1
|
Shrestha N, Duvall MR, Bujarski JJ. Variability among the Isolates of Broad Bean Mottle Virus and Encapsidation of Host RNAs. Pathogens 2022; 11:pathogens11070817. [PMID: 35890061 PMCID: PMC9321246 DOI: 10.3390/pathogens11070817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/03/2022] [Accepted: 07/18/2022] [Indexed: 02/05/2023] Open
Abstract
Broad bean mottle bromovirus infects legume plants and is transmissible by insects. Several broad bean mottle virus (BBMV) isolates have been identified, including one in England (isolate Ba) and five in the Mediterranean countries: Libya (LyV), Morocco (MV), Syria (SV), Sudan (TU) and Tunisia (TV). Previously, we analyzed the nucleotide sequence of the Ba RNA and here we report on and compare it with another five Mediterranean variants. The RNA segments in the latter ones were extensively homologous, with some SNPs, single nucleotide deletions and insertions, while the number of mutations was higher in isolate Ba. Both the 5′ and 3′ untranslated terminal regions (UTRs) among the corresponding RNAs are highly conserved, reflecting their functionality in virus replication. The AUG initiation codons are within suboptimal contexts, possibly to adjust/regulate translation. The proteins 1a, 2a, 3a and coat protein (CP) are almost identical among the five isolates, but in Ba they have more amino acid (aa) substitutions. Phylogenetic analysis revealed the isolates from Morocco and Syria clustering with the isolate from England, while the variants from Libya, Tunisia and Sudan created a different clade. The BBMV isolates encapsidate a high content of host (ribosomal and messenger) RNAs. Our studies present BBMV as a useful model for bromoviruses infecting legumes.
Collapse
Affiliation(s)
- Nipin Shrestha
- Correspondence: (N.S.); (J.J.B.); Tel.: +1-305-684-2589 (N.S.); +1-815-753-0601 (J.J.B.); Fax: +1-815-753-7855 (J.J.B.)
| | | | - Jozef J. Bujarski
- Correspondence: (N.S.); (J.J.B.); Tel.: +1-305-684-2589 (N.S.); +1-815-753-0601 (J.J.B.); Fax: +1-815-753-7855 (J.J.B.)
| |
Collapse
|
2
|
Nigam D, LaTourrette K, Garcia-Ruiz H. Mutations in virus-derived small RNAs. Sci Rep 2020; 10:9540. [PMID: 32533016 PMCID: PMC7293216 DOI: 10.1038/s41598-020-66374-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 05/18/2020] [Indexed: 02/03/2023] Open
Abstract
RNA viruses exist as populations of genome variants. Virus-infected plants accumulate 21–24 nucleotide small interfering RNAs (siRNAs) derived from viral RNA (virus-derived siRNAs) through gene silencing. This paper describes the profile of mutations in virus-derived siRNAs for three members of the family Potyviridae: Turnip mosaic virus (TuMV), Papaya ringspot virus (PRSV) and Wheat streak mosaic virus (WSMV). For TuMV in Arabidopsis thaliana, profiles were obtained for mechanically inoculated rosette leaves and systemically infected cauline leaves and inflorescence. Results are consistent with selection pressure on the viral genome imposed by local and systemic movement. By genetically removing gene silencing in the plant and silencing suppression in the virus, our results showed that antiviral gene silencing imposes selection in viral populations. Mutations in siRNAs derived from a PRSV coat protein transgene in the absence of virus replication showed the contribution of cellular RNA-dependent RNA polymerases to the generation of mutations in virus-derived siRNAs. Collectively, results are consistent with two sources of mutations in virus-derived siRNAs: viral RNA-dependent RNA polymerases responsible for virus replication and cellular RNA-dependent RNA polymerases responsible for gene silencing amplification.
Collapse
Affiliation(s)
- Deepti Nigam
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska-Lincoln, Nebraska, United States of America
| | - Katherine LaTourrette
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska-Lincoln, Nebraska, United States of America
| | - Hernan Garcia-Ruiz
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska-Lincoln, Nebraska, United States of America.
| |
Collapse
|
3
|
de Wispelaere M, Sivanandam V, Rao ALN. Regulation of Positive-Strand Accumulation by Capsid Protein During Brome mosaic virus Infection In Planta. PHYTOPATHOLOGY 2020; 110:228-236. [PMID: 31411546 DOI: 10.1094/phyto-07-19-0236-fi] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A hallmark feature of (+)-strand RNA viruses of eukaryotic cells is that progeny (+)-strands are accumulated 100-fold over (-)-strands. Previous experimental evidence suggests that, in Brome mosaic virus (BMV), a plant-infecting member of the alphavirus-like superfamily, the addition of RNA3 and, specifically, translation of the wild-type (WT) coat protein (CP) gene contributes to increased accumulation of (+)-strands. It is unclear whether this stimulation of (+)-strand accumulation by CP is due to direct regulation of viral RNA replication or RNA stabilization via encapsidation. Analysis of BMV progeny RNA in Nicotiana benthamiana plants revealed that expression of RNA3 variants that did not express WT CP led to a severe defect in BMV (+)-strand accumulation. The (+)-strand accumulation could be rescued when CP was complemented in trans. To verify whether stimulation of (+)-strand accumulation is coupled with encapsidation, two independent mutations were engineered into CP open reading frames. An N-terminal deletion that prevented CP binding to the viral RNAs resulted in a severe reduction of BMV (+)-strand accumulation but stimulated (-)-strand accumulation over the WT. On the other hand, a C-terminal mutation affecting CP dimerization caused a significant decrease in (+)-strand accumulation but had no detectable effect on (-)-strand accumulation. Nucleotide sequences in the movement protein-coding region were also found to contribute to (+)-strand accumulation, in part by providing packaging signals for efficient RNA3 encapsidation. Overall, these results show that RNA encapsidation is a significant determinant of BMV RNA intracellular accumulation.
Collapse
Affiliation(s)
- Mélissanne de Wispelaere
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521-0122
| | - Venkatesh Sivanandam
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521-0122
| | - A L N Rao
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521-0122
| |
Collapse
|
4
|
Ruiz-Ruiz S, Spanò R, Navarro L, Moreno P, Peña L, Flores R. Citrus tristeza virus co-opts glyceraldehyde 3-phosphate dehydrogenase for its infectious cycle by interacting with the viral-encoded protein p23. PLANT MOLECULAR BIOLOGY 2018; 98:363-373. [PMID: 30392159 PMCID: PMC7088584 DOI: 10.1007/s11103-018-0783-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 10/01/2018] [Indexed: 05/03/2023]
Abstract
KEY MESSAGE Citrus tristeza virus encodes a unique protein, p23, with multiple functional roles that include co-option of the cytoplasmic glyceraldehyde 3-phosphate dehydrogenase to facilitate the viral infectious cycle. The genome of citrus tristeza virus (CTV), genus Closterovirus family Closteroviridae, is a single-stranded (+) RNA potentially encoding at least 17 proteins. One (p23), an RNA-binding protein of 209 amino acids with a putative Zn-finger and some basic motifs, displays singular features: (i) it has no homologues in other closteroviruses, (ii) it accumulates mainly in the nucleolus and Cajal bodies, and in plasmodesmata, and (iii) it mediates asymmetric accumulation of CTV RNA strands, intracellular suppression of RNA silencing, induction of some CTV syndromes and enhancement of systemic infection when expressed as a transgene ectopically or in phloem-associated cells in several Citrus spp. Here, a yeast two-hybrid screening of an expression library of Nicotiana benthamiana (a symptomatic experimental host for CTV), identified a transducin/WD40 domain protein and the cytosolic glyceraldehyde 3-phosphate dehydrogenase (GAPDH) as potential host interactors with p23. Bimolecular fluorescence complementation corroborated the p23-GAPDH interaction in planta and showed that p23 interacts with itself in the nucleolus, Cajal bodies and plasmodesmata, and with GAPDH in the cytoplasm (forming aggregates) and in plasmodesmata. The latter interaction was preserved in a p23 deletion mutant affecting the C-terminal domain, but not in two others affecting the Zn-finger and one internal basic motif. Virus-induced gene silencing of GAPDH mRNA resulted in a decrease of CTV titer as revealed by real-time RT-quantitative PCR and RNA gel-blot hybridization. Thus, like other viruses, CTV seems to co-opt GAPDH, via interaction with p23, to facilitate its infectious cycle.
Collapse
Affiliation(s)
- Susana Ruiz-Ruiz
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Politécnica de Valencia (UPV), Valencia, Spain
| | - Roberta Spanò
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Politécnica de Valencia (UPV), Valencia, Spain
- Dipartimento di Scienze del Suolo della Pianta e degli Alimenti, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Luis Navarro
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, Valencia, Spain
| | - Pedro Moreno
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, Valencia, Spain
| | - Leandro Peña
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Politécnica de Valencia (UPV), Valencia, Spain
| | - Ricardo Flores
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Politécnica de Valencia (UPV), Valencia, Spain.
| |
Collapse
|
5
|
Chaturvedi S, Rao ALN. Riboproteomics: A versatile approach for the identification of host protein interaction network in plant pathogenic noncoding RNAs. PLoS One 2017; 12:e0186703. [PMID: 29073276 PMCID: PMC5658079 DOI: 10.1371/journal.pone.0186703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/05/2017] [Indexed: 11/19/2022] Open
Abstract
Pathogenic or non-pathogenic small (17 to 30 nt) and long (>200 nt) non-coding RNAs (ncRNAs) have been implicated in the regulation of gene expression at transcriptional, post-transcriptional and epigenetic level by interacting with host proteins. However, lack of suitable experimental system precludes the identification and evaluation of the functional significance of host proteins interacting with ncRNAs. In this study, we present a first report on the application of riboproteomics to identify host proteins interacting with small, highly pathogenic, noncoding satellite RNA (sat-RNA) associated with Cucumber mosaic virus, the helper virus (HV). RNA affinity beads containing sat-RNA transcripts of (+) or (-)-sense covalently coupled to cyanogen bromide activated sepharose beads were incubated with total protein extracts from either healthy or HV-infected Nicotiana benthamiana leaves. RNA-protein complexes bound to the beads were eluted and subjected to MudPIT analysis. Bioinformatics programs PANTHER classification and WoLF-PSORT were used to further classify the identified host proteins in each case based on their functionality and subcellular distribution. Finally, we observed that the host protein network interacting with plus and minus-strand transcripts of sat-RNA, in the presence or absence of HV is distinct, and the global interactome of host proteins interacting with satRNA in either of the orientations is very different.
Collapse
Affiliation(s)
- Sonali Chaturvedi
- Department of Microbiology & Plant Pathology, University of California, Riverside, California, United States of America
| | - A. L. N. Rao
- Department of Microbiology & Plant Pathology, University of California, Riverside, California, United States of America
| |
Collapse
|
6
|
Rao ALN, Chaturvedi S, Garmann RF. Integration of replication and assembly of infectious virions in plant RNA viruses. Curr Opin Virol 2014; 9:61-6. [DOI: 10.1016/j.coviro.2014.09.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/04/2014] [Accepted: 09/18/2014] [Indexed: 02/08/2023]
|
7
|
Chaturvedi S, Rao ALN. Live cell imaging of interactions between replicase and capsid protein of Brome mosaic virus using Bimolecular Fluorescence Complementation: implications for replication and genome packaging. Virology 2014; 464-465:67-75. [PMID: 25046269 DOI: 10.1016/j.virol.2014.06.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 04/22/2014] [Accepted: 06/22/2014] [Indexed: 10/25/2022]
Abstract
In Brome mosaic virus, it was hypothesized that a physical interaction between viral replicase and capsid protein (CP) is obligatory to confer genome packaging specificity. Here we tested this hypothesis by employing Bimolecular Fluorescent Complementation (BiFC) as a tool for evaluating protein-protein interactions in living cells. The efficacy of BiFC was validated by a known interaction between replicase protein 1a (p1a) and protein 2a (p2a) at the endoplasmic reticulum (ER) site of viral replication. Additionally, co-expression in planta of a bona fide pair of interacting protein partners of p1a and p2a had resulted in the assembly of a functional replicase. Subsequent BiFC assays in conjunction with mCherry labeled ER as a fluorescent cellular marker revealed that CP physically interacts with p2a, but not p1a, and this CP:p2a interaction occurs at the cytoplasmic phase of the ER. The significance of the CP:p2a interaction in BMV replication and genome packaging is discussed.
Collapse
Affiliation(s)
- Sonali Chaturvedi
- Department of Plant Pathology & Microbiology, University of California, Riverside, CA 92521-0122, USA
| | - A L N Rao
- Department of Plant Pathology & Microbiology, University of California, Riverside, CA 92521-0122, USA.
| |
Collapse
|
8
|
Effects of defective interfering RNA on symptom induction by, and replication of, a novel partitivirus from a phytopathogenic fungus, Rosellinia necatrix. J Virol 2012; 87:2330-41. [PMID: 23236074 DOI: 10.1128/jvi.02835-12] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A novel mycovirus termed Rosellinia necatrix partitivirus 2 (RnPV2), isolated from a phytopathogenic fungus, Rosellinina necatrix strain W57, was molecularly and biologically characterized in both natural and experimental host fungi. Three double-stranded RNA (dsRNA) segments, dsRNA1, dsRNA2, and defective interfering dsRNA1 (DI-dsRNA1), whose sizes were approximately 2.0, 1.8, and 1.7 kbp, respectively, were detected in W57. While the dsRNA2 sequence, encoding the coat protein, was reported previously, dsRNA1 and DI-dsRNA1 were shown to encode competent and defective (truncated) RNA-dependent RNA polymerase, respectively. Artificial introduction of RnPV2 into an RNA silencing-defective, Dicer-like 2 knockout mutant (Δdcl-2) of a nonnatural host, Cryphonectria parasitica (chestnut blight fungus), resulted in successful infection by the DI-dsRNA1-carrying and -free RnPV2. The DI-dsRNA1-free RnPV2 strain was characterized by a higher ratio of accumulation of the intact dsRNA1 to dsRNA2, enhanced replication and severer symptom expression, compared with the DI-carrying strain. These findings confirmed the nature of DI-dsRNA1 as a DI-RNA. Both viral strains replicated to higher levels in a Δdcl-2 mutant than in a wild-type C. parasitica fungal strain (EP155) and induced severe symptoms in the Δdcl-2 mutant but subtle symptoms in EP155, indicating that the host RNA silencing targets the partitivirus. No obvious phenotypic effects of infection by either virus strain were detected in the natural host fungus. These combined results represent the first example of a partitivirus with DI-RNA that alters viral symptom induction in a host-dependent manner.
Collapse
|
9
|
Kwon SJ, Rao ALN. Emergence of distinct brome mosaic virus recombinants is determined by the polarity of the inoculum RNA. J Virol 2012; 86:5204-20. [PMID: 22357282 PMCID: PMC3347362 DOI: 10.1128/jvi.00351-12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 02/14/2012] [Indexed: 12/22/2022] Open
Abstract
Despite overwhelming interest in the impact exerted by recombination during evolution of RNA viruses, the relative contribution of the polarity of inoculum templates remains poorly understood. Here, by agroinfiltrating Nicotiana benthamiana leaves, we show that brome mosaic virus (BMV) replicase is competent to initiate positive-strand [(+)-strand] synthesis on an ectopically expressed RNA3 negative strand [(-) strand] and faithfully complete the replication cycle. Consequently, we sought to examine the role of RNA polarity in BMV recombination by expressing a series of replication-defective mutants of BMV RNA3 in (+) or (-) polarity. Temporal analysis of progeny sequences revealed that the genetic makeup of the primary recombinant pool is determined by the polarity of the inoculum template. When the polarity of the inoculum template was (+), the recombinant pool that accumulated during early phases of replication was a mixture of nonhomologous recombinants. These are longer than the inoculum template length, and a nascent 3' untranslated region (UTR) of wild-type (WT) RNA1 or RNA2 was added to the input mutant RNA3 3' UTR due to end-to-end template switching by BMV replicase during (-)-strand synthesis. In contrast, when the polarity of the inoculum was (-), the progeny contained a pool of native-length homologous recombinants generated by template switching of BMV replicase with a nascent UTR from WT RNA1 or RNA2 during (+)-strand synthesis. Repair of a point mutation caused by polymerase error occurred only when the polarity of the inoculum template was (+). These results contribute to the explanation of the functional role of RNA polarity in recombination mediated by copy choice mechanisms.
Collapse
Affiliation(s)
- Sun-Jung Kwon
- Department of Plant Pathology & Microbiology, University of California, Riverside, California, USA
| | | |
Collapse
|
10
|
RNA synthesis by the brome mosaic virus RNA-dependent RNA polymerase in human cells reveals requirements for de novo initiation and protein-protein interaction. J Virol 2012; 86:4317-27. [PMID: 22318148 DOI: 10.1128/jvi.00069-12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Brome mosaic virus (BMV) is a model positive-strand RNA virus whose replication has been studied in a number of surrogate hosts. In transiently transfected human cells, the BMV polymerase 2a activated signaling by the innate immune receptor RIG-I, which recognizes de novo-initiated non-self-RNAs. Active-site mutations in 2a abolished RIG-I activation, and coexpression of the BMV 1a protein stimulated 2a activity. Mutations previously shown to abolish 1a and 2a interaction prevented the 1a-dependent enhancement of 2a activity. New insights into 1a-2a interaction include the findings that helicase active site of 1a is required to enhance 2a polymerase activity and that negatively charged amino acid residues between positions 110 and 120 of 2a contribute to interaction with the 1a helicase-like domain but not to the intrinsic polymerase activity. Confocal fluorescence microscopy revealed that the BMV 1a and 2a colocalized to perinuclear region in human cells. However, no perinuclear spherule-like structures were detected in human cells by immunoelectron microscopy. Sequencing of the RNAs coimmunoprecipitated with RIG-I revealed that the 2a-synthesized short RNAs are derived from the message used to translate 2a. That is, 2a exhibits a strong cis preference for BMV RNA2. Strikingly, the 2a RNA products had initiation sequences (5'-GUAAA-3') identical to those from the 5' sequence of the BMV genomic RNA2 and RNA3. These results show that the BMV 2a polymerase does not require other BMV proteins to initiate RNA synthesis but that the 1a helicase domain, and likely helicase activity, can affect RNA synthesis by 2a.
Collapse
|
11
|
Kwon SJ, Seo JK, Rao ALN. Detection and quantification of viral and satellite RNAs in plant hosts. Methods Mol Biol 2012; 883:131-141. [PMID: 22589130 DOI: 10.1007/978-1-61779-839-9_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Northern blotting is a valuable method for detection and quantification of RNA in the field of virology. Although many methods including a various versions of polymerase chain reaction have been developed over the years, Northern blotting has been still considered as a useful and effective method for the analysis of progeny RNA accumulation for viral and subviral pathogens, such as satellite RNAs, in plant hosts. Here, we describe a detailed Northern blot protocol for efficient detection and quantification of viral and satellite RNAs from plant hosts.
Collapse
Affiliation(s)
- Sun-Jung Kwon
- Department of Plant Pathology and Microbiology, University of California, Riverside, CA, USA
| | | | | |
Collapse
|
12
|
Bamunusinghe D, Seo JK, Rao ALN. Subcellular localization and rearrangement of endoplasmic reticulum by Brome mosaic virus capsid protein. J Virol 2011; 85:2953-63. [PMID: 21209103 PMCID: PMC3067956 DOI: 10.1128/jvi.02020-10] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 12/29/2010] [Indexed: 01/04/2023] Open
Abstract
Genome packaging in the plant-infecting Brome mosaic virus (BMV), a member of the alphavirus-like superfamily, as well as in other positive-strand RNA viruses pathogenic to humans (e.g., poliovirus) and animals (e.g., Flock House virus), is functionally coupled to replication. Although the subcellular localization site of BMV replication has been identified, that of the capsid protein (CP) has remained elusive. In this study, the application of immunofluorescence confocal microscopy to Nicotiana benthamiana leaves expressing replication-derived BMV CP as a green fluorescent protein (GFP) fusion, in conjunction with antibodies to the CP and double-stranded RNA, a presumed marker of RNA replication, revealed that the subcellular localization sites of replication and CP overlap. Our temporal analysis by transmission electron microscopy of ultrastructural modifications induced in BMV-infected N. benthamiana leaves revealed a reticulovesicular network of modified endoplasmic reticulum (ER) incorporating large assemblies of vesicles derived from ER accumulated in the cytoplasm during BMV infection. Additionally, for the first time, we have found by ectopic expression experiments that BMV CP itself has the intrinsic property of modifying ER to induce vesicles similar to those present in BMV infections. The significance of CP-induced vesicles in relation to CP-organized viral functions that are linked to replication-coupled packaging is discussed.
Collapse
Affiliation(s)
- Devinka Bamunusinghe
- Department of Plant Pathology and Microbiology, University of California, Riverside, California 92521-0122
| | - Jang-Kyun Seo
- Department of Plant Pathology and Microbiology, University of California, Riverside, California 92521-0122
| | - A. L. N. Rao
- Department of Plant Pathology and Microbiology, University of California, Riverside, California 92521-0122
| |
Collapse
|
13
|
Hema M, Murali A, Ni P, Vaughan RC, Fujisaki K, Tsvetkova I, Dragnea B, Kao CC. Effects of amino-acid substitutions in the Brome mosaic virus capsid protein on RNA encapsidation. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:1433-1447. [PMID: 20923351 DOI: 10.1094/mpmi-05-10-0118] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Brome mosaic virus (BMV) packages its genomic RNAs (RNA1, RNA2, and RNA3) and subgenomic RNA4 into three different particles. However, since the RNAs in the virions have distinct lengths and electrostatic charges, we hypothesize that subsets of the virions should have distinct properties. A glutamine to cysteine substitution at position 120 of the capsid protein (CP) was found to result in a mutant virus named QC that exhibited a dramatically altered ratio of the RNAs in virions. RNA2 was far more abundant than the other RNAs, although the ratios could be affected by the host plant species. RNAs with the QC mutation were competent for replication early in the infection, suggesting that they were either selectively packaged or degraded after packaging. In support of the latter idea, low concentrations of truncated RNA1 that co-migrated with RNA2 were found in the QC virions. Spectroscopic analysis and peptide fingerprinting experiments showed that the QC virus capsid interacted with the encapsidated RNAs differently than did the wild type. Furthermore, wild-type BMV RNA1 was found to be more susceptible to nuclease digestion relative to RNA2 as a function of the buffer pH. Other BMV capsid mutants also had altered ratios of packaged RNAs.
Collapse
Affiliation(s)
- Masarapu Hema
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Seo JK, Kwon SJ, Choi HS, Kim KH. Evidence for alternate states of Cucumber mosaic virus replicase assembly in positive- and negative-strand RNA synthesis. Virology 2009; 383:248-60. [PMID: 19022467 DOI: 10.1016/j.virol.2008.10.033] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Revised: 08/30/2008] [Accepted: 10/21/2008] [Indexed: 01/22/2023]
Abstract
Cucumber mosaic virus (CMV) encodes two viral replication proteins, 1a and 2a. Accumulating evidence implies that different aspects of 1a-2a interaction in replication complex assembly are involved in the regulation of virus replication. To further investigate CMV replicase assembly and to dissect the involvement of replicase activities in negative- and positive-strand synthesis, we transiently expressed CMV RNAs and/or proteins in Nicotiana benthamiana leaves using a DNA or RNA-mediated expression system. Surprisingly, we found that, even in the absence of 1a, 2a is capable of synthesizing positive-strand RNAs, while 1a and 2a are both required for negative-strand synthesis. We also report evidence that 1a capping activities function independently of 2a. Moreover, using 1a mutants, we show that capping activities of 1a are crucial for viral translation but not for RNA transcription. These results support the concept that two or more alternate states of replicase assembly are involved in CMV replication.
Collapse
Affiliation(s)
- Jang-Kyun Seo
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | | | | | | |
Collapse
|
15
|
Karran RA, Hudak KA. Depurination within the intergenic region of Brome mosaic virus RNA3 inhibits viral replication in vitro and in vivo. Nucleic Acids Res 2008; 36:7230-9. [PMID: 19004869 PMCID: PMC2602774 DOI: 10.1093/nar/gkn896] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pokeweed antiviral protein (PAP) is a glycosidase of plant origin that has been shown to depurinate some viral RNAs in vitro. We have demonstrated previously that treatment of Brome mosaic virus (BMV) RNAs with PAP inhibited their translation in a cell-free system and decreased their accumulation in barley protoplasts. In the current study, we map the depurination sites on BMV RNA3 and describe the mechanism by which replication of the viral RNA is inhibited by depurination. Specifically, we demonstrate that the viral replicase exhibited reduced affinity for depurinated positive-strand RNA3 compared with intact RNA3, resulting in less negative-strand product. This decrease was due to depurination within the intergenic region of RNA3, between ORF3 and 4, and distant from the 3′ terminal core promoter required for initiation of negative-strand RNA synthesis. Depurination within the intergenic region alone inhibited the binding of the replicase to full-length RNA3, whereas depurination outside the intergenic region permitted the replicase to initiate negative-strand synthesis; however, elongation of the RNA product was stalled at the abasic nucleotide. These results support a role of the intergenic region in controlling negative-strand RNA synthesis and contribute new insight into the effect of depurination by PAP on BMV replication.
Collapse
Affiliation(s)
- Rajita A Karran
- Department of Biology, York University, Toronto, Ontario, Canada
| | | |
Collapse
|
16
|
Sztuba-Solinska J, Bujarski JJ. Insights into the single-cell reproduction cycle of members of the family Bromoviridae: lessons from the use of protoplast systems. J Virol 2008; 82:10330-40. [PMID: 18684833 PMCID: PMC2573203 DOI: 10.1128/jvi.00746-08] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Joanna Sztuba-Solinska
- Department of Biological Sciences, Plant Molecular Biology Center, Montgomery Hall, Northern Illinois University, De Kalb, IL 60115, USA
| | | |
Collapse
|
17
|
cis- and trans-acting functions of brome mosaic virus protein 1a in genomic RNA1 replication. J Virol 2007; 82:3045-53. [PMID: 18160434 DOI: 10.1128/jvi.02390-07] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
RNA viruses employ a combination of mechanisms to regulate their gene expression and replication. Brome mosaic virus (BMV) is a tripartite positive-strand RNA virus used to study the requirements for virus infection. BMV genomic RNA1 encodes protein 1a, which contains a methyltransferase (MT) domain and a helicase domain that are required for replication. 1a forms a complex with the 2a RNA-dependent RNA polymerase for the replication and transcription of all BMV RNAs. RNA1 expressed with 2a from Agrobacterium-based vectors can result in RNA1 replication in Nicotiana benthamiana. A mutation in the 1a translation initiation codon significantly decreased RNA1 accumulation even when wild-type (WT) 1a and 2a were provided in trans. Therefore, efficient RNA1 replication requires 1a translation from RNA1 in cis, indicating a linkage between replication and translation. Mutation analyses showed that the full-length 1a protein was required for efficient RNA1 replication, not just the process of translation. Three RNA1s with mutations in the 1a MT domain could be partially rescued by WT 1a expressed in trans, indicating that the cis-acting function of 1a was retained. Furthermore, an RNA motif in the 5'-untranslated region of RNA1, named the B box, was required for 1a to function in cis and in trans for BMV RNA accumulation. The B box is required for the formation of the replication factory (M. Schwartz, J. Chen, M. Janda, M. Sullivan, J. den Boon, and P. Ahlquist, Mol. Cell 9:505-514, 2002). Results in this work demonstrate a linkage between BMV RNA1 translation and replication.
Collapse
|
18
|
Deng M, Schneider WL, Allison RF. Synthesis of minus-strand copies of a viral transgene during viral infections of transgenic plants. Virus Res 2006; 122:171-4. [PMID: 16965831 DOI: 10.1016/j.virusres.2006.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Revised: 05/26/2006] [Accepted: 05/31/2006] [Indexed: 10/24/2022]
Abstract
Viral transgenes designed to provide resistance to specific plant viruses frequently consist of the coat protein gene and a contiguous 3' untranslated region (3'UTR) of viral origin. In many RNA viruses the viral 3'UTR establishes a recognition and initiation site for viral RNA replication. Thus the transgenic transcript may contain a functional virus replication site. Experiments were designed to determine if a challenging virus would recognize this replication site on a nuclear derived transcript and synthesize the complementary RNA. These data demonstrate that upon infection by a virus that recognizes the viral replication site, a full-length complement of the transgenic transcript is produced. In these experiments the replication complex of Brome Mosaic bromovirus recognized the transgenic transcript derived from a Cowpea Chlorotic Mottle bromovirus transgene. The resulting RNA may contribute to RNA recombination events.
Collapse
Affiliation(s)
- Min Deng
- Department of Plant Biology and Department of Plant Pathology, Plant Biology Building, Michigan State University, East Lansing, MI 48824-1312, USA.
| | | | | |
Collapse
|
19
|
Annamalai P, Rao ALN. Replication-independent expression of genome components and capsid protein of brome mosaic virus in planta: a functional role for viral replicase in RNA packaging. Virology 2005; 338:96-111. [PMID: 15936794 DOI: 10.1016/j.virol.2005.05.013] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2005] [Revised: 04/11/2005] [Accepted: 05/11/2005] [Indexed: 11/24/2022]
Abstract
To begin elucidation of the relationship between Brome mosaic virus (BMV) replication and encapsidation, we used a T-DNA-based Agrobacterium-mediated transient expression (agroinfiltration) system in Nicotiana benthamiana leaves to express either individual or desired pairs of the three genomic RNAs. The packaging competence of these RNAs into virions formed by the transiently expressed coat protein (CP) was analyzed. We found that in the absence of a functional replicase, assembled virions contained non-replicating viral RNAs (RNA1 or RNA2 or RNA3 or RNA1 + RNA3 or RNA2 + RNA3) as well as cellular RNAs. By contrast, virions assembled in the presence of a functional replicase contained only viral RNAs. To further elucidate the specificity exhibited by the functional viral replicase in RNA packaging, replication-defective RNA1 and RNA2 were constructed by deleting the 3' tRNA-like structure (3' TLS). Co-expression of TLS-less RNA1 and RNA2 with wt RNA3 resulted in efficient synthesis of subgenomic RNA4. Virions recovered from leaves co-expressing TLS-less RNA1 and RNA2 and either CP mRNA or wt RNA3 exclusively contained viral RNAs. These results demonstrated that packaging of BMV genomic RNAs is not replication dependent whereas expression of a functional viral replicase plays an active role in increasing specificity of RNA packaging.
Collapse
Affiliation(s)
- Padmanaban Annamalai
- Department of Plant Pathology, University of California, Riverside, CA 92521-0122, USA
| | | |
Collapse
|
20
|
Picard D, Kao CC, Hudak KA. Pokeweed antiviral protein inhibits brome mosaic virus replication in plant cells. J Biol Chem 2005; 280:20069-75. [PMID: 15764597 DOI: 10.1074/jbc.m413452200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pokeweed antiviral protein (PAP) is a ribosome-inactivating protein isolated from the pokeweed plant (Phytolacca americana) that inhibits the proliferation of several plant and animal viruses. We have shown previously that PAP and nontoxic mutants of PAP can directly depurinate brome mosaic virus (BMV) RNA in vitro, resulting in reduced viral protein translation. Here we expand on these initial studies and, using a barley protoplast system, demonstrate that recombinant PAP and nontoxic mutants isolated from E. coli are able to reduce the accumulation of BMV RNAs in vivo. Pretreatment of only BMV RNA3 with PAP prior to transfection of barley protoplasts reduced the accumulation of all BMV RNAs, with a more severe effect on subgenomic RNA4 levels. Using in vitro RNA synthesis assays, we show that a depurinated template causes the BMV replicase to stall at the template nucleotide adjacent to the missing base. These results provide new insight into the antiviral mechanism of PAP, namely that PAP depurination of BMV RNA impedes both RNA replication and subgenomic RNA transcription. These novel activities are distinct from the PAP-induced reduction of viral RNA translation and represent new targets for the inhibition of viral infection.
Collapse
Affiliation(s)
- Daniel Picard
- Department of Biology, York University, Toronto, Ontario, Canada
| | | | | |
Collapse
|
21
|
Brumer Y, Shakhnovich EI. Selective advantage for conservative viruses. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2005; 71:031903. [PMID: 15903455 DOI: 10.1103/physreve.71.031903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2004] [Revised: 12/23/2004] [Indexed: 05/02/2023]
Abstract
In this article we study the full semiconservative treatment of a model for the coevolution of a virus and an adaptive immune system. Regions of viability are calculated for both conservatively and semiconservatively replicating viruses interacting with a realistic semiconservatively replicating immune system. The conservative virus is found to have a selective advantage in the form of an ability to survive in regions with a wider range of mutation rates than its semiconservative counterpart, as well as an increased replication rate where both species can survive. This may help explain the existence of a rich range of viruses with conservatively replicating genomes, a trait that is found nowhere else in nature.
Collapse
|
22
|
Grdzelishvili VZ, Garcia-Ruiz H, Watanabe T, Ahlquist P. Mutual interference between genomic RNA replication and subgenomic mRNA transcription in brome mosaic virus. J Virol 2005; 79:1438-51. [PMID: 15650170 PMCID: PMC544081 DOI: 10.1128/jvi.79.3.1438-1451.2005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Replication by many positive-strand RNA viruses includes genomic RNA amplification and subgenomic mRNA (sgRNA) transcription. For brome mosaic virus (BMV), both processes occur in virus-induced, membrane-associated compartments, require BMV replication factors 1a and 2a, and use negative-strand RNA3 as a template for genomic RNA3 and sgRNA syntheses. To begin elucidating their relations, we examined the interaction of RNA3 replication and sgRNA transcription in Saccharomyces cerevisiae expressing 1a and 2a, which support the full RNA3 replication cycle. Blocking sgRNA transcription stimulated RNA3 replication by up to 350%, implying that sgRNA transcription inhibits RNA3 replication. Such inhibition was independent of the sgRNA-encoded coat protein and operated in cis. We further found that sgRNA transcription inhibited RNA3 replication at a step or steps after negative-strand RNA3 synthesis, implying competition with positive-strand RNA3 synthesis for negative-strand RNA3 templates, viral replication factors, or common host components. Consistent with this, sgRNA transcription was stimulated by up to 400% when mutations inhibiting positive-strand RNA3 synthesis were introduced into the RNA3 5'-untranslated region. Thus, BMV subgenomic and genomic RNA syntheses mutually interfered with each other, apparently by competition for one or more common factors. In plant protoplasts replicating all three BMV genomic RNAs, mutations blocking sgRNA transcription often had lesser effects on RNA3 accumulation, possibly because RNA3 also competed with RNA1 and RNA2 replication templates and because any increase in RNA3 replication at the expense of RNA1 and RNA2 would be self-limited by decreased 1a and 2a expression from RNA1 and RNA2.
Collapse
Affiliation(s)
- Valery Z Grdzelishvili
- Institute for Molecular Virology, University of Wisconsin-Madison, 1525 Linden Dr., Madison, WI 53706-1596, USA
| | | | | | | |
Collapse
|
23
|
Hema M, Kao CC. Template sequence near the initiation nucleotide can modulate brome mosaic virus RNA accumulation in plant protoplasts. J Virol 2004; 78:1169-80. [PMID: 14722272 PMCID: PMC321408 DOI: 10.1128/jvi.78.3.1169-1180.2004] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2003] [Accepted: 10/16/2003] [Indexed: 11/20/2022] Open
Abstract
Bromoviral templates for plus-strand RNA synthesis are rich in A or U nucleotides in comparison to templates for minus-strand RNA synthesis. Previous studies demonstrated that plus-strand RNA synthesis by the brome mosaic virus (BMV) RNA replicase is more efficient if the template contains an A/U-rich template sequence near the initiation site (K. Sivakumaran and C. C. Kao, J. Virol. 73:6415-6423, 1999). These observations led us to examine the effects of nucleotide changes near the template's initiation site on the accumulation of BMV RNA3 genomic minus-strand, genomic plus-strand, and subgenomic RNAs in barley protoplasts transfected with wild-type and mutant BMV transcripts. Mutations in the template for minus-strand synthesis had only modest effects on BMV replication in barley protoplasts. Mutants with changes to the +3, +5, and +7 template nucleotides accumulated minus-strand RNA at levels similar to the the wild-type level. However, mutations at positions adjacent to the initiation cytidylate in the templates for genomic and subgenomic plus-strand RNA synthesis significantly decreased RNA accumulation. For example, changes at the third template nucleotide for plus-strand RNA3 synthesis resulted in RNA accumulation at between 18 and 24% of the wild-type level, and mutations in the third template nucleotide for subgenomic RNA4 resulted in accumulations at between 7 and 14% of the wild-type level. The effects of the mutations generally decreased as the mutations occurred further from the initiation nucleotide. These findings demonstrate that there are different requirements of the template sequence near the initiation nucleotide for BMV RNA accumulation in plant cells.
Collapse
Affiliation(s)
- M Hema
- Department of Biophysics and Biochemistry, Texas A&M University, College Station, Texas 77843, USA
| | | |
Collapse
|
24
|
Eckerle LD, Ball LA. Replication of the RNA segments of a bipartite viral genome is coordinated by a transactivating subgenomic RNA. Virology 2002; 296:165-76. [PMID: 12036328 DOI: 10.1006/viro.2002.1377] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The insect nodavirus Flock house virus (FHV) has a small genome divided between two segments of positive-sense RNA, RNA1 and RNA2. RNA1 encodes the RNA-dependent RNA polymerase (RdRp) catalytic subunit and templates the synthesis of a subgenomic RNA (RNA3) that encodes two small nonstructural proteins. Replication of RNA2, which encodes a precursor to the viral capsid proteins, suppresses RNA3 synthesis. Here we report that RNA1 mutants deficient in RNA3 synthesis failed to support RNA2 replication. This effect was not caused by alterations in the RdRp catalytic subunit nor by a lack of the proteins encoded by RNA3. Furthermore, RNA3 supplied in trans from an exogenous source restored RNA2 replication. These data indicate that RNA3 transactivates the replication of RNA2, a novel property for a viral RNA. We propose that the RNA3 dependence of RNA2 replication serves to coordinate replication of the FHV genome segments.
Collapse
Affiliation(s)
- Lance D Eckerle
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | |
Collapse
|
25
|
Vives MC, Galipienso L, Navarro L, Moreno P, Guerri J. Characterization of two kinds of subgenomic RNAs produced by citrus leaf blotch virus. Virology 2002; 295:328-36. [PMID: 12033792 DOI: 10.1006/viro.2001.1349] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Citrus leaf blotch virus (CLBV) has a single-stranded, positive-sense, genomic RNA (gRNA) organized in three ORFs, which encode a polyprotein involved in replication (RP), a potential movement protein (MP), and coat protein (CP). Northern blot hybridization of total, virion, or double-stranded RNA with probes of different gRNA regions revealed that CLBV produces two 3'-coterminal and two 5'-coterminal subgenomic RNAs (sgRNAs). The 3'-coterminal sgRNAs contain the MP (3'MP sgRNA) and CP (3'CP sgRNA) genes and untranslated regions (UTRs) of 123 and 284 nt, respectively, at their 5' end. These sgRNAs start with a hexanucleotide which is also present at the 5' terminus of the gRNA. The 5'-coterminal sgRNAs have 6795 and 5798 nt, colinear with the gRNA, and contain ORF1 and most MP gene (5'RPMP sgRNA) and most ORF1 (5'RP sgRNA), respectively. Their 3' termini map 35 and 40 nt upstream of the transcription initiation of the 3'CP and 3'MP sgRNAs, respectively, next to a potential promoter element. Our results suggest that, as in alphaviruses, CLBV internal genes are expressed via 3'-coterminal sgRNAs transcribed from the minus gRNA strand. The 5'-coterminal sgRNAs may result from early termination of the gRNA during the plus-strand synthesis.
Collapse
Affiliation(s)
- María C Vives
- Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113 Moncada, Valencia, Spain
| | | | | | | | | |
Collapse
|
26
|
Satyanarayana T, Gowda S, Ayllón MA, Albiach-Martí MR, Rabindran S, Dawson WO. The p23 protein of citrus tristeza virus controls asymmetrical RNA accumulation. J Virol 2002; 76:473-83. [PMID: 11752137 PMCID: PMC136848 DOI: 10.1128/jvi.76.2.473-483.2002] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2001] [Accepted: 10/11/2001] [Indexed: 11/20/2022] Open
Abstract
Citrus tristeza virus (CTV), a member of the Closteroviridae, has a 19.3-kb positive-stranded RNA genome that is organized into 12 open reading frames (ORFs) with the 10 3' genes expressed via a nested set of nine or ten 3'-coterminal subgenomic mRNAs (sgRNAs). Relatively large amounts of negative-stranded RNAs complementary to both genomic and sgRNAs accumulate in infected cells. As is characteristic of RNA viruses, wild-type CTV produced more positive than negative strands, with the plus-to-minus ratios of genomic and sgRNAs estimated at 10 to 20:1 and 40 to 50:1, respectively. However, a mutant with all of the 3' genes deleted replicated efficiently, but produced plus to minus strands at a markedly decreased ratio of 1 to 2:1. Deletion analysis of 3'-end genes revealed that the p23 ORF was involved in asymmetric RNA accumulation. A mutation which caused a frameshift after the fifth codon resulted in nearly symmetrical RNA accumulation, suggesting that the p23 protein, not a cis-acting element within the p23 ORF, controls asymmetric accumulation of CTV RNAs. Further in-frame deletion mutations in the p23 ORF suggested that amino acid residues 46 to 180, which contained RNA-binding and zinc finger domains, were indispensable for asymmetrical RNA accumulation, while the N-terminal 5 to 45 and C-terminal 181 to 209 amino acid residues were not absolutely required. Mutation of conserved cysteine residues to alanines in the zinc finger domain resulted in loss of activity of the p23 protein, suggesting involvement of the zinc finger in asymmetric RNA accumulation. The absence of p23 gene function was manifested by substantial increases in accumulation of negative-stranded RNAs and only modest decreases in positive-stranded RNAs. Moreover, the substantial decrease in the accumulation of negative-stranded coat protein (CP) sgRNA in the presence of the functional p23 gene resulted in a 12- to 15-fold increase in the expression of the CP gene. Apparently the excess negative-stranded sgRNA reduces the availability of the corresponding positive-stranded sgRNA as a messenger. Thus, the p23 protein controls asymmetric accumulation of CTV RNAs by downregulating negative-stranded RNA accumulation and indirectly increases expression of 3' genes.
Collapse
Affiliation(s)
- Tatineni Satyanarayana
- Citrus Research and Education Center, University of Florida, Lake Alfred, Florida 33850, USA
| | | | | | | | | | | |
Collapse
|
27
|
Adkins S, Lewandowski DJ. Small-Scale Isolation of Viral RNA-Dependent RNA Polymerase from Protoplasts Inoculated with In Vitro Transcripts. PHYTOPATHOLOGY 2001; 91:747-752. [PMID: 18944031 DOI: 10.1094/phyto.2001.91.8.747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Cowpea chlorotic mottle virus (CCMV) replicated in tobacco suspension cell protoplasts inoculated with in vitro transcripts of CCMV RNA1, 2, and 3. CCMV RNA-dependent RNA polymerase (RdRp) isolated from these protoplasts specifically recognized CCMV and Brome mosaic virus (BMV) subgenomic RNA promoters and directed in vitro RNA synthesis in a manner indistinguishable from CCMV RdRp more laboriously isolated from systemically infected cowpea leaves. Omission of CCMV RNA3 from the protoplast inoculum or replacement with in vitro transcripts of BMV RNA3 reduced CCMV (+)-strand RNA1 and 2 accumulation to approximately 1/40 and approximately 1/10, respectively, of the level attained when CCMV RNA3 was present. The absence of CCMV RNA3 did not prevent assembly and isolation of highly active, template-dependent and template-specific CCMV RdRp, which directed synthesis of products identical in size to those of RdRp isolated from protoplasts inoculated with all three CCMV genomic RNAs. These results demonstrate that CCMV RNA1 and 2 are sufficient for CCMV replication and RdRp assembly in tobacco protoplasts. This approach for isolation of functional viral RdRp will be especially useful for viruses for which large quantities of infected tissue are unavailable, such as those with specific tissue tropisms or mutants incapable of systemic movement.
Collapse
|
28
|
Gowda S, Satyanarayana T, Ayllón MA, Albiach-Martí MR, Mawassi M, Rabindran S, Garnsey SM, Dawson WO. Characterization of the cis-acting elements controlling subgenomic mRNAs of citrus tristeza virus: production of positive- and negative-stranded 3'-terminal and positive-stranded 5'-terminal RNAs. Virology 2001; 286:134-51. [PMID: 11448167 DOI: 10.1006/viro.2001.0987] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Citrus tristeza virus (CTV), a member of the Closteroviridae, has an approximately 20-kb positive-sense RNA genome with two 5' ORFs translated from the genomic RNA and 10 3' genes expressed via nine or ten 3'-terminal subgenomic (sg) RNAs. The expression of the 3' genes appears to have properties intermediate between the smaller viruses of the "alphavirus supergroup" and the larger viruses of the Coronaviridae. The sgRNAs are contiguous with the genome, without a common 5' leader, and are associated with large amounts of complementary sgRNAs. Production of the different sgRNAs is regulated temporally and quantitatively, with the highly expressed genes having noncoding regions (NCR) 5' of the ORFs. The cis-acting elements that control the highly expressed major coat protein (CP) gene and the intermediately expressed minor coat protein (CPm) gene were mapped and compared. Mutational analysis showed that the CP sgRNA controller element mapped within nts -47 to -5 upstream of the transcription start site, entirely within the NCR, while the CPm control region mapped within a 57 nt sequence within the upstream ORF. Although both regions were predicted to fold into two stem-loop structures, mutagenesis suggested that primary structure might be more important than the secondary structure. Because each controller element produced large amounts of 3'-terminal positive- and negative-stranded sgRNAs, we could not differentiate whether the cis-acting element functioned as a promoter or terminator, or both. Reversal of the control element unexpectedly produced large amounts of a negative-stranded sgRNA apparently by termination of negative-stranded genomic RNA synthesis. Further examination of controller elements in their native orientation showed normal production of abundant amounts of positive-stranded sgRNAs extending to near the 5'-terminus, corresponding to termination at each controller element. Thus, each controller element produced three sgRNAs, a 5'-terminal positive strand and both positive- and negative-stranded 3'-terminal RNAs. Therefore, theoretically CTV could produce 30-33 species of RNAs in infected cells.
Collapse
Affiliation(s)
- S Gowda
- Department of Plant Pathology, University of Florida, Lake Alfred, Florida 33850, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Kao CC, Sivakumaran K. Brome mosaic virus, good for an RNA virologist's basic needs. MOLECULAR PLANT PATHOLOGY 2000; 1:91-97. [PMID: 20572956 DOI: 10.1046/j.1364-3703.2000.00017.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Abstract Taxonomic relationship: Type member of the Bromovirus genus, family Bromoviridae. A member of the alphavirus-like supergroup of positive-sense single-stranded RNA viruses. Physical properties: Virions are nonenveloped icosahedrals made up of 180 coat protein subunits (Fig. 1). The particles are 26 nm in diameter and contain 22% nucleic acid and 78% protein. The BMV genome is composed of three positive-sense, capped RNAs: RNA1 (3.2 kb), RNA2 (2.9 kb), RNA3 (2.1 kb) (Fig. 2). Viral proteins: RNA1 encodes protein 1a, containing capping and putative RNA helicase activities. RNA2 encodes protein 2a, a putative RNA-dependent RNA polymerase. RNA3 codes for two proteins: 3a, which is required for cell-to-cell movement, and the capsid protein. The capsid is translated from a subgenomic RNA, RNA4 (1.2 kb). Hosts: Monocots in the Poacea family, including Bromus inermis, Zea mays and Hordeum vulgare, in which BMV causes brown streaks. BMV can also infect the dicots Nicotiana benthamiana and several Chenopodium species. In N. benthamiana, the infection is asymptomatic while infection of Chenopodium can cause either necrotic or chlorotic lesions. Useful website:http://www4.ncbi.nlm.nih.gov/ICTVdb/ICTVdB/10030001.htm.
Collapse
Affiliation(s)
- C C Kao
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | |
Collapse
|
30
|
Sivakumaran K, Kim CH, Tayon R, Kao C. RNA sequence and secondary structural determinants in a minimal viral promoter that directs replicase recognition and initiation of genomic plus-strand RNA synthesis. J Mol Biol 1999; 294:667-82. [PMID: 10610788 PMCID: PMC7172556 DOI: 10.1006/jmbi.1999.3297] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Viral RNA replication provides a useful system to study the structure and function of RNAs and the mechanism of RNA synthesis from RNA templates. Previously we demonstrated that a 27 nt RNA from brome mosaic virus (BMV) can direct correct initiation of genomic plus-strand RNA synthesis by the BMV replicase. In this study, using biochemical, nuclear magnetic resonance, and thermodynamic analyses, we determined that the secondary structure of this 27 nt RNA can be significantly altered and retain the ability to direct RNA synthesis. In contrast, we find that position-specific changes in the RNA sequence will affect replicase recognition, modulate the polymerization process, and contribute to the differential accumulation of viral RNAs. These functional results are in agreement with the phylogenetic analysis of BMV and related viral sequences and suggest that a similar mechanism of RNA synthesis takes place for members of the alphavirus superfamily.
Collapse
Affiliation(s)
- K Sivakumaran
- Department of Biology Indiana University Bloomington, IN, 47405, USA
| | - Chul-Hyun Kim
- Department of Chemistry University of California Berkeley, and Physical Bioscience Division, Lawrence Berkeley National Laboratory Berkeley, CA, 94720, USA
| | - Robert Tayon
- Department of Biology Indiana University Bloomington, IN, 47405, USA
| | - C.Cheng Kao
- Department of Biology Indiana University Bloomington, IN, 47405, USA
- Corresponding author
| |
Collapse
|
31
|
Szilassy D, Salánki K, Balázs E. Stunting induced by cucumber mosaic cucumovirus-infected Nicotiana glutinosa is determined by a single amino acid residue in the coat protein. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 1999; 12:1105-13. [PMID: 10624018 DOI: 10.1094/mpmi.1999.12.12.1105] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
R-CMV, a subgroup II strain of cucumber mosaic cucumovirus (CMV) induces a very strong stunting response in Nicotiana glutinosa plants, while Trk7-CMV causes green mosaic in this host. The genetic determinant of this phenotype was mapped to a 534-nucleotide region at the 3' end of RNA3 with biologically active, full-length cDNA clones of R-CMV and Trk7-CMV and RNA3 chimeras of the two strains. Within this region, R-CMV differs from Trk7-CMV by a single amino acid at position 193 in the coat protein. Changing the codon for Lys at this position to Asn or Ser, by site-directed mutagenesis, also changed the phenotype of the viruses from green mosaic to induction of stunting. Profound differences in both the spread and the accumulation of the viruses causing stunting and green mosaic were observed, although these did not correlate with the host specificity of stunting. Since expression of R-CMV coat protein with the PVX vector did not cause stunting, the data suggest that the presence of other CMV components is necessary for the induction of this symptom.
Collapse
Affiliation(s)
- D Szilassy
- Agricultural Biotechnology Center, Gödöllö, Hungary.
| | | | | |
Collapse
|
32
|
Wu B, White KA. Formation and amplification of a novel tombusvirus defective RNA which lacks the 5' nontranslated region of the viral genome. J Virol 1998; 72:9897-905. [PMID: 9811726 PMCID: PMC110502 DOI: 10.1128/jvi.72.12.9897-9905.1998] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Defective interfering (DI) RNAs of tomato bushy stunt virus (TBSV) are small, subgenomic, helper-dependent replicons that are believed to be generated primarily by aberrant events during replication of the plus-sense RNA genome. Prototypical TBSV DI RNAs contain four noncontiguous segments (regions I through IV) derived from the 5' nontranslated region (NTR) (I), an internal section (II), and the 3'-terminal portion (III and IV) of the viral genome. We have studied the formation of these molecules by using engineered precursor DI RNA transcripts and report here the consistent accumulation of a novel defective RNA species, designated RNA B. Northern blot, primer extension, and sequence analyses indicated that, unlike prototypical DI RNAs, RNA B lacks region I. In vitro transcripts corresponding to the region II-III-IV structure of RNA B were amplified when coinoculated with helper, indicating that the 5' NTR of the genome does not harbor cis-acting replication elements essential for viral RNA replication. Region I is, however, important for DI RNA fitness, since molecules lacking it accumulated to significantly lower levels ( approximately 10-fold reduction). Analysis of the minus-strand sequence of region I led to the identification of an RNA undecamer sequence, arranged in tandem, at its very 3' terminus. Additional variants of the undecamer motif were also identified at internal positions in region I and in the negative strands of regions II, III, and IV. Features of the undecamer motif, the consensus of which is (-)3'-CCCAAAGAGAG, are consistent with a role as a cis-acting replication element. It is proposed that the ability of RNA B to be amplified is due, in part, to compensatory effects of a strategically positioned undecamer motif in region II. Possible replicase-mediated mechanisms for the generation of this novel viral RNA are also presented.
Collapse
Affiliation(s)
- B Wu
- Department of Biology, York University, Toronto, Ontario, Canada M3J 1P3
| | | |
Collapse
|
33
|
Lewandowski DJ, Dawson WO. Deletion of internal sequences results in tobacco mosaic virus defective RNAs that accumulate to high levels without interfering with replication of the helper virus. Virology 1998; 251:427-37. [PMID: 9837806 DOI: 10.1006/viro.1998.9420] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Deletion of certain internal sequences of the tobacco mosaic tobamovirus (TMV) genome was required to create replication-defective RNAs (dRNA) that were replicated in trans by TMV. All dRNAs that accumulated to detectable levels were missing nucleotides 3420-4902, which appeared to constitute a core region that inhibited replication in trans. Deletion of additional sequences resulted in dRNAs that varied tremendously in ability to be replicated from none to levels exceeding that of the helper viral RNA. Accumulation of dRNA negative- and positive-stranded RNAs of each dRNA paralleled those of the helper virus. Negative-stranded RNA accumulation of both helper and dRNA ceased at the same early time in the infection while synthesis of both positive-stranded RNAs continued, suggesting that both dRNAs and helper virus RNAs were synthesized from the same pool of replicase complexes. Positive- to negative-stranded RNA ratios for the dRNAs were similar to, or slightly greater than the wild-type helper virus. Full-length dRNAs were not supported in trans by a replication-competent helper virus. Even though some of the artificially constructed dRNAs accumulated to levels exceeding the level of the helper virus, none appreciably affected the replication of the helper virus, suggesting that the dRNAs are produced from "excess" replicase capacity.
Collapse
Affiliation(s)
- D J Lewandowski
- Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, 33850, USA.
| | | |
Collapse
|
34
|
Nass PH, Domier LL, Jakstys BP, D'Arcy CJ. In Situ Localization of Barley Yellow Dwarf Virus-PAV 17-kDa Protein and Nucleic Acids in Oats. PHYTOPATHOLOGY 1998; 88:1031-1039. [PMID: 18944814 DOI: 10.1094/phyto.1998.88.10.1031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
ABSTRACT Barley yellow dwarf virus strain PAV (BYDV-PAV) RNA and the 17-kDa protein were localized in BYDV-PAV-infected oat cells using in situ hybridization and in situ immunolocalization assays, respectively. The in situ hybridization assay showed labeling of filamentous material in the nucleus, cytoplasm, and virus-induced vesicles with both sense and antisense nucleic acid probes, suggesting that the filamentous material found in BYDV-PAV-infected cells contains viral RNA. BYDV-PAV negative-strand RNA was detected before virus particles were observed, which indicates that RNA replication is initiated before synthesis of viral coat protein in the cytoplasm. The 17-kDa protein was associated with filamentous material in the cytoplasm, nucleus, and virus-induced vesicles. The labeling densities observed using antibodies against the 17-kDa protein were similar in the nucleus and cytoplasm. No labeling of the 17-kDa protein was observed in plasmodesmata, but filaments in the nuclear pores occasionally were labeled. Since BYDV-PAV RNA and 17-kDa protein colocalized within infected cells, it is possible that single-stranded viral RNA is always associated with the 17-kDa protein in vivo. The 17-kDa protein may be required for viral nucleic acid filaments to traverse the nuclear membrane or other membrane systems.
Collapse
|
35
|
He XH, Rao AL, Creamer R. Characterization of Beet Yellows Closterovirus-Specific RNAs in Infected Plants and Protoplasts. PHYTOPATHOLOGY 1997; 87:347-352. [PMID: 18945179 DOI: 10.1094/phyto.1997.87.3.347] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
ABSTRACT Tetragonia expansa plants infected with a California isolate of beet yellows virus (BYV-60) contained multiple BYV-specific RNAs identified by Northern blot hybridization. These RNAs were identified by cDNA probes specific to six open reading frames (ORFs). One genomic RNA and five subgenomic (sg) RNAs representing the p65/p6.4, p64, p24, p22, and p21 ORFs were identified. A probe derived from the 3'-terminal ORF (p21) hybridized to each of the sgRNAs, indicating the RNAs are 3' coterminal. Hybridization with 5'- and 3'-end probes indicated that preparations of BYV particles contained the genomic RNA as well as two additional RNA molecules corresponding in size to the coat protein (CP) sgRNA and an unidentified RNA. A Chenopodium quinoa protoplast system also was used to study BYV replication. The temporal accumulation of BYV-specific RNAs and CP was investigated in protoplasts transfected with purified virion RNA. Accumulation of genomic plus-strand RNA was evident as early as 15 h postinoculation. The development of this protoplast system is significant for studies of closterovirus replication.
Collapse
|
36
|
Kim KH, Hemenway C. The 5' nontranslated region of potato virus X RNA affects both genomic and subgenomic RNA synthesis. J Virol 1996; 70:5533-40. [PMID: 8764066 PMCID: PMC190512 DOI: 10.1128/jvi.70.8.5533-5540.1996] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
A tobacco protoplast system was developed to analyze cis-acting sequences required for potato virus X (PVX) replication. Protoplasts inoculated with transcripts derived from a PVX cDNA clone or from clones containing mutations in their 5' nontranslated regions (NTRs) were assayed for RNA production by S1 nuclease protection assays. A time course of plus- and minus-strand-RNA accumulation indicated that both minus- and plus-strand PVX RNAs were detectable at 0.5 h postinoculation. Although minus-strand RNAs accumulated more rapidly than plus-strand RNAs, maximum levels of plus-strand RNAs were 40- to 80-fold higher. On the basis of these data, time points were chosen for determination of RNA levels in protoplasts inoculated with PVX clones containing deletions or an insertion in their 5' NTRs. Deletions of more than 12 nucleotides from the 5' end, internal deletions, and one insertion in the 5' NTR resulted in substantially decreased levels of plus-strand-RNA production. In contrast, all modified transcripts were functional for minus-strand-RNA synthesis, suggesting that elements in the 5' NTR were not essential for minus-strand-RNA synthesis. Further analysis of the 5' NTR deletion mutants indicated that all mutations that decreased genomic plus-strand-RNA synthesis also decreased synthesis of the two major subgenomic RNAs. These data indicate that cis-acting elements from different regions of the 5' NTR are required for plus-strand-RNA synthesis and that this process may be linked to synthesis of subgenomic RNAs.
Collapse
Affiliation(s)
- K H Kim
- Department of Biochemistry, North Carolina State University, Raleigh 27695-7622, USA
| | | |
Collapse
|
37
|
Abstract
It is clear from the experimental data that there are some similarities in RNA replication for all eukaryotic positive-stranded RNA viruses—that is, the mechanism of polymerization of the nucleotides is probably similar for all. It is noteworthy that all mechanisms appear to utilize host membranes as a site of replication. Membranes appear to function not only as a way of compartmentalizing virus RNA replication but also appear to have a central role in the organization and functioning of the replication complex, and further studies in this area are needed. Within virus supergroups, similarities are evident between animal and plant viruses—for example, in the nature and arrangements of replication genes and in sequence similarities of functional domains. However, it is also clear that there has been considerable divergence, even within supergroups. For example, the animal alpha-viruses have evolved to encode proteinases which play a central controlling function in the replication cycle, whereas this is not common in the plant alpha-like viruses and even when it occurs, as in the tymoviruses, the strategies that have evolved appear to be significantly different. Some of the divergence could be host-dependent and the increasing interest in the role of host proteins in replication should be fruitful in revealing how different systems have evolved. Finally, there are virus supergroups that appear to have no close relatives between animals and plants, such as the animal coronavirus-like supergroup and the plant carmo-like supergroup.
Collapse
Affiliation(s)
- K W Buck
- Department of Biology, Imperial College of Science, Technology and Medicine, London, England
| |
Collapse
|
38
|
Bransom KL, Weiland JJ, Tsai CH, Dreher TW. Coding density of the turnip yellow mosaic virus genome: roles of the overlapping coat protein and p206-readthrough coding regions. Virology 1995; 206:403-12. [PMID: 7831796 DOI: 10.1016/s0042-6822(95)80056-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
More than one-third of the turnip yellow mosaic virus (TYMV) genome simultaneously encodes two ORFs. We have investigated the functions of the overlapping coat protein ORF and readthrough domain of ORF-206 in the 3' region of the genome. TYMC-206 RNA, in which a second stop codon has been positioned to prevent ORF-206 readthrough, induced infections in protoplasts and plants that were indistinguishable from wild type. ORF-206 readthrough is thus nonessential. Nevertheless, TYMV-221 RNA, in which the ORF-206 stop codon was replaced with a tyrosine codon to force readthrough, was infectious to protoplasts, suggesting that a role for ORF-206 readthrough under certain conditions is possible. TYMV RNA variants that produce truncated or no coat protein were used to show that the coat protein is dispensable for local movement but necessary for systemic spread of virus in plants. Studies in protoplasts showed that (-) RNA levels are normal in the absence of coat protein, but (+) strand levels are decreased about 10-fold relative to wild-type infections. A mutant with a short C-terminal coat protein extension that formed virions less stable than normal demonstrated the protective role of capsids toward genomic RNA. The evolutionary implications of the dense information content of the TYMV genome are discussed.
Collapse
Affiliation(s)
- K L Bransom
- Department of Agricultural Chemistry, Oregon State University, Corvallis 97331
| | | | | | | |
Collapse
|
39
|
Pogue GP, Huntley CC, Hall TC. Common replication strategies emerging from the study of diverse groups of positive-strand RNA viruses. ARCHIVES OF VIROLOGY. SUPPLEMENTUM 1994; 9:181-94. [PMID: 8032249 DOI: 10.1007/978-3-7091-9326-6_18] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Studies using brome mosaic virus (BMV), Sindbis virus and poliovirus have provided evidence that disparate groups of plant and animal positive strand RNA viruses have remarkably similar replication strategies. The conservation of several functional domains within virus-encoded nonstructural proteins implies that, although the precise character of these and interacting host components varies for each virus, they employ similar mechanisms for RNA replication. For (+) strand replication, similarities in cis-acting sequence motifs and RNA secondary structures within 5' termini of genomic (+) strands have been identified and have been shown to participate in binding of host factors. The model presented for replication of BMV RNA suggests that binding of these factors to internal control region (ICR) sequence motifs in the double-stranded replication intermediate releases a single-stranded 3' terminus on the (-) strand that may be essential for initiation of genomic (+) strand synthesis. ICR sequences internal to the BMV genome were also found to be required for efficient replication. Asymmetric production of excess genomic (+) over (-) strand RNA, characteristic of all (+) strand viruses, may be accomplished through transition of the replicase from competence for (-) to (+) strand synthesis by the recruitment of additional host factors.
Collapse
Affiliation(s)
- G P Pogue
- Institute of Developmental and Molecular Biology, Texas A&M University, College Station
| | | | | |
Collapse
|
40
|
Abstract
It is well known that DNA-based organisms rearrange and repair their genomic DNA through recombination processes, and that these rearrangements serve as a powerful source of variability and adaptation for these organisms. In RNA viruses' genetic recombination is defined as any process leading to the exchange of information between viral RNAs. There are two types of recombination events: legitimate and illegitimate. While legitimate (homologous) recombination occurs between closely related sequences at corresponding positions, illegitimate (nonhomologous) recombination could happen at any position among the unrelated RNA molecules. In order to differentiate between the symmetrical and asymmetrical homologous crosses, Lai defined the former as homologous recombination and the latter as aberrant homologous recombination. This chapter uses brome mosaic virus (BMV), a multicomponent plant RNA virus, as an example to discuss the progress in studying the mechanism of genetic recombination in positive-stranded RNA viruses. Studies described in this chapter summarize the molecular approaches used to increase the frequency of recombination among BMV RNA segments and, more importantly, to target the sites of crossovers to specific BMV RNA regions. It demonstrates that the latter can be accomplished by introducing local complementarities to the recombining substrates.
Collapse
Affiliation(s)
- J J Bujarski
- Plant Molecular Biology Center, Northern Illinois University, De Kalb 60115
| | | | | |
Collapse
|
41
|
Dinant S, Janda M, Kroner PA, Ahlquist P. Bromovirus RNA replication and transcription require compatibility between the polymerase- and helicase-like viral RNA synthesis proteins. J Virol 1993; 67:7181-9. [PMID: 8230440 PMCID: PMC238180 DOI: 10.1128/jvi.67.12.7181-7189.1993] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The positive-strand RNA bromoviruses encode two nonstructural proteins, 1a and 2a, involved in RNA-dependent RNA replication. These proteins have extensive sequence similarities with methyltransferase, helicase, and polymerase proteins of other plant and animal viruses. 1a and 2a can also form a complex in vitro. To explore whether 1a-2a interaction is required for RNA replication in vivo, we reassorted the 1a and 2a genes from two different bromoviruses, brome mosaic virus (BMV) and cowpea chlorotic mottle virus (CCMV). 1a and 2a were expressed independently of viral replication by using RNA- or DNA-based transient expression, and their in vivo RNA replication activities were tested in protoplasts with BMV and CCMV RNA3 templates. RNA-based transient expression confirmed prior indications that bromovirus RNA replication is more sensitive to reductions in 1a expression than to reductions in 2a expression. DNA-based expression of the homologous combinations of 1a and 2a supported high levels of RNA synthesis, but both 1a-2a heterologous combinations exhibited RNA synthesis defects. The combination of CCMV 1a and BMV 2a did not support detectable synthesis of negative-strand, positive-strand, or subgenomic RNA. The converse combination of BMV 1a and CCMV 2a was preferentially defective in positive-strand and subgenomic RNA accumulation, showing that 1a-2a interaction is involved in these processes in ways distinct from negative-strand RNA synthesis, which was only slightly affected. These results indicate that at least some functions of 1a and 2a operate in a mutually dependent manner in vivo and that the mechanisms of positive- and negative-strand RNA synthesis are differentiated in part by features of such interactions.
Collapse
Affiliation(s)
- S Dinant
- Institute for Molecular Virology, University of Wisconsin, Madison 53706
| | | | | | | |
Collapse
|
42
|
Duggal R, Hall TC. Identification of domains in brome mosaic virus RNA-1 and coat protein necessary for specific interaction and encapsidation. J Virol 1993; 67:6406-12. [PMID: 8411342 PMCID: PMC238075 DOI: 10.1128/jvi.67.11.6406-6412.1993] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Even though many single-stranded RNAs are present in the cytoplasm of infected cells, encapsidation by brome mosaic virus (BMV) coat protein is specific for BMV RNA. Although the highly conserved 3' region of each of the three BMV genomic RNAs is an attractive candidate for the site of recognition by the coat protein, band shift and UV cross-linking assays in the presence of specific and nonspecific competitors revealed only nonspecific interactions. However, BMV RNA-1 formed a retarded complex (complex I) with the coat protein in the absence of competitors, and two domains of RNA-1 that specifically bound coat protein in a small complex (complex II), presumably early in the encapsidation process, were identified. Strong nonspecific, cooperative binding was observed in the presence of high concentrations of coat protein, suggesting that this provides the mechanism leading to rapid encapsidation seen in vivo. In contrast, no binding to a coat protein mutant lacking the N-terminal 25 amino acids that has been shown to be incapable of encapsidation in vivo (R. Sacher and P. Ahlquist, J. Virol. 63:4545-4552, 1989) was detected in vitro. The use of deletion mutants of RNA-1 revealed the presence of domains within the coding region of protein 1a that formed complexes with purified coat protein. One deletion mutant (B1SX) lacking these domains was only slightly more effective in dissociating RNA-1-coat protein complexes than were nonspecific competitors, further suggesting that regions other than the 3' end can participate in the selective encapsidation of BMV RNAs.
Collapse
Affiliation(s)
- R Duggal
- Institute of Developmental and Molecular Biology, Texas A&M University, College Station 77843-3155
| | | |
Collapse
|
43
|
Nagy PD, Bujarski JJ. Targeting the site of RNA-RNA recombination in brome mosaic virus with antisense sequences. Proc Natl Acad Sci U S A 1993; 90:6390-4. [PMID: 8341643 PMCID: PMC46937 DOI: 10.1073/pnas.90.14.6390] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
It has been postulated that local hybridizations between viral RNAs can mediate recombination in brome mosaic virus (BMV) and in poliovirus. To test this model, a 3' fragment of BMV RNA1 was inserted into the 3' noncoding sequence of BMV RNA3 in an antisense orientation. This resulted in high-frequency nonhomologous crossovers at or near the hybridized region. Insertion of the same RNA1 fragment in a positive-sense orientation did not promote recombination. Modification of the antisense insert by deletion of 3' portions did not affect the sites of crossover. However, modification of the 5' portion shifted the crossovers toward the central part of the heteroduplex region. Our results provide experimental evidence that recombinant crosses can be primed by hybridization between viral RNA molecules.
Collapse
Affiliation(s)
- P D Nagy
- Plant Molecular Biology Center, Northern Illinois University, DeKalb 60115
| | | |
Collapse
|
44
|
Lahser FC, Marsh LE, Hall TC. Contributions of the brome mosaic virus RNA-3 3'-nontranslated region to replication and translation. J Virol 1993; 67:3295-303. [PMID: 7684465 PMCID: PMC237671 DOI: 10.1128/jvi.67.6.3295-3303.1993] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Sequences upstream of the 3'-terminal tRNA-like structure of brome mosaic virus RNAs have been predicted to fold into several stem-loop and pseudoknot structures. To elucidate the functional role of this upstream region, a series of deletions was made in cDNA clones of RNA-3, a genomic component not required for replication. These deletion mutants were transcribed in vitro and cotransfected with RNA-1 and RNA-2 into barley protoplasts. Deletion of single stem-loop structures gave progeny retaining near-wild-type accumulation levels. Constructions representing deletion of two or three stem-loops substantially lowered the accumulation of progeny RNA-3 relative to wild-type levels. RNA-3 mutants bearing deletions of longer sequences or of the entire region (delta PsKs RNA-3) replicated poorly, yielding no detectable RNA-3 or RNA-4 progeny. Levels of RNA-1 and RNA-2, in the presence of a mutant RNA-3, were found to increase relative to the accumulation observed in a complete wild-type transfection. The stability of delta PsKs RNA-3 in protoplasts was somewhat lower than that of wild-type RNA during the first 3 h postinoculation. Little difference in translatability in vitro of wild-type and RNA-3 constructs bearing deletions within the stem-loop region was observed, and Western immunoblot analysis of viral coat protein produced in transfected protoplasts showed that protein accumulation paralleled the amount of RNA-4 message produced from the various sequences evaluated. These results indicate that the RNA-3 pseudoknot region plays a minor role in translational control but contributes substantially to the overall replication of the brome mosaic virus genome.
Collapse
Affiliation(s)
- F C Lahser
- Institute of Developmental and Molecular Biology, Texas A&M University, College Station 77843-3155
| | | | | |
Collapse
|
45
|
Rao AL, Hall TC. Recombination and polymerase error facilitate restoration of infectivity in brome mosaic virus. J Virol 1993; 67:969-79. [PMID: 8419651 PMCID: PMC237451 DOI: 10.1128/jvi.67.2.969-979.1993] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The tRNA-like structure present in the 3' noncoding region of each of the four virion RNAs of brome mosaic virus possesses a conserved A-67-U-A-65 (67AUA65) sequence. Four mutations in this region (67UAA65, 67GAA65, and 67CAA65, each with a double base change, and 67GUA65, containing a single point mutation), previously shown in vitro to be defective in minus-strand promoter function, were introduced into full-length genomic RNAs 2 and 3, and their replicative competence was analyzed in barley protoplasts. All four RNA 3 mutants were capable of replication, although progeny plus-sense RNA 3 accumulation was only 12 to 42% of that of the wild type. Replication of RNA 2 transcripts bearing these mutations was even more severely debilitated; the accumulation of each mutant progeny plus-strand RNA 2 was < 10% of that of the wild type. Analysis of mutant RNA 3 progeny recovered from local lesions induced in Chenopodium hybridum and systemic infections in barley (Hordeum vulgare) plants revealed that the mutant base at position 67 from the 3' end had in each case been modified to an A. These changes generated RNAs with functional pseudorevertant (67AAA65 for mutants 67UAA65, 67GAA65, and 67CAA65) or revertant (67GUA65-->67AUA65) sequences. In most instances, the presence of internal markers permitted discrimination between polymerase error and RNA recombination as the process by which sequence restoration occurred. The pseudorevertant sequence was found to be capable of persistence during subsequent propagation in plants when present on RNA 3 but not when present on RNA 2. These data document the fluidity of the RNA genome and reveal situations in which polymerase error or recombination can function preferentially to restore an optimal sequence. They also support the concept that RNA viruses frequently exist as quasispecies and have implications concerning evolutionary strategies for positive-strand RNA viruses.
Collapse
Affiliation(s)
- A L Rao
- Institute of Developmental and Molecular Biology, Texas A&M University, College Station 77843-3511
| | | |
Collapse
|
46
|
Meulewaeter F, Cornelissen M, Van Emmelo J. Subgenomic RNAs mediate expression of cistrons located internally on the genomic RNA of tobacco necrosis virus strain A. J Virol 1992; 66:6419-28. [PMID: 1404597 PMCID: PMC240134 DOI: 10.1128/jvi.66.11.6419-6428.1992] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Upon infection of tobacco protoplasts, the genomic RNA of tobacco necrosis virus strain A (TNV-A) accumulates linearly in time. The accumulation patterns of the two subgenomic RNAs resemble those of endogenous mRNAs in that the peak levels are reached after several hours. The accumulation of the 1.3-kb subgenomic RNA is delayed by 1 h compared with that of the 1.6-kb subgenomic RNA, which illustrates the important role of the subgenomic RNAs in the regulation of TNV-A gene expression. The locations of the 5' nucleotides of the subgenomic RNAs reveal that the 5'-proximal cistrons of the 1.6- and 1.3-kb RNAs encode an 8-kDa protein from open reading frame (ORF) 3 and the coat protein from ORF 5, respectively. In a wheat germ translation system, a synthetic transcript resembling the 1.6-kb RNA expresses both ORFs 3 and 4. Moreover, the synthesis of the 6-kDa protein from ORF 4 depends on the translation efficiency of ORF 3, suggesting that in vivo, ORFs 3 and 4 are both expressed from the 1.6-kb RNA. The major in vitro translation product of TNV-A genomic RNA is the coat protein. We show that the region upstream of the coat protein promotes internal initiation of translation in vitro. However, this region is functionally inactive in vivo, suggesting that TNV-A genomic RNA is not important for coat protein synthesis in plants.
Collapse
Affiliation(s)
- F Meulewaeter
- Laboratorium voor Genetica, Universiteit Gent, Ghent, Belgium
| | | | | |
Collapse
|
47
|
Forster RL, Beck DL, Guilford PJ, Voot DM, Van Dolleweerd CJ, Andersen MT. The coat protein of white clover mosaic potexvirus has a role in facilitating cell-to-cell transport in plants. Virology 1992; 191:480-4. [PMID: 1413520 DOI: 10.1016/0042-6822(92)90215-b] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Functions of the coat protein of white clover mosaic potexvirus (WCIMV) were investigated using C-terminal deletion mutants. Whereas plants inoculated with RNA transcripts of a full-length wild-type clone of WCIMV produced typical infections, plants inoculated with transcripts of each mutant did not produce symptoms, and viral RNA species were not detected by Northern analysis. The mutants were able to replicate in protoplasts, although, relative to the wild-type RNA profile, the level of genomic RNA, but not subgenomic RNA, was reduced. These results indicate a role for the coat protein in efficient cell-to-cell transport in plants. Virus-like particles were detected in protoplast extracts inoculated with transcripts of a mutant in which the coat protein was truncated by 31 amino acids. This result suggests that the lack of detectable transport in plants was not due solely to a failure of the mutants to form virus particles. Possible roles for the coat protein in transport and replication are discussed. A 6-kDa open reading frame, internal to the coat protein gene, was shown by mutational analysis not to be essential for replication or transport.
Collapse
Affiliation(s)
- R L Forster
- Plant Improvement Division, Horticulture and Food Research Institute of New Zealand Ltd., Auckland
| | | | | | | | | | | |
Collapse
|
48
|
Chapman S, Hills G, Watts J, Baulcombe D. Mutational analysis of the coat protein gene of potato virus X: effects on virion morphology and viral pathogenicity. Virology 1992; 191:223-30. [PMID: 1413503 DOI: 10.1016/0042-6822(92)90183-p] [Citation(s) in RCA: 121] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The role of the coat protein of potato virus X (PVX) was investigated by site-directed mutation of the coat protein gene. Mutant viruses with in-frame deletions in the 5' end of the coat protein gene were capable of systemically infecting plants, but produced virions with atypical morphology. Viruses with a frameshift mutation near the 5' end or with deletions in the central part of the coat protein gene failed to accumulate at detectable levels, even in the inoculated leaf. In protoplasts, mutants that infected systemically either had a wild-type phenotype or showed a small reduction in accumulation of genomic RNA. The other mutants, which did not accumulate in the inoculated leaf, were unaffected in genomic RNA accumulation 8 hr postinoculation, but at 16 hr and later they accumulated less genomic RNA than wild-type virus. None of the mutations had an effect on accumulation of negative-strand RNA. The data indicate that efficient accumulation and spread of PVX, even in the inoculated leaf, requires coat protein production and encapsidation of the viral RNA.
Collapse
Affiliation(s)
- S Chapman
- Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | | | | | | |
Collapse
|
49
|
Pogue GP, Marsh LE, Connell JP, Hall TC. Requirement for ICR-like sequences in the replication of brome mosaic virus genomic RNA. Virology 1992; 188:742-53. [PMID: 1585645 DOI: 10.1016/0042-6822(92)90529-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Previous studies using a brome mosaic virus (BMV) RNA-2 deletion mutant (pRNA-2 M/S) and additional derivatives as reporters established that viral sequences resembling internal control regions (ICRs) 1 and 2 of tRNA gene promoters are vital to (+)-strand replication in protoplasts. Transfer of these mutations to genomic RNA-2 and functional analysis in protoplast, local lesion, and systemic infections revealed a sequence-specific requirement for bases within the ICR2-like motif. Despite the low (generally less than 20% of wild-type) and sometimes undetectable levels of replication of these RNA-2 mutants, sufficient p2a protein was produced to support at least modest levels of RNA-1, -3 and -4 replication in protoplasts. However, only those RNA-2 ICR2 mutants supporting substantial replication of the viral genome in protoplasts were capable of establishing local lesions in Chenopodium hybridum and systemic infections in barley, further establishing the essential role of the ICR-like sequences in viral infectivity. Upon passage through a second set of barley plants, accumulation patterns for progeny from inocula containing certain RNA-2 mutants paralleled those from wild-type inocula, indicating repair of the introduced mutations. RNA stability and translatability were shown to be unaffected by the introduced mutations. BMV RNA-3 contains several ICR-like sequences, each of which was individually deleted. Whereas deletion of the 5'-terminal ICR2-like motif had little effect on RNA-3 accumulation in protoplasts or local lesion formation, it debilitated systemic spread in barley. Deletion of an internal ICR2-like motif at position 1100 decreased (+):(-) strand asymmetry from greater than 100:1 to 14:1, reduced RNA-3 replication in protoplasts to less than 15% of wild-type, and abolished local lesion and systemic infectivity.
Collapse
Affiliation(s)
- G P Pogue
- Department of Biology, Texas A&M University, College Station 77843-3258
| | | | | | | |
Collapse
|
50
|
Romero J, Dzianott AM, Bujarski JJ. The nucleotide sequence and genome organization of the RNA2 and RNA3 segments in broad bean mottle virus. Virology 1992; 187:671-81. [PMID: 1546462 DOI: 10.1016/0042-6822(92)90470-a] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Complete nucleotide sequences of broad bean mottle virus (BBMV) genomic RNAs 2 and 3 were determined. They consist of 2811 and 2293 nucleotides, respectively. Both RNAs are caped and, unlike in other tricornaviruses, both initiate with an A residue. BBMV RNA2 is monocistronic and encodes an 815 amino acid 2a protein, whereas RNA3 is dicistronic, encoding for a 295 amino acid 3a protein and for the 190 amino acid coat protein. A central, 423 amino acid 2a protein core region is highly homologous among the three bromoviruses, whereas both N- and C-termini are more heterologous. Most of the homologies among 3a proteins are concentrated within the N-termini two-thirds of the molecule that is predominantly hydrophobic, whereas the C-terminal one-third contains a large number of charged amino acids. The homologies among coat proteins are clustered within several mostly hydrophobic, or neutral, domains. The 5' noncoding region of the RNA2 has 110 nucleotides, whereas that of RNA3 contains 330 nucleotides. As in cowpea chlorotic mottle virus, but unlike in Brome mosaic virus, the 5' noncoding region includes subgenomic promoter-like sequences. The BBMV RNA3 intercistronic region also has subgenomic promoter sequences and contains a long poly(A) stretch. At the 3' end, BBMV RNAs 2 and 3 have 257 and 236 noncoding nucleotides, respectively.
Collapse
Affiliation(s)
- J Romero
- Northern Illinois University, Department of Biological Sciences, DeKalb 60115
| | | | | |
Collapse
|