1
|
An Advax-Adjuvanted Inactivated Cell-Culture Derived Japanese Encephalitis Vaccine Induces Broadly Neutralising Anti-Flavivirus Antibodies, Robust Cellular Immunity and Provides Single Dose Protection. Vaccines (Basel) 2021; 9:vaccines9111235. [PMID: 34835166 PMCID: PMC8618450 DOI: 10.3390/vaccines9111235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/16/2021] [Accepted: 10/19/2021] [Indexed: 01/24/2023] Open
Abstract
ccJE+Advax is an inactivated cell culture Japanese encephalitis (JE) vaccine formulated with Advax, a novel polysaccharide adjuvant based on delta inulin. This vaccine has previously shown promise in murine and equine studies and the current study sought to better understand its mechanism of action and assess the feasibility of single dose vaccine protection. Mice immunised with ccJE+Advax had higher serum neutralisation titres than those immunised with ccJE alone or with alum adjuvant. ccJE+Advax induced extraordinarily broad cross-neutralising antibodies against multiple flaviviruses including West Nile virus (WNV), Murray Valley encephalitis virus (MVEV), St Louis encephalitis virus (SLEV) and Dengue virus-1 and -2 (DENV-1 and -2). Notably, the DENV-2 cross-neutralising antibodies from ccJE+Advax immunised mice uniquely had no DENV-2 antibody-dependent infection enhancement (ADIE) activity, in contrast to high ADIE activity seen with DENV-1 cross-reactive antibodies induced by mbJE or ccJE alone or with alum adjuvant. JEV-stimulated splenocytes from ccJE+Advax immunised mice showed increased IL-17 and IFN-γ production, consistent with a mixed Th1 and Th17 response, whereas ccJE-alum was associated with production of mainly Th2 cytokines. In a mouse lethal challenge study against highly virulent JaTH160 JEV strain, ccJE+Advax conferred complete protection in a two-dose schedule with 50 ng of vaccine antigen and near complete protection after a single 200 ng dose of vaccine antigen. There is an ongoing lack of human vaccines against particular flaviviruses, including WNV, SLEV and MVEV. Given its ability to provide single-dose JEV protection and induce broadly neutralising antibodies devoid of ADIE activity, ccJE+Advax vaccine could be useful in situations where rapid protection is desirable, e.g., during a local outbreak or for use in travellers or armies requiring rapid deployment to JEV endemic regions.
Collapse
|
2
|
Carpio KL, Barrett ADT. Flavivirus NS1 and Its Potential in Vaccine Development. Vaccines (Basel) 2021; 9:622. [PMID: 34207516 PMCID: PMC8229460 DOI: 10.3390/vaccines9060622] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 12/19/2022] Open
Abstract
The Flavivirus genus contains many important human pathogens, including dengue, Japanese encephalitis (JE), tick-borne encephalitis (TBE), West Nile (WN), yellow fever (YF) and Zika (ZIK) viruses. While there are effective vaccines for a few flavivirus diseases (JE, TBE and YF), the majority do not have vaccines, including WN and ZIK. The flavivirus nonstructural 1 (NS1) protein has an unusual structure-function because it is glycosylated and forms different structures to facilitate different roles intracellularly and extracellularly, including roles in the replication complex, assisting in virus assembly, and complement antagonism. It also plays a role in protective immunity through antibody-mediated cellular cytotoxicity, and anti-NS1 antibodies elicit passive protection in animal models against a virus challenge. Historically, NS1 has been used as a diagnostic marker for the flavivirus infection due to its complement fixing properties and specificity. Its role in disease pathogenesis, and the strong humoral immune response resulting from infection, makes NS1 an excellent target for inclusion in candidate flavivirus vaccines.
Collapse
Affiliation(s)
- Kassandra L. Carpio
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA;
| | - Alan D. T. Barrett
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
3
|
Leng SL, Huang R, Feng YN, Peng LJ, Yang J, Li YH. The pre membrane and envelope protein is the crucial virulence determinant of Japanese encephalitis virus. Microb Pathog 2020; 148:104492. [PMID: 32916243 DOI: 10.1016/j.micpath.2020.104492] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/11/2020] [Accepted: 09/06/2020] [Indexed: 01/23/2023]
Abstract
After sequence comparison, it was found that there are multiple amino acid mutations in pre-M and envelope (E) protein of Japanese encephalitis virus vaccine strain comparison with wild type (WT) strain SA14. It is generally acknowledged it is the mutations that have caused the virulence attenuation of vaccine strain, but lack of sufficient experimental evidences. For a better understanding of the mechanism of attenuation of Japanese encephalitis virus (JEV), in this study, we assessed whether prM/E is critical neurovirulence determinants of JEV with infectious cDNA clones technique. Substitutions prM/E of vaccine strain with that of WT SA14 did significantly increase the virulence of JEV to the similar level of wild type SA14, and simultaneously, replacement prM/E of JEV WT strain SA14 with that of vaccine strain SA14-14-2 decreased the virulence of JEV significantly to the similar level of vaccine stain. The results indicate that the prM/E protein is the crucial virulence determinant of Japanese encephalitis virus, although other proteins take part in the process to some extent.
Collapse
Affiliation(s)
- Sheng-Ling Leng
- School of Basic medical science, North Sichuan Medical College, Nanchong, 637000, China
| | - Rong Huang
- School of Basic medical science, North Sichuan Medical College, Nanchong, 637000, China
| | - Ya-Nan Feng
- School of Basic medical science, North Sichuan Medical College, Nanchong, 637000, China
| | - Li-Juan Peng
- School of Basic medical science, North Sichuan Medical College, Nanchong, 637000, China
| | - Jian Yang
- School of Basic medical science, North Sichuan Medical College, Nanchong, 637000, China.
| | - Yu-Hua Li
- Department of Arbovirus Vaccine, National Institutes for Food and Drug Control, Beijing, 100050, China.
| |
Collapse
|
4
|
Helmová R, Hönig V, Tykalová H, Palus M, Bell-Sakyi L, Grubhoffer L. Tick-Borne Encephalitis Virus Adaptation in Different Host Environments and Existence of Quasispecies. Viruses 2020; 12:v12080902. [PMID: 32824843 PMCID: PMC7472235 DOI: 10.3390/v12080902] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 12/11/2022] Open
Abstract
A highly virulent strain (Hypr) of tick-borne encephalitis virus (TBEV) was serially subcultured in the mammalian porcine kidney stable (PS) and Ixodes ricinus tick (IRE/CTVM19) cell lines, producing three viral variants. These variants exhibited distinct plaque sizes and virulence in a mouse model. Comparing the full-genome sequences of all variants, several nucleotide changes were identified in different genomic regions. Furthermore, different sequential variants were revealed to co-exist within one sample as quasispecies. Interestingly, the above-mentioned nucleotide changes found within the whole genome sequences of the new variants were present alongside the nucleotide sequence of the parental strain, which was represented as a minority quasispecies. These observations further imply that TBEV exists as a heterogeneous population that contains virus variants pre-adapted to reproduction in different environments, probably enabling virus survival in ticks and mammals.
Collapse
Affiliation(s)
- Renata Helmová
- Faculty of Science, University of South Bohemia in České Budějovice, 37005 České Budějovice, Czech Republic; (R.H.); (H.T.); (L.G.)
| | - Václav Hönig
- Faculty of Science, University of South Bohemia in České Budějovice, 37005 České Budějovice, Czech Republic; (R.H.); (H.T.); (L.G.)
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic;
- Department of Virology, Veterinary Research Institute, 62100 Brno, Czech Republic
- Correspondence: ; Tel.: +420-387-775-463
| | - Hana Tykalová
- Faculty of Science, University of South Bohemia in České Budějovice, 37005 České Budějovice, Czech Republic; (R.H.); (H.T.); (L.G.)
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic;
| | - Martin Palus
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic;
- Department of Virology, Veterinary Research Institute, 62100 Brno, Czech Republic
| | - Lesley Bell-Sakyi
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK;
| | - Libor Grubhoffer
- Faculty of Science, University of South Bohemia in České Budějovice, 37005 České Budějovice, Czech Republic; (R.H.); (H.T.); (L.G.)
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic;
| |
Collapse
|
5
|
Huang J, Shen H, Wang Z, Huang S, Li Q, Zhou Q, Qin J, Xie Q, Chen F. Attenuation of duck Tembusu virus ZJSBL01 strain following serial passage in BHK-21 cells supplied with 5-Fluorouracil. Virus Res 2019; 273:197739. [PMID: 31493438 DOI: 10.1016/j.virusres.2019.197739] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/03/2019] [Accepted: 09/03/2019] [Indexed: 01/13/2023]
Abstract
Duck Tembusu virus (DTMUV) is a new pathogen that produces an acute and potent disease in ducks which has caused serious economic losses in China. In this study, a virulent strain of DTMUV, designated as ZJSBL01, was attenuated by serial passages in BHK-21 cells supplied with 5-Fluorouracil (5-FU) for 50 passages to induce mutation and attenuation. Growth kinetics of different passages of ZJSBL01 strain in BHK-21 cells show that these viruses have similar replication characteristics. The virus was highly attenuated after 40 passages in BHK-21 cells supplied with 5-FU, based on mortality, morbidity, and viral load in inoculated Sheldrake ducklings. In addition, all of the ducklings immunized with ZJSBL01-P40, the virus obtained at passage 40 of ZJSBL01, showed seroconversion on day 14 post inoculation. Moreover, P40 did not cause clinical symptom for layding ducks. Immunization with ZJSBL01-P40 could provide effective protection against the virulent parental ZJSBL01 strain. Seventeen amino acid substitutions were observed in the polyprotein of ZJSBL01-P40 compared with parental ZJSBL01. These results indicate that ZJSBL01-P40 may be a live vaccine candidate for prevention of DTMUV-disease.
Collapse
Affiliation(s)
- Jianfei Huang
- College of Animal Science, South China Agricultural University & Guangdong Provincial Key Laboratory of Animal Health Aquaculture and Environment al Control, Ministry of Agriculture, Guangzhou 510642, PR China; Wen's Foodstuff Group Co. Ltd, Guangdong Enterprise Key Laboratory for Animal Health and Environmental Control, Yunfu 527439, China
| | - Hanqin Shen
- College of Animal Science, South China Agricultural University & Guangdong Provincial Key Laboratory of Animal Health Aquaculture and Environment al Control, Ministry of Agriculture, Guangzhou 510642, PR China; Wen's Foodstuff Group Co. Ltd, Guangdong Enterprise Key Laboratory for Animal Health and Environmental Control, Yunfu 527439, China
| | - Zhanxin Wang
- Wen's Foodstuff Group Co. Ltd, Guangdong Enterprise Key Laboratory for Animal Health and Environmental Control, Yunfu 527439, China
| | - Songjian Huang
- Wen's Foodstuff Group Co. Ltd, Guangdong Enterprise Key Laboratory for Animal Health and Environmental Control, Yunfu 527439, China
| | - Qunhui Li
- Wen's Foodstuff Group Co. Ltd, Guangdong Enterprise Key Laboratory for Animal Health and Environmental Control, Yunfu 527439, China
| | - Qingfeng Zhou
- Wen's Foodstuff Group Co. Ltd, Guangdong Enterprise Key Laboratory for Animal Health and Environmental Control, Yunfu 527439, China
| | - Jianping Qin
- Wen's Foodstuff Group Co. Ltd, Guangdong Enterprise Key Laboratory for Animal Health and Environmental Control, Yunfu 527439, China
| | - Qingmei Xie
- College of Animal Science, South China Agricultural University & Guangdong Provincial Key Laboratory of Animal Health Aquaculture and Environment al Control, Ministry of Agriculture, Guangzhou 510642, PR China
| | - Feng Chen
- College of Animal Science, South China Agricultural University & Guangdong Provincial Key Laboratory of Animal Health Aquaculture and Environment al Control, Ministry of Agriculture, Guangzhou 510642, PR China; Wen's Foodstuff Group Co. Ltd, Guangdong Enterprise Key Laboratory for Animal Health and Environmental Control, Yunfu 527439, China.
| |
Collapse
|
6
|
Chimeric Japanese Encephalitis Virus SA14/SA14-14-2 Was Virulence Attenuated and Protected the Challenge of Wild-Type Strain SA14. CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY 2019; 2019:9179308. [PMID: 30944684 PMCID: PMC6421771 DOI: 10.1155/2019/9179308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 12/05/2018] [Accepted: 01/10/2019] [Indexed: 12/28/2022]
Abstract
The attenuated Japanese encephalitis virus (JEV) live vaccine SA14-14-2 prepared from wild-type (WT) strain SA14 was licensed to prevent Japanese encephalitis (JE) in 1989 in China. Many studies showed that the premembrane (prM) and envelope (E) protein were the crucial determinant of virulence and immunogenicity of JEV. So we are interested in whether the substitution of prM/E of JEV WT SA14 with those of vaccine strain SA14-14-2 could decrease neurovirulence and prevent the challenge of JEV WT SA14. Molecular clone technique was used to replace the prM/E gene of JEV WT strain SA14 with those of vaccine strain SA14-14-2 to construct the infectious clone of chimeric virus (designated JEV SA14/SA14-14-2), the chimeric virus recovered from BHK21 cells upon electrotransfection of RNA into BHK21 cells. The results showed that the recovered chimeric virus was highly attenuated in mice, and a single immunization elicited strong protective immunity in a dose-dependent manner. This study increases our understanding of the molecular mechanisms of neurovirulence attenuation and immunogenicity of JEV.
Collapse
|
7
|
He D, Zhang X, Chen L, Tang Y, Diao Y. Development of an attenuated live vaccine candidate of duck Tembusu virus strain. Vet Microbiol 2019; 231:218-225. [PMID: 30955813 DOI: 10.1016/j.vetmic.2019.03.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 02/25/2019] [Accepted: 03/20/2019] [Indexed: 01/08/2023]
Abstract
Infection with duck Tembusu virus (DTMUV) can cause large economic losses to the duck-rearing industry in China. In this study, we isolated a virulent strain of DTMUV (SDS) from sparrows near a duck farm and attenuated it via serially passaging (alternately for 100 passages) in specific pathogen-free chicken and duck embryos. We attenuated the virus after the 60th passage (SDS-60), based on the production of embryos that were free of visible lesions and still alive. The 70th adapted strain (SDS-70), obtained with a virus titer of 10-2.46 EID50 was chosen to be the live attenuated vaccine. After immunizing ducklings with the SDS-70 strain, they obtained 100% protection against infection by the SDS-10 virulent strain. Our data demonstrate that the vaccine can protect ducks from becoming infected with TMUV. Our study also shows that this newly developed attenuated vaccine candidate provides excellent immunogenicity, is safe, and has the potential to control DTMUV infections in ducks.
Collapse
Affiliation(s)
- Dalin He
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, China
| | - Xin Zhang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, China
| | - Lin Chen
- Animal Health Inspection of DaLian Free Trade Zone, Dalian, Liaoning, 116100, China
| | - Yi Tang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, China.
| | - Youxiang Diao
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, China.
| |
Collapse
|
8
|
Liu X, Zhao D, Jia L, Xu H, Na R, Ge Y, Liu S, Yu Y, Li Y. Genetic and neuroattenuation phenotypic characteristics and their stabilities of SA14-14-2 vaccine seed virus. Vaccine 2018; 36:4650-4656. [PMID: 29954631 DOI: 10.1016/j.vaccine.2018.06.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/11/2018] [Accepted: 06/16/2018] [Indexed: 02/05/2023]
Abstract
Japanese encephalitis (JE) live attenuated vaccine SA14-14-2 is the most widely used JE vaccine in the world. Large-scale clinical trials have demonstrated satisfactory safety and efficacy profiles. The establishment of genetic and attenuated neurovirulence characteristics and their stabilities of SA14-14-2 virus are important in relation to vaccine safety in humans. Therefore, several researchers have studied and analyzed the full-length gene sequences of the SA14-14-2 virus strain. However, sequencing results have shown a significant difference. Here, we further studied the full-length sequence of three class seed virus banks of the vaccine as well as two vaccine viruses with different passages in primary hamster kidney cells, and compared them with our original stored SA14 parent virus (low passage in mouse brain). The full-length gene sequence determined in this study indicates there were 57 nucleotide and 25 amino acid substitutions of the SA14-14-2 strain compared to its parental SA14 virus strain. The full-length sequences of the three class seed bank viruses and the vaccine virus PHKC8 were completely identical among them, but the working seed virus passaged in primary hamster kidney cells for 17 generations (PHKC17) had a single nucleotide change at the 5' NCR. Both KM and ICR mice tested by intracerebral (i.c.) or subcutaneous (s.c.) routes with the three class seed viruses and vaccine viruses with ≥5.7 lgpfu/mL remained healthy, but all the mice inoculated with the SA14 parental virus strain died as early as day 5 post-inoculation. The present study provided new information on the full-length gene sequence and attenuated neurovirulence of SA14-14-2. They can be used as a reference sequence for vaccine quality control and surveillance of neurovirulence reversion following vaccination. Moreover, the present results further demonstrated the high genetic and phenotypic stabilities of the SA14-14-2 virus, suggesting the neurovirulence reversion of the vaccine strain will be highly unlikely.
Collapse
MESH Headings
- Amino Acid Substitution
- Animals
- Cells, Cultured
- Cricetinae
- DNA Mutational Analysis
- Drug Stability
- Encephalitis Virus, Japanese/genetics
- Encephalitis Virus, Japanese/growth & development
- Encephalitis Virus, Japanese/pathogenicity
- Genetic Variation
- Genomic Instability
- Japanese Encephalitis Vaccines/adverse effects
- Japanese Encephalitis Vaccines/genetics
- Japanese Encephalitis Vaccines/immunology
- Japanese Encephalitis Vaccines/isolation & purification
- Mice, Inbred ICR
- Point Mutation
- Sequence Analysis, DNA
- Serial Passage
- Survival Analysis
- Vaccines, Attenuated/adverse effects
- Vaccines, Attenuated/genetics
- Vaccines, Attenuated/immunology
- Vaccines, Attenuated/isolation & purification
- Virulence
- Virus Cultivation
- Whole Genome Sequencing
Collapse
Affiliation(s)
- Xinyu Liu
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Danhua Zhao
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Lili Jia
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Hongshan Xu
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Rui Na
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Yonghong Ge
- Chengdu Institutes for Biological Products, Chengdu 610023, China
| | - Shaoxiang Liu
- Chengdu Institutes for Biological Products, Chengdu 610023, China
| | - Yongxin Yu
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing 102629, China.
| | - Yuhua Li
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing 102629, China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China.
| |
Collapse
|
9
|
Banerjee S, Sen Gupta PS, Bandyopadhyay AK. Insight into SNPs and epitopes of E protein of newly emerged genotype-I isolates of JEV from Midnapur, West Bengal, India. BMC Immunol 2017; 18:13. [PMID: 28264652 PMCID: PMC5339996 DOI: 10.1186/s12865-017-0197-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 02/16/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Japanese encephalitis virus (JEV) is a mosquito-borne flavivirus that causes Japanese Encephalitis (JE) and Acute Encephalitis Syndrome (AES) in humans. Genotype-I (as co-circulating cases with Genotype-III) was isolated in 2010 (JEV28, JEV21) and then in 2011 (JEV45) from Midnapur district, West Bengal (WB) for the first time from clinical patients who were previously been vaccinated with live attenuated SA14-14-2 strain. We apply bioinformatics and immunoinformatics on sequence and structure of E protein for analysis of crucial substitutions that might cause the genotypic transition, affecting protein-function and altering specificity of epitopes. RESULTS Although frequency of substitutions in E glycoprotein of JEV28, JEV21 and JEV45 isolates vary, its homologous patterns remain exactly similar as earlier Japan isolate (Ishikawa). Sequence and 3D model-structure based analyses of E protein show that only four of all substitutions are critical for genotype-I specific effect of which N103K is common among all isolates indicating its role in the transition of genotype-III to genotype-I. Predicted B-cell and T-cell epitopes are seen to harbor these critical substitutions that affect overall conformational stability of the protein. These epitopes were subjected to conservation analyses using a large set of the protein from Asian continent. CONCLUSIONS The study identifies crucial substitutions that contribute to the emergence of genotype-I. Predicted epitopes harboring these substitutions may alter specificity which might be the reason of reported failure of vaccine. Conservation analysis of these epitopes would be useful for design of genotype-I specific vaccine.
Collapse
Affiliation(s)
- Shyamashree Banerjee
- Department of Biotechnology, The University of Burdwan, Burdwan, West Bengal 713104 India
| | - Parth Sarthi Sen Gupta
- Department of Biotechnology, The University of Burdwan, Burdwan, West Bengal 713104 India
| | | |
Collapse
|
10
|
Hegde NR, Gore MM. Japanese encephalitis vaccines: Immunogenicity, protective efficacy, effectiveness, and impact on the burden of disease. Hum Vaccin Immunother 2017; 13:1-18. [PMID: 28301270 DOI: 10.1080/21645515.2017.1285472] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Japanese encephalitis (JE) is a serious public health concern in most of Asia. The disease is caused by JE virus (JEV), a flavivirus transmitted by Culex mosquitoes. Several vaccines have been developed to control JE in endemic areas as well as to protect travelers and military personnel who visit or are commissioned from non-endemic to endemic areas. The vaccines include inactivated vaccines produced in mouse brain or cell cultures, live attenuated vaccines, and a chimeric vaccine based on the live attenuated yellow fever virus 17D vaccine strain. All the marketed vaccines belong to the JEV genotype III, but have been shown to be efficacious against other genotypes and strains, with varying degrees of cross-neutralization, albeit at levels deemed to be protective. The protective responses have been shown to last three or more years, depending on the type of vaccine and the number of doses. This review presents a brief account of the different JE vaccines, their immunogenicity and protective ability, and the impact of JE vaccines in reducing the burden of disease in endemic countries.
Collapse
Affiliation(s)
- Nagendra R Hegde
- a Ella Foundation, Genome Valley , Turkapally, Shameerpet Mandal , Hyderabad , India
| | - Milind M Gore
- b National Institute of Virology, Indian Council of Medical Research , Pune , India
| |
Collapse
|
11
|
Lu X, Wang L, Bai D, Li Y. Establishment of national reference for bunyavirus nucleic acid detection kits for diagnosis of SFTS virus. Virol J 2017; 14:32. [PMID: 28202038 PMCID: PMC5312432 DOI: 10.1186/s12985-017-0682-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/12/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Severe fever with thrombocytopenia syndrome (SFTS) caused by SFTS virus (SFTSV) usually have a high fatality. At present no effective therapy or vaccine are available, so early diagnosis of SFTS is crucial to prevent and control SFTSV infection. This study aimed to establish a national reference for these diagnostic kits of SFTSV genome and make the diagnosis of the disease effective. METHODS Six SFTSV strains isolated from different regions, and five relative viruses with similar clinical manifestations were selected as positive and negative references and assessed using real time quantitative PCR (q-PCR) using specific primers and probe and two commercial kits. The stability of the references was also assessed at 37 °C, room temperature or -70 °C for 8 days, 14 days or 8 months respectively, or following several cycles of freezing-thawing. Collaborative calibration of the references was performed by three labs. RESULTS The references indicated good accuracy and specificity. The lowest detection limit was 102 U/mL. The accuracy was coefficient of variation less than 5%. The references were highly stable at high temperatures and after long storing and freezing-thawing treatment. CONCLUSIONS We successfully established a national reference with good accuracy, high specificity, sensitivity and stability, which can be applied for quality control of commercial SFTSV diagnostic kits, thus preventing and controlling SFTS. TRIAL REGISTRATION The references have been finished and it was retrospectively registered in the following article.
Collapse
Affiliation(s)
- Xu Lu
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Beijing, 100050, People's Republic of China
| | - Ling Wang
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Beijing, 100050, People's Republic of China
| | - Dongting Bai
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Beijing, 100050, People's Republic of China
| | - Yuhua Li
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Beijing, 100050, People's Republic of China.
| |
Collapse
|
12
|
Envelope Protein Mutations L107F and E138K Are Important for Neurovirulence Attenuation for Japanese Encephalitis Virus SA14-14-2 Strain. Viruses 2017; 9:v9010020. [PMID: 28117725 PMCID: PMC5294989 DOI: 10.3390/v9010020] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/01/2017] [Accepted: 01/16/2017] [Indexed: 02/05/2023] Open
Abstract
The attenuated Japanese encephalitis virus (JEV) strain SA14-14-2 has been successfully utilized to prevent JEV infection; however, the attenuation determinants have not been fully elucidated. The envelope (E) protein of the attenuated JEV SA14-14-2 strain differs from that of the virulent parental SA14 strain at eight amino acid positions (E107, E138, E176, E177, E264, E279, E315, and E439). Here, we investigated the SA14-14-2-attenuation determinants by mutating E107, E138, E176, E177, and E279 in SA14-14-2 to their status in the parental virulent strain and tested the replication capacity, neurovirulence, neuroinvasiveness, and mortality associated with the mutated viruses in mice, as compared with those of JEV SA14-14-2 and SA14. Our findings indicated that revertant mutations at the E138 or E107 position significantly increased SA14-14-2 virulence, whereas other revertant mutations exhibited significant increases in neurovirulence only when combined with E138, E107, and other mutations. Revertant mutations at all eight positions in the E protein resulted in the highest degree of SA14-14-2 virulence, although this was still lower than that observed in SA14. These results demonstrated the critical role of the viral E protein in controlling JEV virulence and identified the amino acids at the E107 and E138 positions as the key determinants of SA14-14-2 neurovirulence.
Collapse
|
13
|
Yun SI, Song BH, Polejaeva IA, Davies CJ, White KL, Lee YM. Comparison of the live-attenuated Japanese encephalitis vaccine SA14-14-2 strain with its pre-attenuated virulent parent SA14 strain: similarities and differences in vitro and in vivo. J Gen Virol 2016; 97:2575-2591. [PMID: 27498826 DOI: 10.1099/jgv.0.000574] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Japanese encephalitis virus (JEV) is the main cause of acute viral encephalitis, primarily affecting children and young adults in the Asia-Pacific region. JEV is a vaccine-preventable pathogen, with four types of JE vaccine licensed in different regions of the world. To date, the most common JEV strain used in vaccine development and production is SA14-14-2, an attenuated strain derived from its wild-type parental strain SA14. In this study, we directly compared the phenotypic and genotypic characteristics of SA14 and SA14-14-2 to determine the biological and genetic properties associated with their differential virulence. In susceptible BHK-21 cells, SA14-14-2 grew slightly more slowly and formed smaller plaques than SA14, but unlike SA14, it showed almost no expression of the viral protein NS1', the product of a conserved predicted RNA pseudoknot-mediated ribosomal frameshift. In weanling ICR mice, SA14-14-2 was highly attenuated in terms of both neuroinvasiveness and neurovirulence, with its median lethal doses invariably over five logs higher than those of SA14 when inoculated intramuscularly and intracerebrally. Interestingly, the neurovirulence of SA14-14-2 was dependent on mouse age, with the 1- to 7-day-old mice being highly susceptible and the 14- to 21-day-old mice becoming resistant to intracerebral inoculation. At the genome level, SA14-14-2 differed from SA14 by 57 nucleotides, including one silent G-to-A substitution at position 3599 within the predicted RNA pseudoknot for NS1' synthesis; of the 57 differences, 25 resulted in amino acid substitutions. Our data pave the way for the development of new genetically modified JE vaccines.
Collapse
Affiliation(s)
- Sang-Im Yun
- Department of Animal, Dairy, and Veterinary Sciences, Utah Science Technology and Research, College of Agriculture and Applied Sciences, Utah State University, 4815 Old Main Hill, Logan, UT 84322, USA
| | - Byung-Hak Song
- Department of Animal, Dairy, and Veterinary Sciences, Utah Science Technology and Research, College of Agriculture and Applied Sciences, Utah State University, 4815 Old Main Hill, Logan, UT 84322, USA
| | - Irina A Polejaeva
- Department of Animal, Dairy, and Veterinary Sciences, Utah Science Technology and Research, College of Agriculture and Applied Sciences, Utah State University, 4815 Old Main Hill, Logan, UT 84322, USA
| | - Christopher J Davies
- Department of Animal, Dairy, and Veterinary Sciences, Utah Science Technology and Research, College of Agriculture and Applied Sciences, Utah State University, 4815 Old Main Hill, Logan, UT 84322, USA
| | - Kenneth L White
- Department of Animal, Dairy, and Veterinary Sciences, Utah Science Technology and Research, College of Agriculture and Applied Sciences, Utah State University, 4815 Old Main Hill, Logan, UT 84322, USA
| | - Young-Min Lee
- Department of Animal, Dairy, and Veterinary Sciences, Utah Science Technology and Research, College of Agriculture and Applied Sciences, Utah State University, 4815 Old Main Hill, Logan, UT 84322, USA
| |
Collapse
|
14
|
Genetic Determinants of Japanese Encephalitis Virus Vaccine Strain SA14-14-2 That Govern Attenuation of Virulence in Mice. J Virol 2015; 89:6328-37. [PMID: 25855730 DOI: 10.1128/jvi.00219-15] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 03/30/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The safety and efficacy of the live-attenuated Japanese encephalitis virus (JEV) SA14-14-2 vaccine are attributed to mutations that accumulated in the viral genome during its derivation. However, little is known about the contribution that is made by most of these mutations to virulence attenuation and vaccine immunogenicity. Here, we generated recombinant JEV (rJEV) strains containing JEV SA14-14-2 vaccine-specific mutations that are located in the untranslated regions (UTRs) and seven protein genes or are introduced from PCR-amplified regions of the JEV SA14-14-2 genome. The resulting mutant viruses were evaluated in tissue culture and in mice. The authentic JEV SA14-14-2 (E) protein, with amino acid substitutions L107F, E138K, I176V, T177A, E244G, Q264H, K279M, A315V, S366A, and K439R relative to the wild-type rJEV clone, was essential and sufficient for complete attenuation of neurovirulence. Individually, the nucleotide substitution T39A in the 5' UTR (5'-UTR-T39A), the capsid (C) protein amino acid substitution L66S (C-L66S), and the complete NS1/2A genome region containing 10 mutations each significantly reduced virus neuroinvasion but not neurovirulence. The levels of peripheral virulence attenuation imposed by the 5'-UTR-T39A and C-L66S mutations, individually, were somewhat mitigated in combination with other vaccine strain-specific mutations, which might be compensatory, and together did not affect immunogenicity. However, a marked reduction in immunogenicity was observed with the addition of the NS1/2A and NS5 vaccine virus genome regions. These results suggest that a second-generation recombinant vaccine can be rationally engineered to maximize levels of immunogenicity without compromising safety. IMPORTANCE The live-attenuated JEV SA14-14-2 vaccine has been vital for controlling the incidence of disease caused by JEV, particularly in rural areas of Asia where it is endemic. The vaccine was developed >25 years ago by passaging wild-type JEV strain SA14 in tissue cultures and rodents, with intermittent tissue culture plaque purifications, to produce a virus clone that had adequate levels of attenuation and immunogenicity. The vaccine and parent virus sequences were later compared, and mutations were identified throughout the vaccine virus genome, but their contributions to attenuation were never fully elucidated. Here, using reverse genetics, we comprehensively defined the impact of JEV SA14-14-2 mutations on attenuation of virulence and immunogenicity in mice. These results are relevant for quality control of new lots of the current live-attenuated vaccine and provide insight for the rational design of second-generation, live-attenuated, recombinant JEV vaccine candidates.
Collapse
|
15
|
Gromowski GD, Firestone CY, Bustos-Arriaga J, Whitehead SS. Genetic and phenotypic properties of vero cell-adapted Japanese encephalitis virus SA14-14-2 vaccine strain variants and a recombinant clone, which demonstrates attenuation and immunogenicity in mice. Am J Trop Med Hyg 2014; 92:98-107. [PMID: 25311701 DOI: 10.4269/ajtmh.14-0427] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The live-attenuated Japanese encephalitis virus (JEV) SA14-14-2 vaccine, produced in primary hamster kidney cells, is safe and effective. Past attempts to adapt this virus to replicate in cells that are more favorable for vaccine production resulted in mutations that significantly reduced immunogenicity. In this study, 10 genetically distinct Vero cell-adapted JEV SA14-14-2 variants were isolated and a recombinant wild-type JEV clone, modified to contain the JEV SA14-14-2 polyprotein amino acid sequence, was recovered in Vero cells. A single capsid protein mutation (S66L) was important for Vero cell-adaptation. Mutations were also identified that modulated virus sensitivity to type I interferon-stimulation in Vero cells. A subset of JEV SA14-14-2 variants and the recombinant clone were evaluated in vivo and exhibited levels of attenuation that varied significantly in suckling mice, but were avirulent and highly immunogenic in weanling mice and are promising candidates for the development of a second-generation, recombinant vaccine.
Collapse
Affiliation(s)
- Gregory D Gromowski
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Cai-Yen Firestone
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - José Bustos-Arriaga
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Stephen S Whitehead
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
16
|
Yun SI, Song BH, Kim JK, Yun GN, Lee EY, Li L, Kuhn RJ, Rossmann MG, Morrey JD, Lee YM. A molecularly cloned, live-attenuated japanese encephalitis vaccine SA14-14-2 virus: a conserved single amino acid in the ij Hairpin of the Viral E glycoprotein determines neurovirulence in mice. PLoS Pathog 2014; 10:e1004290. [PMID: 25077483 PMCID: PMC4117607 DOI: 10.1371/journal.ppat.1004290] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 06/18/2014] [Indexed: 01/12/2023] Open
Abstract
Japanese encephalitis virus (JEV), a mosquito-borne flavivirus that causes fatal neurological disease in humans, is one of the most important emerging pathogens of public health significance. JEV represents the JE serogroup, which also includes West Nile, Murray Valley encephalitis, and St. Louis encephalitis viruses. Within this serogroup, JEV is a vaccine-preventable pathogen, but the molecular basis of its neurovirulence remains unknown. Here, we constructed an infectious cDNA of the most widely used live-attenuated JE vaccine, SA14-14-2, and rescued from the cDNA a molecularly cloned virus, SA14-14-2MCV, which displayed in vitro growth properties and in vivo attenuation phenotypes identical to those of its parent, SA14-14-2. To elucidate the molecular mechanism of neurovirulence, we selected three independent, highly neurovirulent variants (LD50, <1.5 PFU) from SA14-14-2MCV (LD50, >1.5×105 PFU) by serial intracerebral passage in mice. Complete genome sequence comparison revealed a total of eight point mutations, with a common single G1708→A substitution replacing a Gly with Glu at position 244 of the viral E glycoprotein. Using our infectious SA14-14-2 cDNA technology, we showed that this single Gly-to-Glu change at E-244 is sufficient to confer lethal neurovirulence in mice, including rapid development of viral spread and tissue inflammation in the central nervous system. Comprehensive site-directed mutagenesis of E-244, coupled with homology-based structure modeling, demonstrated a novel essential regulatory role in JEV neurovirulence for E-244, within the ij hairpin of the E dimerization domain. In both mouse and human neuronal cells, we further showed that the E-244 mutation altered JEV infectivity in vitro, in direct correlation with the level of neurovirulence in vivo, but had no significant impact on viral RNA replication. Our results provide a crucial step toward developing novel therapeutic and preventive strategies against JEV and possibly other encephalitic flaviviruses.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Blotting, Northern
- Blotting, Western
- Cloning, Molecular
- Encephalitis Virus, Japanese/genetics
- Encephalitis Virus, Japanese/immunology
- Encephalitis, Japanese/genetics
- Encephalitis, Japanese/immunology
- Encephalitis, Japanese/virology
- Female
- Flow Cytometry
- Humans
- Immunoenzyme Techniques
- Japanese Encephalitis Vaccines/genetics
- Japanese Encephalitis Vaccines/immunology
- Membrane Glycoproteins/chemistry
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Mice
- Mice, Inbred ICR
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Mutation/genetics
- Nervous System/virology
- Protein Conformation
- Sequence Homology, Amino Acid
- Vaccines, Attenuated/genetics
- Vaccines, Attenuated/immunology
- Viral Envelope Proteins/chemistry
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/metabolism
- Virulence/genetics
- Virus Replication
Collapse
Affiliation(s)
- Sang-Im Yun
- Department of Animal, Dairy, and Veterinary Sciences; Utah Science Technology and Research, College of Agriculture and Applied Sciences, Utah State University, Logan, Utah, United States of America
| | - Byung-Hak Song
- Department of Animal, Dairy, and Veterinary Sciences; Utah Science Technology and Research, College of Agriculture and Applied Sciences, Utah State University, Logan, Utah, United States of America
| | - Jin-Kyoung Kim
- Department of Animal, Dairy, and Veterinary Sciences; Utah Science Technology and Research, College of Agriculture and Applied Sciences, Utah State University, Logan, Utah, United States of America
| | - Gil-Nam Yun
- Department of Microbiology, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Eun-Young Lee
- Department of Anatomy, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Long Li
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Richard J. Kuhn
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Michael G. Rossmann
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - John D. Morrey
- Department of Animal, Dairy, and Veterinary Sciences; Utah Science Technology and Research, College of Agriculture and Applied Sciences, Utah State University, Logan, Utah, United States of America
| | - Young-Min Lee
- Department of Animal, Dairy, and Veterinary Sciences; Utah Science Technology and Research, College of Agriculture and Applied Sciences, Utah State University, Logan, Utah, United States of America
| |
Collapse
|
17
|
Li XD, Li XF, Ye HQ, Deng CL, Ye Q, Shan C, Shang BD, Xu LL, Li SH, Cao SB, Yuan ZM, Shi PY, Qin CF, Zhang B. Recovery of a chemically synthesized Japanese encephalitis virus reveals two critical adaptive mutations in NS2B and NS4A. J Gen Virol 2013; 95:806-815. [PMID: 24362961 DOI: 10.1099/vir.0.061838-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A full-length genome infectious clone is a powerful tool for functional assays in virology. In this study, using a chemical synthesized complete genome of Japanese encephalitis virus (JEV) strain SA14 (GenBank accession no. U14163), we constructed a full-length genomic cDNA clone of JEV. The recovered virus from the cDNA clone replicated poorly in baby hamster kidney (BHK-21) cells and in suckling mice brain. Following serial passage in BHK-21 cells, adaptive mutations within the NS2B and NS4A proteins were recovered in the passaged viruses leading to viruses with a large-plaque phenotype. Mutagenesis analysis, using a genome-length RNA and a replicon of JEV, demonstrated that the adaptive mutations restored replication to different degrees, and the restoration efficiencies were in the order: NS2B-T102M<NS4A-R79K<NS2B-T102M+NS4A-R79K. An in vivo virulence assay in mice showed that the recombinant virus containing double mutations showed similar virulence to the WT SA14 (GenBank accession no. M55506). This study reports the first chemically synthesized JEV. A reverse genetics assay demonstrated that substitutions of NS2B-T102M and NS4A-R79K altered JEV replication.
Collapse
Affiliation(s)
- Xiao-Dan Li
- University of Chinese Academy of Sciences, Beijing 100049, PR China.,Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Xiao-Feng Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Han-Qing Ye
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Cheng-Lin Deng
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China.,Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Qing Ye
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Chao Shan
- University of Chinese Academy of Sciences, Beijing 100049, PR China.,Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Bao-Di Shang
- University of Chinese Academy of Sciences, Beijing 100049, PR China.,Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Lin-Lin Xu
- University of Chinese Academy of Sciences, Beijing 100049, PR China.,Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Shi-Hua Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Sheng-Bo Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Zhi-Ming Yuan
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China.,Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Pei-Yong Shi
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA
| | - Cheng-Feng Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Bo Zhang
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China.,Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| |
Collapse
|
18
|
Development of a small animal peripheral challenge model of Japanese encephalitis virus using interferon deficient AG129 mice and the SA14-14-2 vaccine virus strain. Vaccine 2013; 32:258-64. [PMID: 24252694 DOI: 10.1016/j.vaccine.2013.11.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 10/28/2013] [Accepted: 11/06/2013] [Indexed: 12/25/2022]
Abstract
Japanese encephalitis virus (JEV) is the most common cause of viral encephalitis in Asia, and it is increasingly a global public health concern due to its recent geographic expansion. While commercial vaccines are available and used in some endemic countries, JEV continues to be a public health problem, with 50,000 cases reported annually. Research with virulent JEV in mouse models to develop new methods of prevention and treatment is restricted to BSL-3 containment facilities, confining these studies to investigators with access to these facilities. We have developed an adult small animal peripheral challenge model using interferon-deficient AG129 mice and the JEV live-attenuated vaccine SA14-14-2, thus requiring only BSL-2 containment. A low dose of virus (10PFU/0.1ml) induced 100% morbidity in infected mice. Increased body temperatures measured by implantable temperature transponders correlated with an increase in infectious virus and viral RNA in serum, spleen and brain as well as an increase in pro-inflammatory markers measured by a 58-biomarker multi-analyte profile (MAP) constructed during the course of infection. In the future, the MAP measurements can be used as a baseline for comparison in order to better assess the inhibition of disease progression by other prophylactic and therapeutic agents. The use of the AG129/JEV SA14-14-2 animal model makes vaccine and therapeutic studies feasible for laboratories with limited biocontainment facilities.
Collapse
|
19
|
Wu Y, Zhang F, Ma W, Song J, Huang Q, Zhang H. A Plasmid Encoding Japanese Encephalitis Virus PrM and E Proteins Elicits Protective Immunity in Suckling Mice. Microbiol Immunol 2013; 48:585-90. [PMID: 15322338 DOI: 10.1111/j.1348-0421.2004.tb03555.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A plasmid encoding Japanese encephalitis virus (JEV) prM and E proteins was constructed, and its efficacy as a candidate vaccine against JEV was evaluated in suckling mice. Groups of 10 BALB/c mice (5-7 days old) were immunized twice via muscular injection with this DNA vaccine, an empty vector or PBS at an interval of 3 weeks, and were challenged with a lethal dose of JEV 3 weeks after the second inoculation. Both cellular and humoral immune responses were examined before the challenge. Two animals from each group were sacrificed to detect the JEV-specific cytotoxic T lymphocyte activity. JEV-specific lactate dehydrogenase release in the DNA vaccine, empty vector and PBS groups was 37.5%, 18% and 8.5% respectively. JEV-specific antibody was detected in 8 of 10 animals in DNA vaccine group with a geometrical mean titer of 1: 28.3. The pooled serum from the same group also showed a neutralizing activity. Six of 8 mice in the DNA vaccine group survived the challenge, with a protection rate of 75%, but all the mice died in the two control groups. These results show that this JEV prM and E DNA vaccine is immunogenic and protective against JEV infection in the mouse model.
Collapse
MESH Headings
- Animals
- Animals, Suckling
- Antibodies, Viral/blood
- Encephalitis Virus, Japanese/genetics
- Encephalitis Virus, Japanese/immunology
- Encephalitis, Japanese/immunology
- Encephalitis, Japanese/prevention & control
- Immunization
- Japanese Encephalitis Vaccines/administration & dosage
- Japanese Encephalitis Vaccines/genetics
- Japanese Encephalitis Vaccines/immunology
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/immunology
- Mice
- Mice, Inbred BALB C
- Plasmids/genetics
- Plasmids/immunology
- T-Lymphocytes, Cytotoxic/immunology
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/immunology
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/immunology
Collapse
Affiliation(s)
- Yushui Wu
- Department of Microbiology, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | | | | | | | | | | |
Collapse
|
20
|
Liu S, Li X, Chen Z, Chen Y, Zhang Q, Liao Y, Zhou J, Ke X, Ma L, Xiao J, Wu Y, Chen Z, Zhou J, Zheng X, Li J, Chen Q. Comparison of genomic and amino acid sequences of eight Japanese encephalitis virus isolates from bats. Arch Virol 2013; 158:2543-52. [PMID: 23836395 PMCID: PMC7086626 DOI: 10.1007/s00705-013-1777-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 05/25/2013] [Indexed: 12/01/2022]
Abstract
We compared nucleotide and deduced amino acid sequences of eight Japanese encephalitis virus (JEV) isolates derived from bats in China. We also compared the bat JEV isolates with other JEV isolates available from GenBank to determine their genetic similarity. We found a high genetic homogeneity among the bat JEVs isolated in different geographical areas from various bat species at different time periods. All eight bat JEV isolates belonged to genotype III. The mean evolutionary rate of bat JEV isolates was lower than those of isolates of other origin, but this difference was not statistically significant. Based on these results, we presume that the bat JEV isolates might be evolutionarily conserved. The eight bat JEV isolates were phylogenetically similar to mosquito BN19 and human Liyujie isolates of JEV. These results indicate that bats might be involved in natural cycle of JEV.
Collapse
Affiliation(s)
- Shan Liu
- Department of Epidemiology, School of Public Health and Tropical Medicine, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
|
22
|
Yamaguchi Y, Nukui Y, Kotaki A, Sawabe K, Saijo M, Watanabe H, Kurane I, Takasaki T, Tajima S. Characterization of a serine-to-asparagine substitution at position 123 in the Japanese encephalitis virus E protein. J Gen Virol 2012; 94:90-96. [PMID: 23052392 DOI: 10.1099/vir.0.044925-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Amino acid position 123 in the E protein of Japanese encephalitis virus (JEV) determines viral growth properties and pathogenicity. The majority of JEV strains have a serine residue at this position (E(123S)); however, JEV with an asparagine residue (E(123N)) has also been isolated. To compare the growth properties and pathogenicity of E(123S) and E(123N) JEV, we produced recombinant JEV with a serine-to-asparagine substitution at position 123 (rJEV-Mie41-E(S123N)) in the E(123S)-type strain Mie/41/2002 background. The growth rate of rJEV-Mie41-E(S123N) was similar to that of Mie/41/2002 in mammalian and mosquito cell lines. Mouse challenge experiments showed that there was only a slight difference in neuroinvasiveness between the parent strain (Mie/41/2002) and rJEV-Mie41-E(S123N). Thus, our results indicate that the Ser-to-Asn substitution in the JEV E protein has weak impact on viral growth properties in vitro or on pathogenicity in vivo.
Collapse
Affiliation(s)
- Yukie Yamaguchi
- Department of Virology 1, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan.,Department of Pathology, Immunology and Microbiology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
| | - Yoko Nukui
- Department of Virology 1, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan.,Department of Infection Control and Prevention, University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo, Tokyo 113-8655, Japan
| | - Akira Kotaki
- Department of Virology 1, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan
| | - Kyoko Sawabe
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan
| | - Masayuki Saijo
- Department of Virology 1, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan
| | - Haruo Watanabe
- Department of Pathology, Immunology and Microbiology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan.,National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan
| | - Ichiro Kurane
- National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan
| | - Tomohiko Takasaki
- Department of Virology 1, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan
| | - Shigeru Tajima
- Department of Virology 1, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan
| |
Collapse
|
23
|
Song BH, Yun GN, Kim JK, Yun SI, Lee YM. Biological and genetic properties of SA₁₄-14-2, a live-attenuated Japanese encephalitis vaccine that is currently available for humans. J Microbiol 2012; 50:698-706. [PMID: 22923123 DOI: 10.1007/s12275-012-2336-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 07/13/2012] [Indexed: 11/29/2022]
Abstract
Japanese encephalitis virus (JEV), a mosquito-borne flavivirus, is a major cause of acute encephalitis, a disease of significance for global public health. In the absence of antiviral therapy to treat JEV infection, vaccination is the most effective method of preventing the disease. In JE-endemic areas, the most widely used vaccine to date is SA(14)-14-2, a live-attenuated virus derived from its virulent parent SA(14). In this study, we describe the biological properties of SA(14)-14-2, both in vitro and in vivo, and report the genetic characteristics of its genomic RNA. In BHK-21 (hamster kidney) cells, SA(14)-14-2 displayed a slight delay in plaque formation and growth kinetics when compared to a virulent JEV strain, CNU/LP2, with no decrease in maximum virus production. The delay in viral growth was also observed in two other cell lines, SH-SY5Y (human neuroblastoma) and C6/36 (mosquito larva), which are potentially relevant to JEV pathogenesis and transmission. In 3-week-old ICR mice, SA(14)-14-2 did not cause any symptoms or death after either intracerebral or peripheral inoculation with a maximum dose of up to 1.5×10(3) plaque-forming units (PFU) per mouse. The SA(14)-14-2 genome consisted of 10977 nucleotides, one nucleotide longer than all the previously reported genomes of SA(14)-14-2, SA(14) and two other SA(14)-derived attenuated viruses. This difference was due to an insertion of one G nucleotide at position 10701 in the 3 noncoding region. Also, we noted a significant number of nucleotide and/or amino acid substitutions throughout the genome of SA(14)-14-2, except for the prM protein-coding region, that differed from SA(14) and/or the other two attenuated viruses. Our results, together with others', provide a foundation not only for the study of JEV virulence but also for the development of new and improved vaccines for JEV.
Collapse
Affiliation(s)
- Byung-Hak Song
- Department of Microbiology, College of Medicine, Chungbuk National University, Cheongju 361-763, Republic of Korea
| | | | | | | | | |
Collapse
|
24
|
Ye Q, Li XF, Zhao H, Li SH, Deng YQ, Cao RY, Song KY, Wang HJ, Hua RH, Yu YX, Zhou X, Qin ED, Qin CF. A single nucleotide mutation in NS2A of Japanese encephalitis-live vaccine virus (SA14-14-2) ablates NS1' formation and contributes to attenuation. J Gen Virol 2012; 93:1959-1964. [PMID: 22739060 DOI: 10.1099/vir.0.043844-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Japanese encephalitis (JE) remains the leading cause of viral encephalitis in the Asia-Pacific region, and the live vaccine SA14-14-2 is currently recommended by WHO and widely used in Asian countries with a good safety and efficacy profile. In this study, we demonstrated that SA14-14-2 failed to produce NS1', the larger NS1-related protein, compared with its parental strain SA14 in various cells. Sequence analysis and secondary structure prediction identified a single silent mutation G66A in the NS2A-coding region of SA14-14-2 destabilized the conserved pseudoknot structure, which was associated with a -1 ribosomal frame shift event. Using reverse genetic technology and animal study, we provided solid evidence that this single silent mutation G66A in the NS2A gene abolished the production of NS1' in vitro and reduced neurovirulence and neuroinvasiveness in mice. These findings provide critical information in understanding the molecular mechanism of JE vaccine attenuation and is critical for JE vaccine quality control.
Collapse
Affiliation(s)
- Qing Ye
- State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, PR China
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Xiao-Feng Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, PR China
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Hui Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, PR China
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Shi-Hua Li
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Yong-Qiang Deng
- State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, PR China
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Rui-Yuan Cao
- State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, PR China
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Ke-Yu Song
- School of Medicine Jinan University, Guangzhou, 510632, PR China
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Hong-Jiang Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, PR China
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Rong-Hong Hua
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | - Yong-Xin Yu
- National Institutes for Food and Drug Control, Beijing 100050, PR China
| | - Xi Zhou
- State Key Laboratory of Virology, Wuhan University, Wuhan 430072, PR China
| | - E-De Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, PR China
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Cheng-Feng Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, PR China
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| |
Collapse
|
25
|
Pathogenic and vaccine strains of Japanese encephalitis virus elicit different levels of human macrophage effector functions. Arch Virol 2012; 157:1905-18. [PMID: 22729616 DOI: 10.1007/s00705-012-1386-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Accepted: 05/14/2012] [Indexed: 02/07/2023]
Abstract
In India, Japanese encephalitis virus (JEV) remains one of the major causative agents of pediatric encephalitis. Macrophages support various neurotropic viruses and influence the immune response. However, the functional status of human macrophages during JEV infection remains unidentified. In this study, we examined the cytokine response and co-stimulatory marker levels in primary human monocyte derived macrophages (MDMs) infected with JE057434 (neurovirulent, primary clinical isolate) or SA14-14-2 (non-neurovirulent, live-attenuated vaccine) JEV strains. We also examined the differential susceptibility of these JEV strains to antiviral effects of interferon and nitric oxide. The results indicate that both JEV strains are capable of inducing various cytokines (type-I IFN, TNFα, IL6 and IL8) and co-stimulatory molecules (CD86 and CD80) in MDMs. However, they varied in replication potential and corresponding interferon sensitivity. SA14-14-2 was highly susceptible to interferon and nitric oxide when compared to JE057434. Thus, reduction in infectious virion production and increased sensitivity of SA14-14-2 towards interferon in MDMs could potentially play a role in limiting viral spread to additional target tissues.
Collapse
|
26
|
Yamaguchi Y, Nukui Y, Tajima S, Nerome R, Kato F, Watanabe H, Takasaki T, Kurane I. An amino acid substitution (V3I) in the Japanese encephalitis virus NS4A protein increases its virulence in mice, but not its growth rate in vitro. J Gen Virol 2011; 92:1601-1606. [DOI: 10.1099/vir.0.031237-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Our previous studies have shown that the Japanese encephalitis virus (JEV) strain Mie/40/2004 is the most virulent of the strains isolated by us in Japan from 2002 to 2004. Comparison of the amino acid sequence of Mie/40/2004 with those of low-virulence strains revealed that an isoleucine residue at position 3 of the Mie/40/2004 NS4A protein may increase viral pathogenicity. A recombinant virus with a single valine-to-isoleucine substitution (V3I) at position 3 in the low-virulence Mie/41/2002 background (rJEV-Mie41-NS4AV3I) exhibited increased virulence in mice compared with the Mie/41/2002 parent strain. The V3I mutation did not affect virus growth in several cell lines. These results demonstrate that the isoleucine at position 3 in the NS4A protein of Mie/40/2004 is responsible for its high virulence in vivo. This is the first report to show that an amino acid substitution in a flavivirus NS4A protein alters viral pathogenicity in mice.
Collapse
Affiliation(s)
- Yukie Yamaguchi
- Department of Pathology, Immunology and Microbiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
- Department of Virology 1, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan
| | - Yoko Nukui
- Department of Infection Control and Prevention, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo, Tokyo 113-8655, Japan
- Department of Virology 1, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan
| | - Shigeru Tajima
- Department of Virology 1, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan
| | - Reiko Nerome
- Department of Virology 1, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan
| | - Fumihiro Kato
- Department of Virology 1, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan
| | - Haruo Watanabe
- Department of Pathology, Immunology and Microbiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
- National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan
| | - Tomohiko Takasaki
- Department of Virology 1, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan
| | - Ichiro Kurane
- Department of Virology 1, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan
| |
Collapse
|
27
|
McCurdy K, Joyce J, Hamilton S, Nevins C, Sosna W, Puricelli K, Rayner JO. Differential accumulation of genetic and phenotypic changes in Venezuelan equine encephalitis virus and Japanese encephalitis virus following passage in vitro and in vivo. Virology 2011; 415:20-9. [PMID: 21507450 DOI: 10.1016/j.virol.2011.03.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 03/16/2011] [Accepted: 03/31/2011] [Indexed: 01/14/2023]
Abstract
The requirement to replicate in both vertebrate and invertebrate hosts is thought to limit the introduction of genetic changes into the genome of arboviruses. Serial passage under laboratory conditions will overcome this limitation allowing for genetic changes to be introduced and affecting the virulence of the virus for animals. In the studies detailed here, the consequence of removing the restriction of alternate replication was demonstrated to be different depending on the virus. Passing Venezuelan equine encephalitis virus in tissue culture cells, eggs or mice resulted in up to 11 nucleotide or amino acid changes but no significant change in the virulence of the virus for mice. Passing Japanese encephalitis virus (JEV) under the identical conditions resulted in as many as 22 nucleotide or amino acid changes that often resulted in improved survival probabilities. For JEV, most genetic changes along with the attenuated phenotype were selected within 5 passes.
Collapse
|
28
|
Ding T, Zhang W, Ma W, Ren J. Identification of a mutated BHK-21 cell line that became less susceptible to Japanese encephalitis virus infection. Virol J 2011; 8:115. [PMID: 21396132 PMCID: PMC3064645 DOI: 10.1186/1743-422x-8-115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2010] [Accepted: 03/14/2011] [Indexed: 05/26/2023] Open
Abstract
The pathogenesis of Japanese encephalitis virus (JEV) is not definitely elucidated as the initial interaction between virus and host cell receptors required for JEV infection is not clearly defined yet. Here, in order to discover those membrane proteins that may be involved in JEV attachment to or entry into virus permissive BHK-21 cells, a chemically mutated cell line (designated 3A10-3F) that became less susceptible to JEV infection was preliminarily established and selected by repeated low moi JEV challenges and RT-PCR detection for viral RNA E gene fragment. The susceptibility to JEV of 3A10-3F cells was significantly weakened compared with parental BHK-21 cells, verified by indirect immunofluorescence assay, virus plague formation assay, and flow cytometry. Finally, two-dimensional electrophoresis (2-DE) coupled with LC-MS/MS was utilized to recognize the most differentially expressed proteins from membrane protein extracts of 3A10-3F and BHK-21 cells respectively. The noted discrepancy of membrane proteins included calcium binding proteins (annexin A1, annexin A2), and voltage-dependent anion channels proteins (VDAC 1, VDAC 2), suggesting that these molecules may affect JEV attachment to and/or entry into BHK-21 cells and worthy of further investigation.
Collapse
Affiliation(s)
- Tianbing Ding
- Department of Microbiology, the Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | | | | | | |
Collapse
|
29
|
Appaiahgari MB, Vrati S. IMOJEV(®): a Yellow fever virus-based novel Japanese encephalitis vaccine. Expert Rev Vaccines 2011; 9:1371-84. [PMID: 21105774 DOI: 10.1586/erv.10.139] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Japanese encephalitis (JE) is a disease of the CNS caused by Japanese encephalitis virus (JEV). The disease appears in the form of frequent outbreaks in most south- and southeast Asian countries and the virus has become endemic in several areas. There is no licensed therapy available and disease control by vaccination is considered to be most effective. Mouse brain-derived inactivated JE vaccines, although immunogenic, have several limitations in terms of safety, availability and requirement for multiple doses. Owing to these drawbacks, the WHO called for the development of novel, safe and more efficacious JE vaccines. Several candidate vaccines have been developed and at least three of them that demonstrated strong immunogenicity after one or two doses of the vaccine in animal models were subsequently tested in various clinical trials. One of these vaccines, IMOJEV(®) (JE-CV and previously known as ChimeriVax™-JE), is a novel recombinant chimeric virus vaccine, developed using the Yellow fever virus (YFV) vaccine vector YFV17D, by replacing the cDNA encoding the envelope proteins of YFV with that of an attenuated JEV strain SA14-14-2. IMOJEV was found to be safe, highly immunogenic and capable of inducing long-lasting immunity in both preclinical and clinical trials. Moreover, a single dose of IMOJEV was sufficient to induce protective immunity, which was similar to that induced in adults by three doses of JE-VAX(®), a mouse brain-derived inactivated JE vaccine. Recently, Phase III trials evaluating the immunogenicity and safety of the chimeric virus vaccine have been successfully completed in some JE-endemic countries and the vaccine manufacturers have filed an application for vaccine registration. IMOJEV may thus be licensed for use in humans as an improved alternative to the currently licensed JE vaccines.
Collapse
Affiliation(s)
- Mohan Babu Appaiahgari
- Vaccine and Infectious Disease Research Center, Translational Health Science and Technology Institute, Gurgaon 122 016, India
| | | |
Collapse
|
30
|
Ishikawa T, Konishi E. Combating Japanese encephalitis: Vero-cell derived inactivated vaccines and the situation in Japan. Future Virol 2010. [DOI: 10.2217/fvl.10.55] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Japanese encephalitis (JE) is a major public health threat in Asia, because of its high mortality and high incidence of psychoneurological sequelae in survivors. It is caused by JE virus (JEV) infection, transmitted by vector mosquitoes. The disease is vaccine preventable and has been well controlled in some countries. Since no specific antivirals have been approved, prevention with vaccine is important in this disease. This article provides a general overview of JE and JEV, but special focus has been put on recently developed Vero cell-derived formalin-inactivated JE vaccines, and the situation in Japan relating to these vaccines. In Japan, where JE has been well controlled, the strong governmental recommendation of the mouse brain-derived vaccine for routine immunization was suspended in 2005, owing to a patient suffering severe postvaccination events. In 2010, the recommendation was reinstated, targeting a limited population utilizing a Vero cell-derived vaccine.
Collapse
Affiliation(s)
- Tomohiro Ishikawa
- Department of International Health, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe 654-0142, Japan
| | | |
Collapse
|
31
|
The NS5 protein of the virulent West Nile virus NY99 strain is a potent antagonist of type I interferon-mediated JAK-STAT signaling. J Virol 2010; 84:3503-15. [PMID: 20106931 DOI: 10.1128/jvi.01161-09] [Citation(s) in RCA: 172] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Flaviviruses transmitted by arthropods represent a tremendous disease burden for humans, causing millions of infections annually. All vector-borne flaviviruses studied to date suppress host innate responses to infection by inhibiting alpha/beta interferon (IFN-alpha/beta)-mediated JAK-STAT signal transduction. The viral nonstructural protein NS5 of some flaviviruses functions as the major IFN antagonist, associated with inhibition of IFN-dependent STAT1 phosphorylation (pY-STAT1) or with STAT2 degradation. West Nile virus (WNV) infection prevents pY-STAT1 although a role for WNV NS5 in IFN antagonism has not been fully explored. Here, we report that NS5 from the virulent NY99 strain of WNV prevented pY-STAT1 accumulation, suppressed IFN-dependent gene expression, and rescued the growth of a highly IFN-sensitive virus (Newcastle disease virus) in the presence of IFN, suggesting that this protein can function as an efficient IFN antagonist. In contrast, NS5 from Kunjin virus (KUN), a naturally attenuated subtype of WNV, was a poor suppressor of pY-STAT1. Mutation of a single residue in KUN NS5 to the analogous residue in WNV-NY99 NS5 (S653F) rendered KUN NS5 an efficient inhibitor of pY-STAT1. Incorporation of this mutation into recombinant KUN resulted in 30-fold greater inhibition of JAK-STAT signaling than with the wild-type virus and enhanced KUN replication in the presence of IFN. Thus, a naturally occurring mutation is associated with the function of NS5 in IFN antagonism and may influence virulence of WNV field isolates.
Collapse
|
32
|
Tajima S, Nerome R, Nukui Y, Kato F, Takasaki T, Kurane I. A single mutation in the Japanese encephalitis virus E protein (S123R) increases its growth rate in mouse neuroblastoma cells and its pathogenicity in mice. Virology 2010; 396:298-304. [DOI: 10.1016/j.virol.2009.10.035] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 10/13/2009] [Accepted: 10/21/2009] [Indexed: 11/15/2022]
|
33
|
Crill WD, Hughes HR, Delorey MJ, Chang GJJ. Humoral immune responses of dengue fever patients using epitope-specific serotype-2 virus-like particle antigens. PLoS One 2009; 4:e4991. [PMID: 19337372 PMCID: PMC2659788 DOI: 10.1371/journal.pone.0004991] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Accepted: 02/27/2009] [Indexed: 12/04/2022] Open
Abstract
Dengue virus (DENV) is a serious mosquito-borne pathogen causing significant global disease burden, either as classic dengue fever (DF) or in its most severe manifestation dengue hemorrhagic fever (DHF). Nearly half of the world's population is at risk of dengue disease and there are estimated to be millions of infections annually; a situation which will continue to worsen with increasing expansion of the mosquito vectors and epidemic DF/DHF. Currently there are no available licensed vaccines or antivirals for dengue, although significant effort has been directed toward the development of safe and efficacious dengue vaccines for over 30 years. Promising vaccine candidates are in development and testing phases, but a better understanding of immune responses to DENV infection and vaccination is needed. Humoral immune responses to DENV infection are complex and may exacerbate pathogenicity, yet are essential for immune protection. In this report, we develop DENV-2 envelope (E) protein epitope-specific antigens and measure immunoglobulin responses to three distinct epitopes in DENV-2 infected human serum samples. Immunoglobulin responses to DENV-2 infection exhibited significant levels of individual variation. Antibody populations targeting broadly cross-reactive epitopes centered on the fusion peptide in structural domain II were large, highly variable, and greater in primary than in secondary DENV-2 infected sera. E protein domain III cross-reactive immunoglobulin populations were similarly variable and much larger in IgM than in IgG. DENV-2 specific domain III IgG formed a very small proportion of the antibody response yet was significantly correlated with DENV-2 neutralization, suggesting that the highly protective IgG recognizing this epitope in murine studies plays a role in humans as well. This report begins to tease apart complex humoral immune responses to DENV infection and is thus important for improving our understanding of dengue disease and immunological correlates of protection, relevant to DENV vaccine development and testing.
Collapse
MESH Headings
- Amino Acid Sequence
- Antibodies, Monoclonal/biosynthesis
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/immunology
- Antibodies, Viral/biosynthesis
- Antibodies, Viral/chemistry
- Antibodies, Viral/immunology
- Antigens, Viral/chemistry
- Antigens, Viral/immunology
- Base Sequence
- DNA Primers
- Dengue/immunology
- Epitope Mapping
- Epitopes/chemistry
- Epitopes/immunology
- Humans
- Models, Molecular
- Molecular Sequence Data
- Protein Conformation
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Wayne D Crill
- Arbovirus Diseases Branch, Division of Vector-Borne Infectious Diseases, Centers for Disease Control and Prevention, Public Health Service, US Department of Health and Human Service, Fort Collins, CO, USA.
| | | | | | | |
Collapse
|
34
|
Attenuated West Nile viruses bearing 3′SL and envelope gene substitution mutations. Vaccine 2008; 26:5981-8. [DOI: 10.1016/j.vaccine.2008.08.064] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 08/19/2008] [Accepted: 08/25/2008] [Indexed: 11/22/2022]
|
35
|
Enzyme-linked immunosorbent assays using novel Japanese encephalitis virus antigen improve the accuracy of clinical diagnosis of flavivirus infections. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2008; 15:825-35. [PMID: 18337381 DOI: 10.1128/cvi.00004-08] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The cross-reactive antibodies induced by flavivirus infections confound serodiagnosis and pathogenesis, especially in secondary infections caused by antigenically closely related yet distinct flaviviruses. The envelope (E) glycoprotein fusion peptide contains immunodominant cross-reactive determinants. Using a recombinant Japanese encephalitis virus (JEV) premembrane and E expression plasmid producing JEV virus-like particles (VLPs), dramatic reductions in cross-reactivity were produced by the G106K-L107D (KD) double-mutant VLP against a panel of flavivirus murine monoclonal antibodies. Human serum panels from patients with recent flavivirus infections were analyzed to compare the accuracy of JEV wild-type (WT) and KD VLPs as serodiagnostic antigens in enzyme-linked immunosorbent assays. Statistical analysis demonstrated significant differences in assay performances for accurate determination of current JEV infections between WT and KD antigens by detecting immunoglobulin M antibodies at a serum dilution of 1:4,000 (likelihood ratios = 2.74 [WT] and 22 [KD]). The application and continued development of cross-reactivity-reduced antigens should improve both flavivirus infection serodiagnosis and estimates of disease burden.
Collapse
|
36
|
|
37
|
Chiou SS, Chen WJ. Phenotypic changes in the Japanese encephalitis virus after one passage in Neuro-2a cells: Generation of attenuated strains of the virus. Vaccine 2007; 26:15-23. [DOI: 10.1016/j.vaccine.2007.10.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2007] [Revised: 10/03/2007] [Accepted: 10/22/2007] [Indexed: 11/30/2022]
|
38
|
Chambers TJ, Droll DA, Jiang X, Wold WSM, Nickells JA. JE Nakayama/JE SA14-14-2 virus structural region intertypic viruses: biological properties in the mouse model of neuroinvasive disease. Virology 2007; 366:51-61. [PMID: 17521693 PMCID: PMC2266982 DOI: 10.1016/j.virol.2007.04.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Revised: 02/04/2007] [Accepted: 04/07/2007] [Indexed: 11/19/2022]
Abstract
A molecular clone of Japanese encephalitis (JE) virus Nakayama strain was used to create intertypic viruses containing either the 5'-C-prM-E or the prM-E region of the attenuated JE SA14-14-2 virus in the JE Nakayama background. These two intertypic JE viruses, JE-X/5'CprME(S) and JE-X/prME(S), respectively, generally resembled the parental JE virus in cell culture properties. Similar to virus derived from the JE Nakayama molecular clone (JE-XJN), JE-X/prME(S) was highly neuroinvasive and neurovirulent for young adult mice, whereas JE-X/5'CprME(S) was attenuated for neuroinvasiveness and only partially attenuated for neurovirulence. Immunization of young mice with JE-X/5'CprME(S) virus elicited neutralizing antibodies against JE Nakayama virus and conferred protection against encephalitis following challenge with JE Nakayama virus. The sequence of the JE-X/5'CprME(S) virus differed from that of JE-X/prME(S) virus at two nucleotides in the 5' UTR, 3 amino acid positions in the capsid protein, 4 positions in the prM protein and 1 in the envelope protein. For JE-X/prME(S) virus, the 4 differences in prM and the single substitution in the envelope represented reversions to the sequence of JE Nakayama virus. Overall, this study reveals that molecular determinants associated with the prM-E region of the attenuated JE SA14-14-2 virus are insufficient by themselves to confer an attenuation phenotype upon JE Nakayama virus. This suggests a role for determinants in the 5' UTR and/or the capsid protein of the JE SA 14-14-2 virus genome in influencing the virulence properties of the JE Nakayama virus in the mouse model.
Collapse
Affiliation(s)
- Thomas J Chambers
- Department of Molecular Microbiology and Immunology, St. Louis University School of Medicine, 1402 South Grand Ave. St. Louis, MO 63104, USA.
| | | | | | | | | |
Collapse
|
39
|
Chambers TJ, Jiang X, Droll DA, Liang Y, Wold WSM, Nickells J. Chimeric Japanese encephalitis virus/dengue 2 virus infectious clone: biological properties, immunogenicity and protection against dengue encephalitis in mice. J Gen Virol 2006; 87:3131-3140. [PMID: 17030845 DOI: 10.1099/vir.0.81909-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A molecular clone of Japanese encephalitis virus (JE virus) was derived from the JE virus Nakayama strain and used to produce infectious JE virus in cell culture. The engineered JE virus resembled the parental JE virus in cell-culture properties and was related closely to other JE virus strains based on nucleotide sequence analysis. The JE virus clone was used as a genetic background for construction of a chimeric virus containing the structural proteins prM and E of Dengue virus, serotype 2. The chimeric JE/dengue 2 virus generated authentic dengue 2 structural proteins as assessed by immunoassays for the dengue E protein. It exhibited a small plaque size and less efficient growth in various cell lines than the parental JE virus. JE/dengue 2 virus was non-neuroinvasive for young adult mice, but displayed partial neurovirulence at doses up to 4 log p.f.u. given intracerebrally. Immunization of 3-week-old mice with JE/dengue 2 virus yielded neutralizing-antibody titres against dengue 2 virus and conferred protection against dengue encephalitis caused by neuroadapted dengue 2 virus. A rise in post-challenge neutralizing-antibody titres against dengue 2 virus in surviving mice suggests that immunization is associated with establishment of a memory antibody response in this model. This study demonstrates the capacity of JE virus to serve as a vector for expression of heterologous flavivirus structural proteins. Similar to previous studies with other chimeric flaviviruses, this approach may be useful as a genetic system for engineering experimental vaccines against Dengue virus and other medically important flaviviruses.
Collapse
Affiliation(s)
- Thomas J Chambers
- Department of Molecular Microbiology and Immunology, St Louis University School of Medicine, 1402 South Grand Avenue, St Louis, MO 63104, USA
| | - Xiaoshan Jiang
- Department of Molecular Microbiology and Immunology, St Louis University School of Medicine, 1402 South Grand Avenue, St Louis, MO 63104, USA
| | - Deborah A Droll
- Department of Molecular Microbiology and Immunology, St Louis University School of Medicine, 1402 South Grand Avenue, St Louis, MO 63104, USA
| | - Yan Liang
- Department of Molecular Microbiology and Immunology, St Louis University School of Medicine, 1402 South Grand Avenue, St Louis, MO 63104, USA
| | - William S M Wold
- Department of Molecular Microbiology and Immunology, St Louis University School of Medicine, 1402 South Grand Avenue, St Louis, MO 63104, USA
| | - Janice Nickells
- Department of Molecular Microbiology and Immunology, St Louis University School of Medicine, 1402 South Grand Avenue, St Louis, MO 63104, USA
| |
Collapse
|
40
|
Lim CS, Chua JJE, Wilkerson J, Chow VTK. Differential dengue cross-reactive and neutralizing antibody responses in BALB/c and Swiss albino mice induced by immunization with flaviviral vaccines and by infection with homotypic dengue-2 virus strains. Viral Immunol 2006; 19:33-41. [PMID: 16553548 DOI: 10.1089/vim.2006.19.33] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We investigated whether cross-reactive and/or cross-protective antibodies against dengue virus could be generated in 6-week-old BALB/c mice by immunization with currently approved flaviviral vaccines, i.e., Japanese encephalitis (JE) BIKEN and yellow fever (YF) 17D. Cross-reactivity with dengue antigens was apparent in at least one-third each of JE-vaccinated mouse sera and of JE/YF-vaccinated mouse sera by dengue enzyme immunoassay, but was not detected in sera of mice immunized with YF vaccine alone. All the immunized BALB/c mice failed to generate neutralizing antibodies against the New Guinea C laboratory (NGC-lab) strain of dengue virus type 2. In addition, we determined the specificity of neutralizing antibodies elicited in 3-week-old Swiss albino mice against two homotypic dengue-2 strains, i.e., NGC-lab and Singapore 1999 (SING/99). Although sera from virus-inoculated mice displayed better neutralization against the corresponding strain, antibodies elicited by NGC-lab exhibited a significantly poorer neutralizing response against the SING/99 strain compared to antibodies elicited by SING/99 against NGC-lab. The differences may be related to sequence variations of approximately 3% between the envelope proteins of both strains. Amino acid disparities at positions 71 (Glu --> Ala), 112 (Ser --> Gly) and 124 (Ile --> Asn), which are found in dengue-2 neutralization escape mutants, were also found in the SING/99 strain. The envelope sequence differences may explain diminished binding of NGC-lab-induced neutralizing antibodies to neutralizing epitopes within the envelope of the SING/99 strain, resulting in a lower titer of neutralizing antibodies against another strain of the same serotype.
Collapse
Affiliation(s)
- C S Lim
- Programme in Infectious Diseases, Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | | | |
Collapse
|
41
|
German AC, Myint KSA, Mai NTH, Pomeroy I, Phu NH, Tzartos J, Winter P, Collett J, Farrar J, Barrett A, Kipar A, Esiri MM, Solomon T. A preliminary neuropathological study of Japanese encephalitis in humans and a mouse model. Trans R Soc Trop Med Hyg 2006; 100:1135-45. [PMID: 16814333 DOI: 10.1016/j.trstmh.2006.02.008] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Revised: 02/20/2006] [Accepted: 02/20/2006] [Indexed: 11/30/2022] Open
Abstract
Japanese encephalitis virus is a mosquito-borne flavivirus that causes approximately 10000 deaths annually in Asia. After a brief viraemia, the virus enters the central nervous system, but the means of crossing the blood-brain barrier is uncertain. We used routine histological staining, immunohistology and electron microscopy to examine brain material from four fatal human cases, and made comparisons with material from a mouse model. In human material there was oedema, perivascular inflammation, haemorrhage, microglial nodules and acellular necrotic foci, as has been described previously. In addition, there was new evidence suggestive of viral replication in the vascular endothelium, with endothelial cell damage; this included occasional viral antigen staining, uneven binding of the vascular endothelial cells to Ulex europaeus agglutinin I and ultrastructural changes. Viral antigen was also found in neurons. There was an active astrocytic response, as shown by glial fibrillary acidic protein staining, and activation of microglial cells was demonstrated by an increase in major histocompatibility complex class II expression. Similar inflammatory infiltrates and a microglial reaction were observed in mouse brain tissue. In addition, beta-amyloid precursor protein staining indicated impaired axonal transport. Whether these findings are caused by viral replication in the vascular endothelium or the immune response merits further investigation.
Collapse
Affiliation(s)
- Allison C German
- Division of Medical Microbiology, University of Liverpool, Liverpool, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Santos CLSD, Sallum MAM, Franco HM, Oshiro FM, Rocco IM. Genetic characterization of St. Louis encephalitis virus isolated from human in São Paulo, Brazil. Mem Inst Oswaldo Cruz 2006; 101:57-63. [PMID: 16699711 DOI: 10.1590/s0074-02762006000100011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The molecular characterization of SPH253157, a new strain of St. Louis encephalitis virus (SLEV), isolated in 2004 from the first case of human infection recognized in the state of São Paulo, Brazil, is reported. The patient, presenting a febrile illness without neurological involvement, was hospitalized as a probable case of dengue fever. Genomic RNA was isolated from the supernatant of C6/36 cells infected with acute phase-serum specimen of the patient and the envelope gene was amplified by reverse-transcription-polymerase chain reaction. The complete nucleotide sequence of the envelope gene of this isolate was directly sequenced from the amplified products and compared with other Brazilian and American SLEV strains. Phylogenetic analyses were carried out under maximum likelihood criterion with outgroups both included and excluded. Outgroups comprised four flavivirus of the Japanese encephalitis group. Phylogeny also included Bayesian analysis. The results indicated that the new SLEV isolate belongs to lineage III, being closely related to an Argentinean strain recovered from Culex sp. in 1979. It is concluded that there are at least 3 lineages of SLEV in Brazil.
Collapse
|
43
|
Zhao Z, Date T, Li Y, Kato T, Miyamoto M, Yasui K, Wakita T. Characterization of the E-138 (Glu/Lys) mutation in Japanese encephalitis virus by using a stable, full-length, infectious cDNA clone. J Gen Virol 2005; 86:2209-2220. [PMID: 16033968 DOI: 10.1099/vir.0.80638-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A stable plasmid DNA, pMWJEAT, was constructed by using full-length Japanese encephalitis virus (JEV) cDNA isolated from the wild-type strain JEV AT31. Recombinant JEV was obtained by synthetic RNA transfection into Vero cells and designated rAT virus. JEV rAT exhibited similar large-plaque morphology and antigenicity to the parental AT31 strain. Mutant clone pMWJEAT-E138K, containing a single Glu-to-Lys mutation at aa 138 of the envelope (E) protein, was also constructed to analyse the mechanisms of viral attenuation arising from this mutation. Recombinant JEV rAT-E138K was also recovered and displayed a smaller-plaque morphology and lower neurovirulence and neuroinvasiveness than either AT31 virus or rAT virus. JEV rAT-E138K exhibited greater plaque formation than rAT virus in virus-cell interactions under acidic conditions. Heparin or heparinase III treatment inhibited binding to Vero cells more efficiently for JEV rAT-E138K than for rAT virus. Inhibition of virus-cell interactions by using wheatgerm agglutinin was more effective for JEV rAT than for rAT-E138K on Vero cells. About 20 % of macropinoendocytosis of JEV rAT for Vero cells was inhibited by cytochalasin D treatment, but no such inhibition occurred for rAT-E138K virus. Furthermore, JEV rAT was predominantly secreted from infected cells, whereas rAT-E138K was more likely to be retained in infected cells. This study demonstrates clearly that a single Glu-to-Lys mutation at aa 138 of the envelope protein affects multiple steps of the viral life cycle. These multiple changes may induce substantial attenuation of JEV.
Collapse
Affiliation(s)
- Zijiang Zhao
- Department of Microbiology, Tokyo Metropolitan Institute for Neuroscience, 2-6 Musashidai, Fuchu-shi, Tokyo 183-8526, Japan
| | - Tomoko Date
- Department of Microbiology, Tokyo Metropolitan Institute for Neuroscience, 2-6 Musashidai, Fuchu-shi, Tokyo 183-8526, Japan
| | - Yuhua Li
- Chengdu Institute of Biological Products, Chengdu 610063, Sichuan Province, PR China
| | - Takanobu Kato
- Department of Microbiology, Tokyo Metropolitan Institute for Neuroscience, 2-6 Musashidai, Fuchu-shi, Tokyo 183-8526, Japan
| | - Michiko Miyamoto
- Department of Microbiology, Tokyo Metropolitan Institute for Neuroscience, 2-6 Musashidai, Fuchu-shi, Tokyo 183-8526, Japan
| | - Kotaro Yasui
- Department of Microbiology, Tokyo Metropolitan Institute for Neuroscience, 2-6 Musashidai, Fuchu-shi, Tokyo 183-8526, Japan
| | - Takaji Wakita
- Department of Microbiology, Tokyo Metropolitan Institute for Neuroscience, 2-6 Musashidai, Fuchu-shi, Tokyo 183-8526, Japan
| |
Collapse
|
44
|
Goncalvez AP, Men R, Wernly C, Purcell RH, Lai CJ. Chimpanzee Fab fragments and a derived humanized immunoglobulin G1 antibody that efficiently cross-neutralize dengue type 1 and type 2 viruses. J Virol 2004; 78:12910-8. [PMID: 15542643 PMCID: PMC525007 DOI: 10.1128/jvi.78.23.12910-12918.2004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Passive immunization with monoclonal antibodies from humans or nonhuman primates represents an attractive alternative to vaccines for prevention of illness caused by dengue viruses (DENV) and other flaviviruses, including the West Nile virus. In a previous study, repertoire cloning to recover Fab fragments from bone marrow mRNA of chimpanzees infected with all four DENV serotypes (dengue virus serotype 1 [DENV-1] to DENV-4) was described. In that study, a humanized immunoglobulin G1 (IgG1) antibody that efficiently neutralized DENV-4 was recovered and characterized. In this study, the phage library constructed from the chimpanzees was used to recover Fab antibodies against the other three DENV serotypes. Serotype-specific neutralizing Fabs were not identified. Instead, we recovered DENV-neutralizing Fabs that specifically precipitated the envelope protein and were cross-reactive with all four DENV serotypes. Three of the Fabs competed with each other for binding to DENV-1 and DENV-2, although each of these Fabs contained a distinct complementarity determining region 3 (CDR3)-H sequence. Fabs that shared an identical or nearly identical CDR3-H sequences cross-neutralized DENV-1 and DENV-2 at a similar high 50% plaque reduction neutralization test (PRNT(50)) titer, ranging from 0.26 to 1.33 microg/ml, and neutralized DENV-3 and DENV-4 but at a titer 10- to 20-fold lower. One of these Fabs, 1A5, also neutralized the West Nile virus most efficiently among other flaviviruses tested. Fab 1A5 was converted to a full-length antibody in combination with human sequences for production in mammalian CHO cells. Humanized IgG1 1A5 proved to be as efficient as Fab 1A5 for cross-neutralization of DENV-1 and DENV-2 at a titer of 0.48 and 0.95 microg/ml, respectively. IgG1 1A5 also neutralized DENV-3, DENV-4, and the West Nile virus at a PRNT(50) titer of approximately 3.2 to 4.2 microg/ml. This humanized antibody represents an attractive candidate for further development of immunoprophylaxis against DENV and perhaps other flavivirus-associated diseases.
Collapse
Affiliation(s)
- Ana P Goncalvez
- Molecular Viral Biology Section, Laboratory of Infectious Diseases, NIAID, NIH, Building 50, Room 6349, 50 South Dr., MSC 8009, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
45
|
Goncalvez AP, Purcell RH, Lai CJ. Epitope determinants of a chimpanzee Fab antibody that efficiently cross-neutralizes dengue type 1 and type 2 viruses map to inside and in close proximity to fusion loop of the dengue type 2 virus envelope glycoprotein. J Virol 2004; 78:12919-28. [PMID: 15542644 PMCID: PMC525008 DOI: 10.1128/jvi.78.23.12919-12928.2004] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The epitope determinants of chimpanzee Fab antibody 1A5, which have been shown to be broadly reactive to flaviviruses and efficient for cross-neutralization of dengue virus type 1 and type 2 (DENV-1 and DENV-2), were studied by analysis of DENV-2 antigenic variants. Sequence analysis showed that one antigenic variant contained a Gly-to-Val substitution at position 106 within the flavivirus-conserved fusion peptide loop of the envelope protein (E), and another variant contained a His-to-Gln substitution at position 317 in E. Substitution of Gly(106)Val in DENV-2 E reduced the binding affinity of Fab 1A5 by approximately 80-fold, whereas substitution of His(317)Gln had little or no effect on antibody binding compared to the parental virus. Treatment of DENV-2 with beta-mercaptoethanol abolished binding of Fab 1A5, indicating that disulfide bridges were required for the structural integrity of the Fab 1A5 epitope. Binding of Fab 1A5 to DENV-2 was competed by an oligopeptide containing the fusion peptide sequence as shown by competition enzyme-linked immunosorbent assay. Both DENV-2 antigenic variants were shown to be attenuated, or at least similar to the parental virus, when evaluated for growth in cultured cells or for neurovirulence in mice. Fab 1A5 inhibited low pH-induced membrane fusion of mosquito C6/36 cells infected with DENV-1 or DENV-2, as detected by reduced syncytium formation. Both substitutions in DENV-2 E lowered the pH threshold for membrane fusion, as measured in a fusion-from-within assay. In the three-dimensional structure of E, Gly(106) in domain II and His(317) in domain III of the opposite E monomer were spatially close. From the locations of these amino acids, Fab 1A5 appears to recognize a novel epitope that has not been mapped before with a flavivirus monoclonal antibody.
Collapse
Affiliation(s)
- Ana P Goncalvez
- Molecular Viral Biology Section, Laboratory of Infectious Diseases, NIAID, NIH, Building 50, Room 6349, 50 South Dr., MSC 8009, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
46
|
Affiliation(s)
- Franz X Heinz
- Institute of Virology, University of Vienna, A-1095 Vienna, Austria
| | | |
Collapse
|
47
|
Halstead SB, Marchette NJ. BIOLOGIC PROPERTIES OF DENGUE VIRUSES FOLLOWING SERIAL PASSAGE IN PRIMARY DOG KIDNEY CELLS: STUDIES AT THE UNIVERSITY OF HAWAII. Am J Trop Med Hyg 2003; 69:5-11. [PMID: 14740949 DOI: 10.4269/ajtmh.2003.69.6_suppl.0690005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Serial passage at low dilution of seven different wild-type dengue (DEN) viruses into primary dog kidney (PDK) cell cultures placed selective pressure that resulted in the following changes from parental phenotype: smaller plaques in LLC-MK2 cells, absent plaque formation in green monkey kidney cells, lack of a cytopathic effect in LLC-MK2 cells, shut-off of virus replication at high temperatures (temperature sensitivity), reduced virulence for rhesus monkeys manifested by reduced or absent viremia and/or absence of a secondary-type antibody response following homotypic challenge, and progressive increase in the mean day of death following intracerebral inoculation of sucking mice. Two DEN-1 strains showed most of these changes by the 15th PDK passage. Only one of two DEN-2 strains studied was carried to the 50th PDK passage at the University of Hawaii. For the latter strain, both the temperature of viral replicative shutoff and mouse neurovirulence were reduced. Three DEN-4 strains showed similar late-passage biologic marker changes. The observations made, although not exhaustive, provide laboratory correlates for virus strains that have shown reduced virulence but retained immunogenicity in humans. Candidate human vaccines have been prepared from five of the studied strains: DEN-1 (16007) at PDK 13, DEN-2 (16681 and S-16803) at PDK 50 or above, and DEN-4 (1036 and 341750) at PDK 48 and 20, respectively.
Collapse
Affiliation(s)
- Scott B Halstead
- Department of Tropical Medicine and Medical Microbiology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, USA.
| | | |
Collapse
|
48
|
Goto A, Hayasaka D, Yoshii K, Mizutani T, Kariwa H, Takashima I. A BHK-21 cell culture-adapted tick-borne encephalitis virus mutant is attenuated for neuroinvasiveness. Vaccine 2003; 21:4043-51. [PMID: 12922141 DOI: 10.1016/s0264-410x(03)00269-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We derived the baby hamster kidney (BHK)-21 cell culture-adapted, tick-borne encephalitis (TBE) virus mutant. To reveal the pathogenicity of the TBE virus, we compared the pathogenicity of the mutant (Oshima Cl-1) and parental (Oshima 5-10) virus in mouse model. The neurovirulence of mutant in mice was identical to that of parent. However, the level of neuroinvasiveness was higher for parent than for mutant. The degrees of viremia and virus titers in the spleen were lower in mice that were inoculated subcutaneously (s.c.) with mutant than in mice that received parent. Unlike parent, mutant was rarely detected in the brains of s.c. inoculated mice. Genetic analysis revealed that mutant had single amino acid substitutions in each of the E and NS5 proteins compared with parent. Furthermore, while mutant infection of BHK-21 cells was inhibited by glycosaminoglycans (GAGs), this was not the case for parent. In summary, the BHK-21-cell-adapted mutant virus showed reduced neuroinvasiveness in mice due to low-level induction of viremia. The attenuation process involved a single amino acid change in the E protein, which may have resulted in the rapid clearance of the virus due to its high affinity for negatively charged molecules in vivo.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Viral/analysis
- Antibodies, Viral/biosynthesis
- Brain/pathology
- Brain/virology
- Cell Line
- Cricetinae
- Encephalitis Viruses, Tick-Borne/genetics
- Encephalitis Viruses, Tick-Borne/immunology
- Encephalitis Viruses, Tick-Borne/pathogenicity
- Encephalitis, Tick-Borne/pathology
- Encephalitis, Tick-Borne/prevention & control
- Encephalitis, Tick-Borne/virology
- Gene Products, gag/biosynthesis
- Genome, Viral
- Hemagglutination Tests
- Male
- Mice
- Mice, Inbred ICR
- Molecular Sequence Data
- Mutation/genetics
- Mutation/immunology
- Neutralization Tests
- Spleen/virology
- Vaccines, Attenuated/immunology
- Viral Plaque Assay
- Viral Vaccines/immunology
- Viremia/blood
- Virus Replication
Collapse
Affiliation(s)
- Akiko Goto
- Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, Kita-18 Nishi-9, Kita-ku, Sapporo 060-0818, Japan
| | | | | | | | | | | |
Collapse
|
49
|
Nam JH, Chae SL, Park SH, Jeong YS, Joo MS, Kang CY, Cho HW. High level of sequence variation in the 3' noncoding region of Japanese encephalitis viruses isolated in Korea. Virus Genes 2003; 24:21-7. [PMID: 11928985 DOI: 10.1023/a:1014077719162] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The 3' noncoding region (NCR) of Japanese encephalitis (JE) viruses isolated in Korea and Nakayama-NIH strain have been sequenced and compared with the 3' NCR sequences of other JE isolates reported previously. Sequence alignment of about 60 nucleotides (based on consensus sequence number) immediately downstream of the open reading frame (ORF) stop codon in the 3' NCR of the Korean isolates showed high degree of sequence variation and deletion; thus, this region was termed as the variable region. However, in the predicted RNA secondary structures, a similar type loop exists at the 5'-terminus of the 3' NCR of JE viruses, despite low level of sequence homology (22%) and deletion in the variable region. The phylogenetic tree based on the 3' NCR sequences of JE viruses including the variable region showed a similar pattern to that based on envelope genes; in that, there are two genetically different types of JE viruses in Korea. Therefore, the variable region would be a useful genetic marker for JE viruses.
Collapse
Affiliation(s)
- Jae-Hwan Nam
- Department of Virology, Korea National Institute of Health, Seoul
| | | | | | | | | | | | | |
Collapse
|
50
|
Saluzzo JF. Empirically Derived Live-Attenuated Vaccines Against Dengue and Japanese Encephalitis. Adv Virus Res 2003; 61:419-43. [PMID: 14714439 DOI: 10.1016/s0065-3527(03)61011-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|