strand RNA synthesis. In this study, we investigated how p27 and p88 were engaged in the replication of RCNMV genomic RNAs by using DNA vectors or in vitro transcribed RNAs in protoplasts and in a cell-free extract of evacuolated BY-2 protoplasts. Our results show a cis-preferential requirement of p88, but not of p27, for the replication of RNA1. This mechanism might help to facilitate a switch in the role of RNA1 from mRNA to a replication template.
Collapse
|
32
|
Mizumoto H, Iwakawa HO, Kaido M, Mise K, Okuno T. Cap-independent translation mechanism of red clover necrotic mosaic virus RNA2 differs from that of RNA1 and is linked to RNA replication. J Virol 2006; 80:3781-91. [PMID: 16571795 PMCID: PMC1440462 DOI: 10.1128/jvi.80.8.3781-3791.2006] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genome of Red clover necrotic mosaic virus (RCNMV) in the genus Dianthovirus is divided into two RNA molecules of RNA1 and RNA2, which have no cap structure at the 5' end and no poly(A) tail at the 3' end. The 3' untranslated region (3' UTR) of RCNMV RNA1 contains an essential RNA element (3'TE-DR1), which is required for cap-independent translation. In this study, we investigated a cap-independent translational mechanism of RNA2 using a firefly luciferase (Luc) gene expression assay system in cowpea protoplasts and a cell-free lysate (BYL) prepared from evacuolated tobacco BY2 protoplasts. We were unable to detect cis-acting RNA sequences in RNA2 that can replace the function of a cap structure, such as the 3'TE-DR1 of RNA1. However, the uncapped reporter RNA2, RNA2-Luc, in which the Luc open reading frame (ORF) was inserted between the 5' UTR and the movement protein ORF, was effectively translated in the presence of p27 and p88 in protoplasts in which RNA2-Luc was replicated. Time course experiments in protoplasts showed that the translational activity of RNA2-Luc did not reflect the amount of RNA2. Mutations in cis-acting RNA replication elements of RNA2 abolished the cap-independent translational activity of RNA2-Luc, suggesting that the translational activity of RNA2-Luc is coupled to RNA replication. Our results show that the translational mechanism differs between two segmented genomic RNAs of RCNMV. We present a model in which only RNA2 that is generated de novo through the viral RNA replication machinery functions as mRNA for translation.
Collapse
Affiliation(s)
- Hiroyuki Mizumoto
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kitashirakawa, Kyoto 606-8502, Japan
| | | | | | | | | |
Collapse
|
33
|
Basnayake VR, Sit TL, Lommel SA. The genomic RNA packaging scheme of Red clover necrotic mosaic virus. Virology 2006; 345:532-9. [PMID: 16297955 DOI: 10.1016/j.virol.2005.10.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Revised: 05/19/2005] [Accepted: 10/18/2005] [Indexed: 10/25/2022]
Abstract
Red clover necrotic mosaic virus (RCNMV) is a small icosahedral plant virus with a bipartite RNA genome. While the RCNMV genome consists of two RNAs, it has not been definitively established whether these RNAs are co-packaged into a single virion or packaged individually into separate virions. Biochemical evidence exists to support both hypotheses. To determine the genomic RNA complement within RCNMV, virions were subjected to heat treatments and UV crosslinking. A stable RNA-1:RNA-2 heterodimer was formed with both treatments establishing that RCNMV genomic RNAs are co-packaged into a single virion. Furthermore, RNA-2 homodimer and homotrimers were also observed indicating that some virions contain multiple copies of RNA-2 exclusively. These results indicate that RCNMV virions consist of two distinct populations: (i) virions containing both genomic RNAs; and (ii) virions with multiple copies of RNA-2. This type of hybrid packaging arrangement was unexpected and appears to be unique among the multipartite RNA viruses.
Collapse
Affiliation(s)
- Veronica R Basnayake
- Department of Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| | | | | |
Collapse
|
34
|
Abstract
The majority of positive-strand RNA viruses of plants replicate and selectively encapsidate their progeny genomes into stable virions in cytoplasmic compartments of the cell where the opportunity to copackage cellular RNA also exists. Remarkably, highly purified infectious virions contain almost exclusively viral RNA, suggesting that mechanisms exist to regulate preferential packaging of viral genomes. The general principle that governs RNA packaging is an interaction between the structural CP and a specific RNA signal. Mechanisms that enhance selective packaging of viral genomes and formation of infectious virions may involve factors other than CP and nucleic acid sequences. The possible involvement of replicase proteins is an example. Our knowledge concerning genome packaging among spherical plant RNA viruses is still maturing. The main focus of this review is to discuss factors that have limited progress and to evaluate recent technical breakthroughs likely to help unravel the mechanism of RNA packaging among viruses of agronomic importance. A key breakthrough is the development of in vivo systems and comparisons with results obtained in vitro.
Collapse
Affiliation(s)
- A L N Rao
- Department of Plant Pathology, University of California Riverside, Riverside, California 92521-0122, USA.
| |
Collapse
|
35
|
Pettit Kneller EL, Rakotondrafara AM, Miller WA. Cap-independent translation of plant viral RNAs. Virus Res 2005; 119:63-75. [PMID: 16360925 PMCID: PMC1880899 DOI: 10.1016/j.virusres.2005.10.010] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Revised: 09/01/2005] [Accepted: 10/19/2005] [Indexed: 11/29/2022]
Abstract
The RNAs of many plant viruses lack a 5' cap and must be translated by a cap-independent mechanism. Here, we discuss the remarkably diverse cap-independent translation elements that have been identified in members of the Potyviridae, Luteoviridae, and Tombusviridae families, and genus Tobamovirus. Many other plant viruses have uncapped RNAs but their translation control elements are uncharacterized. Cap-independent translation elements of plant viruses differ strikingly from those of animal viruses: they are smaller (<200 nt), some are located in the 3' untranslated region, some require ribosome scanning from the 5' end of the mRNA, and the 5' UTR elements are much less structured than those of animal viruses. We discuss how these elements may interact with host translation factors, and speculate on their mechanism of action and their roles in the virus replication cycle. Much remains to be learned about how these elements enable plant viruses to usurp the host translational machinery.
Collapse
Affiliation(s)
- Elizabeth L. Pettit Kneller
- Interdepartmental Plant Physiology Program, Department of Plant Pathology, 351 Bessey Hall, Iowa State University, Ames, IA 50011, USA
| | - Aurélie M. Rakotondrafara
- Molecular, Cellular and Developmental Biology Program, Department of Plant Pathology, 351 Bessey Hall, Iowa State University, Ames, IA 50011, USA
| | - W. Allen Miller
- Molecular, Cellular and Developmental Biology Program, Department of Plant Pathology, 351 Bessey Hall, Iowa State University, Ames, IA 50011, USA
- * Corresponding author. Tel.: +1 515 294 2436; fax: +1 515 294 9420. E-mail address: (W.A. Miller)
| |
Collapse
|
36
|
Tremblay D, Vaewhongs AA, Turner KA, Sit TL, Lommel SA. Cell wall localization of Red clover necrotic mosaic virus movement protein is required for cell-to-cell movement. Virology 2005; 333:10-21. [PMID: 15708588 DOI: 10.1016/j.virol.2004.12.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2004] [Revised: 08/31/2004] [Accepted: 12/10/2004] [Indexed: 11/22/2022]
Abstract
The Red clover necrotic mosaic virus movement protein (MP) is essential for cell-to-cell movement. Eight previously characterized alanine-scanning mutants of the MP were fused to the green fluorescent protein (GFP) and expressed from viral infectious transcripts. Inoculated plants were assayed for movement and intracellular accumulation of MP by confocal laser-scanning microscopy. A strict correlation was observed between the targeting to the cell wall (presumably the plasmodesmata) and cell-to-cell movement. Complementation of dysfunctional MP mutants with either wild-type MP or other null mutants in some cases rescued intracellular targeting and movement. The data suggest the presence of distinct domains in the MP for virus movement (near residues 27-31), complementarity (near residues 122 and 128), and intracellular localization (near residue 161). These data support a model of MP interacting cooperatively with itself to bind viral RNA, localize to and modify plasmodesmata and effect virus movement.
Collapse
Affiliation(s)
- Douglas Tremblay
- Department of Plant Pathology, Box 7616 North Carolina State University, Raleigh NC, 27695-7616 USA
| | | | | | | | | |
Collapse
|
37
|
Tatsuta M, Mizumoto H, Kaido M, Mise K, Okuno T. The red clover necrotic mosaic virus RNA2 trans-activator is also a cis-acting RNA2 replication element. J Virol 2005; 79:978-86. [PMID: 15613326 PMCID: PMC538547 DOI: 10.1128/jvi.79.2.978-986.2005] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The expression of the coat protein gene requires RNA-mediated trans-activation of subgenomic RNA synthesis in Red clover necrotic mosaic virus (RCNMV), the genome of which consists of two positive-strand RNAs, RNA1 and RNA2. The trans-acting RNA element required for subgenomic RNA synthesis from RNA1 has been mapped previously to the protein-coding region of RNA2, whereas RNA2 is not required for the replication of RNA1. In this study, we investigated the roles of the protein-coding region in RNA2 replication by analyzing the replication competence of RNA2 mutants containing deletions or nucleotide substitutions. Our results indicate that the same stem-loop structure (SL2) that functions as a trans-activator for RNA-mediated coat protein expression is critically required for the replication of RNA2 itself. Interestingly, however, disruption of the RNA-RNA interaction by nucleotide substitutions in the region of RNA1 corresponding to the SL2 loop of RNA2 does not affect RNA2 replication, indicating that the RNA-RNA interaction is not required for RNA2 replication. Further mutational analysis showed that, in addition to the stem-loop structure itself, nucleotide sequences in the stem and in the loop of SL2 are important for the replication of RNA2. These findings suggest that the structure and nucleotide sequence of SL2 in RNA2 play multiple roles in the virus life cycle.
Collapse
Affiliation(s)
- Masahiro Tatsuta
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kitashirakawa, Kyoto 606-8502, Japan
| | | | | | | | | |
Collapse
|
38
|
Kakani K, Reade R, Rochon D. Evidence that vector transmission of a plant virus requires conformational change in virus particles. J Mol Biol 2004; 338:507-17. [PMID: 15081809 DOI: 10.1016/j.jmb.2004.03.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2003] [Revised: 02/13/2004] [Accepted: 03/03/2004] [Indexed: 11/18/2022]
Abstract
Transmission of Cucumber necrosis virus (CNV) by zoospores of its fungal vector, Olpidium bornovanus, involves specific adsorption of virus particles onto the zoospore plasmalemma prior to infestation of cucumber roots by virus-bound zoospores. Previous work has shown that specific components of both CNV and zoospores are required for successful CNV/zoospore recognition. Here, we show that limited trypsin digestion of CNV following in vitro CNV/zoospore binding assays, results in the production of specific proteolytic digestion products under conditions where native CNV is resistant. The proteolytic digestion pattern of zoospore-bound CNV was found to be similar to that of swollen CNV particles produced in vitro, suggesting that zoospore-bound CNV is in an altered conformational state, perhaps similar to that of swollen CNV. We show that an engineered CNV mutant (Pro73Gly) in which a conserved proline residue (Pro73) in the beta-annulus of the CP arm is changed to glycine is resistant to proteolysis following in vitro zoospore binding assays. Moreover, Pro73Gly particles are transmitted only poorly by O.bornovanus. Together, the results of these studies suggest that CNV undergoes conformational change upon zoospore binding and that the conformational change is important for CNV transmissibility.
Collapse
Affiliation(s)
- Kishore Kakani
- Faculty of Agricultural Sciences, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | | | | |
Collapse
|
39
|
Turner KA, Sit TL, Callaway AS, Allen NS, Lommel SA. Red clover necrotic mosaic virus replication proteins accumulate at the endoplasmic reticulum. Virology 2004; 320:276-90. [PMID: 15016550 DOI: 10.1016/j.virol.2003.12.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2003] [Revised: 12/09/2003] [Accepted: 12/11/2003] [Indexed: 11/18/2022]
Abstract
Red clover necrotic mosaic virus (RCNMV) encodes N-terminally overlapping proteins of 27 and 88 kDa (p27 and p88) known to be required for replication. Green fluorescent protein (GFP) fusions were used to visualize the location of p27 and p88 within Nicotiana benthamiana cells. GFP:p27 fusions localized to the endoplasmic reticulum (ER), co-localized with ER-targeted yellow fluorescent protein and caused membrane restructuring and proliferation. Cellular fractionation of virus-inoculated N. benthamiana leaves confirmed the association of p27 with ER membranes. GFP:p88 fusions also localized to the ER and co-localized with GFP:p27. Both fusion proteins co-localize to the cortical and cytoplasmic ER and were associated with invaginations of the nuclear envelope. Independent accumulation in, and perturbation of, the ER suggests that p27 and p88 function together in the replication complex. This is the first report of a member of the Tombusviridae replicating in association with the ER.
Collapse
Affiliation(s)
- Katherine A Turner
- Department of Genetics, North Carolina State University, Raleigh, NC 27695-7614, USA
| | | | | | | | | |
Collapse
|
40
|
Rochon D, Kakani K, Robbins M, Reade R. Molecular aspects of plant virus transmission by olpidium and plasmodiophorid vectors. ANNUAL REVIEW OF PHYTOPATHOLOGY 2004; 42:211-241. [PMID: 15283666 DOI: 10.1146/annurev.phyto.42.040803.140317] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The genome structures of a large number of viruses transmitted by olpidium and plasmodiophorid vectors have been determined. The viruses are highly diverse, belonging to 12 genera in at least 4 families. Plasmodiophorids are now classified as protists rather than true fungi. This finding, along with the recognition of the great variety of viruses transmitted by olpidium and plasmodiophorid vectors, will likely lead to an elaboration of the details of in vitro and in vivo transmission mechanisms. Recent progress in elucidating the interaction between Cucumber necrosis virus (CNV) and its zoospore vector suggests that specific sites on the capsid as well as on the zoospore are involved in transmission. Moreover, some features of CNV/zoospore attachment are similar to poliovirus/host cell interactions, suggesting evolutionary conservation of functional features of plant and animal virus capsids.
Collapse
Affiliation(s)
- D'Ann Rochon
- Agriculture and Agri-Food Canada, Pacific Agri-Food Research Center, Summerland, British Columbia V0H 1Z0, Canada.
| | | | | | | |
Collapse
|
41
|
Mizumoto H, Tatsuta M, Kaido M, Mise K, Okuno T. Cap-independent translational enhancement by the 3' untranslated region of red clover necrotic mosaic virus RNA1. J Virol 2003; 77:12113-21. [PMID: 14581548 PMCID: PMC254280 DOI: 10.1128/jvi.77.22.12113-12121.2003] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Red clover necrotic mosaic virus (RCNMV) is a member of the genus Dianthovirus and has a bipartite positive-sense genomic RNA with 3' ends that are not polyadenylated. In this study, we show that both genomic RNA1 and RNA2 lack a 5' cap structure and that uncapped in vitro transcripts of RCNMV RNA1 replicated to a level comparable to that for capped transcripts in cowpea protoplasts. Because the 5' cap and 3' poly(A) tail play important roles in the translation of many eukaryotic mRNAs, genomic RNAs of RCNMV should contain an element(s) responsible for 5' cap- and poly(A) tail-independent translation of viral protein. By using a luciferase reporter assay system in vivo, we showed that the 3' untranslated region (UTR) of RNA1 alone significantly enhanced translation of the luciferase reporter gene in the absence of the 5' cap structure. Deletion studies revealed that the middle region (between nucleotides 3596 and 3732) in the 3' UTR, designated the 3' translation element of Dianthovirus RNA1 (3'TE-DR1), plays an important role in cap-independent translation. This region contained a stem-loop structure conserved among members of the genera Dianthovirus and LUTEOVIRUS: A five-base substitution in the loop abolished cap-independent translational activity, as reported for a luteovirus, indicating that this stem-loop is one of the functional structures in the 3'TE-DR1 involved in cap-independent translation. Finally, we suggest that cap-independent translational activity is required for RCNMV RNA1 replication in protoplasts.
Collapse
Affiliation(s)
- Hiroyuki Mizumoto
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Sakyo-Ku, Kyoto 606-8502, Japan
| | | | | | | | | |
Collapse
|
42
|
Brierley I, Pennell S. Structure and function of the stimulatory RNAs involved in programmed eukaryotic-1 ribosomal frameshifting. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 66:233-48. [PMID: 12762025 DOI: 10.1101/sqb.2001.66.233] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- I Brierley
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | | |
Collapse
|
43
|
Mizumoto H, Hikichi Y, Okuno T. The 3'-untranslated region of RNA1 as a primary determinant of temperature sensitivity of Red clover necrotic mosaic virus Canadian strain. Virology 2002; 293:320-7. [PMID: 11886252 DOI: 10.1006/viro.2001.1275] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Red clover necrotic mosaic virus Canadian strain (RCNMV-Can) induces symptoms on host plants at 17 degrees C, but not at 25 degrees C. We investigated the temperature sensitivity of RCNMV-Can in Nicotiana benthamiana plants and protoplasts using infectious transcripts of genomic RNAs 1 and 2. Viral RNAs accumulated in both inoculated and noninoculated leaves at 17 degrees C, whereas no viral RNAs were detected at 25 degrees C in either inoculated or noninoculated leaves. Similar temperature sensitivity in RNA accumulation was observed in protoplasts, and no viral RNAs were detected at temperatures above 22 degrees C. These results indicate that the temperature sensitivity of RCNMV-Can occurs at an early stage of infection, including during RNA replication. Using reassortant viruses and chimeric RNAs 1 between RCNMV-Can and the RCNMV Australian strain, which accumulates viral RNAs at nonpermissive temperatures for RCNMV-Can, we demonstrated that a viral determinant for the temperature sensitivity resides in the 3'-untranslated region of RNA1.
Collapse
Affiliation(s)
- Hiroyuki Mizumoto
- Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture, Kochi University, Nankoku, Kochi, 783-8502, Japan
| | | | | |
Collapse
|
44
|
Affiliation(s)
- G A de Zoeten
- Department of Botany and Plant Pathology, Michigan State University, East Lansing, Michigan 48824, USA
| | | |
Collapse
|
45
|
Affiliation(s)
- T Tamm
- Institute of Chemical Physics and Biophysics and Gene Technology Centre, Tallinn Technical University, EE12618 Tallinn, Estonia
| | | |
Collapse
|
46
|
Kim KH, Lommel SA. Sequence element required for efficient -1 ribosomal frameshifting in red clover necrotic mosaic dianthovirus. Virology 1998; 250:50-9. [PMID: 9770419 DOI: 10.1006/viro.1998.9358] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The RNA-1 of the bipartite red clover necrotic mosaic dianthovirus (RCNMV) genome encodes the 88-kDa polymerase. The polymerase is translated from both 5' proximal and internal open reading frames by a -1 ribosomal frameshifting event. A shifty heptanucleotide conforming to the simultaneous slippage model is identified, and a downstream stem-loop structure and atypical pseudoknot are predicted. A beta-glucuronidase reporter assay identified a 118-nucleotide element containing both the shifty heptanucleotide and the predicted secondary structures that were required for efficient -1 ribosomal frameshift expression in vivo. A series of site-directed and compensatory mutations affecting the base-paired regions of the predicted secondary structure were introduced into a RCNMV RNA-1 cDNA clone from which infectious transcripts were derived. Mutations that destroyed the predicted pseudoknot had no effect on frameshifting efficiency in vitro or infectivity of the virus, whereas mutations destabilizing the stem-loop structure abolished both ribosomal frameshifting in vitro and biological activity. These results demonstrate the essential role of a predicted secondary structure that does not involve a pseudoknot in the expression of the RCNMV polymerase by ribosomal frameshifting.
Collapse
Affiliation(s)
- K H Kim
- Department of Plant Pathology, North Carolina State University, Raleigh, North Carolina, 27695-7616, USA
| | | |
Collapse
|
47
|
Ashoub A, Rohde W, Prüfer D. In planta transcription of a second subgenomic RNA increases the complexity of the subgroup 2 luteovirus genome. Nucleic Acids Res 1998; 26:420-6. [PMID: 9421494 PMCID: PMC147298 DOI: 10.1093/nar/26.2.420] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The genetic information of potato leafroll virus (PLRV), a typical member of the subgroup 2 luteoviruses, is contained in a single-stranded (+) sense RNA of approximately 5.9 kb. A single subgenomic RNA (sgRNA1) of approximately 2.3 kb has been characterized as the mRNA for the 3' clustered viral open reading frames ORF3, ORF3/5 and ORF4. Here we demonstrate by Northern blot analyses of polysomal RNAs from PLRV-infected Solanum tuberosum and Physalis floridana plants that, as with luteoviruses belonging to subgroup 1, in planta synthesis of a second 0.8 kb subgenomic RNA (sgRNA2) increases the complexity of subgroup 2 luteoviral genomes significantly. PLRV-specific hybridization probes as well as primer extension experiments map sgRNA2 to the 3'-end of the PLRV RNA genome (positions 5190-5987). Similarly, for the closely related cucurbit aphid-borne yellows virus (CABYV) a sgRNA2 of similar size and position (positions 4888-5669) was identified. PLRV sgRNA2 may code for two viral proteins of 7.1 (ORF6) and 14 kDa (ORF7) respectively, while the CABYV proteins are 8.7 (ORF6) and 8.3 kDa (ORF7) in size, with PLRV ORF7 displaying nucleic acid binding activity. In vivo experiments by transient expression of chimeric GUS fusions in potato protoplasts demonstrated that sgRNA2 functions as a bicistronic mRNA with high expression of ORF6 and low translational efficiency for synthesis of ORF7.
Collapse
Affiliation(s)
- A Ashoub
- Max-Planck-Institut für Züchtungsforschung, Carl-von-Linné-Weg 10, D-50829 Köln, Germany
| | | | | |
Collapse
|
48
|
Miller JS, Damude H, Robbins MA, Reade RD, Rochon DM. Genome structure of cucumber leaf spot virus: sequence analysis suggests it belongs to a distinct species within the Tombusviridae. Virus Res 1997; 52:51-60. [PMID: 9453144 DOI: 10.1016/s0168-1702(97)00105-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The complete nucleotide sequence of cucumber leaf spot virus (CLSV) has been determined and the sizes and locations of predicted viral proteins deduced. The genome consists of 4432 nucleotides and contains five long ORFs. The 5' proximal ORF encodes a 25 kDa product that terminates in an amber codon which may be readthrough to produce an 84 kDa protein (ORF 2). ORF 3 codes for the 41 kDa coat protein (CP). ORFs 4 and 5 are completely overlapping at the 3' terminus and code for 27 and 17 kDa products, respectively. The CLSV genome structure is similar to that of tombusviruses and nearly identical to pothos latent virus (PoLV), a newly proposed, atypical, member of the Tombusviridae. It is proposed that CLSV and PoLV be considered strains of a new tombusvirus species. Amino acid sequence comparisons of the CLSV CP and the CPs of several small spherical plant viruses suggest that CLSV is most closely related to melon necrotic spot carmovirus (MNSV), red clover necrotic mosaic dianthovirus (RCNMV) and cucumber necrosis tombusvirus (CNV). These viruses, like CLSV, are transmitted by the soil inhabiting fungus, Olpidium bornovanus.
Collapse
Affiliation(s)
- J S Miller
- Agriculture and Agri-Food Canada, Pacific Agri-Food Research Centre, Summerland, Canada
| | | | | | | | | |
Collapse
|
49
|
Heidel GB, Rush CM, Kendall TL, Lommel SA, French RC. Characteristics of Beet Soilborne Mosaic Virus, a Furo-like Virus Infecting Sugar Beet. PLANT DISEASE 1997; 81:1070-1076. [PMID: 30861962 DOI: 10.1094/pdis.1997.81.9.1070] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Beet soilborne mosaic virus (BSBMV) is a rigid rod-shaped virus transmitted by Polymyxa betae. Particles were 19 nm wide and ranged from 50 to over 400 nm, but no consistent modal lengths could be determined. Nucleic acids extracted from virions were polyadenylated and typically separated into three or four discrete bands of variable size by agarose-formaldehyde gel electrophoresis. RNA 1 and 2, the largest of the RNAs, consistently averaged 6.7 and 4.6 kb, respectively. The sizes and number of smaller RNA species were variable. The molecular mass of the capsid protein of BSBMV was estimated to be 22.5 kDa. In Northern blots, probes specific to the 3' end of individual beet necrotic yellow vein virus (BNYVV) RNAs 1-4 hybridized strongly with the corresponding BNYVV RNA species and weakly with BSBMV RNAs 1, 2, and 4. Probes specific to the 5' end of BNYVV RNAs 1-4 hybridized with BNYVV but not with BSBMV. No cross-reaction between BNYVV and BSBMV was detected in Western blots. In greenhouse studies, root weights of BSBMV-infected plants were significantly lower than mock-inoculated controls but greater than root weights from plants infected with BNYVV. Results of serological, hybridization, and virulence experiments indicate that BSBMV is distinct from BNYVV. However, host range, capsid size, and the number, size, and polyadenylation of its RNAs indicate that BSBMV more closely resembles BNYVV than it does other members of the genus Furovirus.
Collapse
Affiliation(s)
- G B Heidel
- Texas Agricultural Experiment Station, P.O. Drawer 10, Bushland, TX 79012
| | - C M Rush
- Texas Agricultural Experiment Station, P.O. Drawer 10, Bushland, TX 79012
| | - T L Kendall
- Pioneer Hi-Bred International, 7300 Northwest 62nd Avenue, P.O. Box 38, Johnston, IA 50131-0038
| | - S A Lommel
- Department of Plant Pathology, Box 7616, North Carolina State University, Raleigh, NC 27695-7616
| | - R C French
- University of Nebraska, USDA ARS-Plant Pathology Department, 406 Plant Science, Lincoln, NE 68583
| |
Collapse
|
50
|
Hacker DL, Sivakumaran K. Mapping and expression of southern bean mosaic virus genomic and subgenomic RNAs. Virology 1997; 234:317-27. [PMID: 9268164 DOI: 10.1006/viro.1997.8667] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The coat protein of the cowpea strain of southern bean mosaic sobemovirus (SBMV-C) is translated from a subgenomic RNA (sgRNA) that is synthesized in the virus-infected cell. Like the SBMV-C genomic RNA, the sgRNA has a viral protein (VPg) covalently bound to its 5' end. The mechanism(s) by which ribosomes initiate translation on the SBMV-C RNAs is not known. To begin to characterize the translation of the sgRNA it was first necessary to precisely map its 5' end. Primer extension was used to identify SBMV-C nucleotide (nt) 3241 as the transcription start site. As a control, the 5' end of the genomic RNA was also mapped. Surprisingly, the 5' terminal nt of this RNA was identified as SBMV-C nt 2. The primary structure of the 5' ends of these two RNAs is therefore expected to be VPg-ACAAAA. Precise mapping of the 5' end of the sgRNA of the bean strain of SBMV (SBMV-B) demonstrated that it has these same elements. Translation of coat protein from the SBMV-C sgRNA and p21 from the SBMV-C genomic RNA was compared using a cell-free system. The results of these experiments were consistent with translation of these proteins by a 5' end-dependent scanning mechanism rather than by internal ribosome binding.
Collapse
Affiliation(s)
- D L Hacker
- Department of Microbiology and Center for Legume Research, University of Tennessee, Knoxville 37996-0845, USA.
| | | |
Collapse
|