1
|
Ding T, Xiong M, Xu Y, Pu X, Wang QS, Xu MR, Shao HX, Qian K, Dang HB, Qin AJ. Dynamic Changes in Viral Loads during Co-Infection with a Recombinant Turkey Herpesvirus Vector Vaccine and Very Virulent Marek's Disease Virus In Vivo. Viruses 2024; 16:1042. [PMID: 39066205 PMCID: PMC11281522 DOI: 10.3390/v16071042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Marek's disease (MD), caused by the Marek's disease virus (MDV), is a common infectious tumor disease in chickens and was the first neoplastic disease preventable by vaccination. However, the vaccine cannot completely prevent virulent MDV infections, allowing both the vaccine and virulent MDV to coexist in the same chicken for extended periods. This study aims to investigate the changes in viral load of the very virulent strain Md5 and the rHVT-IBD vaccine in different chicken tissues using a real-time PCR assay. The results showed that the rHVT-IBD vaccine significantly reduced the viral load of MDV-Md5 in different organs, while the load of rHVT-IBD was significantly increased when co-infected with Md5. Additionally, co-infection with Md5 and rHVT-IBD in chickens not only changed the original viral load of both viruses but also affected the positive rate of Md5 at 14 days post-vaccination. The positive rate decreased from 100% to 14.29% (feather tips), 0% (skin), 33.33% (liver), 16.67% (spleen), 28.57% (thymus), 33.33% (bursa), and 66.67% (PBL), respectively. This study enhances our understanding of the interactions between HVT vector vaccines and very virulent MDV in chickens and provides valuable insights for the future development of MD vaccines.
Collapse
Affiliation(s)
- Tian Ding
- The Ministry of Education Key Laboratory for Avian Preventive Medicine, Yangzhou University, Yangzhou 225009, China; (T.D.); (M.X.); (Q.-s.W.); (M.-r.X.); (H.-x.S.); (K.Q.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Min Xiong
- The Ministry of Education Key Laboratory for Avian Preventive Medicine, Yangzhou University, Yangzhou 225009, China; (T.D.); (M.X.); (Q.-s.W.); (M.-r.X.); (H.-x.S.); (K.Q.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Yang Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 625014, China;
| | - Xing Pu
- Nanchang Boehringer—Ingelheim Animal Health Co., Ltd., Nanchang 330096, China; (X.P.); (H.-b.D.)
| | - Qin-sen Wang
- The Ministry of Education Key Laboratory for Avian Preventive Medicine, Yangzhou University, Yangzhou 225009, China; (T.D.); (M.X.); (Q.-s.W.); (M.-r.X.); (H.-x.S.); (K.Q.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Mo-ru Xu
- The Ministry of Education Key Laboratory for Avian Preventive Medicine, Yangzhou University, Yangzhou 225009, China; (T.D.); (M.X.); (Q.-s.W.); (M.-r.X.); (H.-x.S.); (K.Q.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Hong-xia Shao
- The Ministry of Education Key Laboratory for Avian Preventive Medicine, Yangzhou University, Yangzhou 225009, China; (T.D.); (M.X.); (Q.-s.W.); (M.-r.X.); (H.-x.S.); (K.Q.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225012, China
| | - Kun Qian
- The Ministry of Education Key Laboratory for Avian Preventive Medicine, Yangzhou University, Yangzhou 225009, China; (T.D.); (M.X.); (Q.-s.W.); (M.-r.X.); (H.-x.S.); (K.Q.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225012, China
| | - Hai-bin Dang
- Nanchang Boehringer—Ingelheim Animal Health Co., Ltd., Nanchang 330096, China; (X.P.); (H.-b.D.)
| | - Ai-jian Qin
- The Ministry of Education Key Laboratory for Avian Preventive Medicine, Yangzhou University, Yangzhou 225009, China; (T.D.); (M.X.); (Q.-s.W.); (M.-r.X.); (H.-x.S.); (K.Q.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225012, China
| |
Collapse
|
2
|
A comprehensive analysis of avian lymphoid leukosis-like lymphoma transcriptomes including identification of LncRNAs and the expression profiles. PLoS One 2022; 17:e0272557. [PMID: 35939448 PMCID: PMC9359530 DOI: 10.1371/journal.pone.0272557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 07/21/2022] [Indexed: 11/22/2022] Open
Abstract
Avian lymphoid leukosis-like (LL-like) lymphoma has been observed in some experimental and commercial lines of chickens that are free of exogenous avian leukosis virus. Reported cases of avian lymphoid leukosis-like lymphoma incidences in the susceptible chickens are relatively low, but the apathogenic subgroup E avian leukosis virus (ALV-E) and the Marek’s disease vaccine, SB-1, significantly escalate the disease incidence in the susceptible chickens. However, the underlying mechanism of tumorigenesis is poorly understood. In this study, we bioinformatically analyzed the deep RNA sequences of 6 lymphoid leukosis-like lymphoma samples, collected from susceptible chickens post both ALV-E and SB-1 inoculation, and identified a total of 1,692 novel long non-coding RNAs (lncRNAs). Thirty-nine of those novel lncRNAs were detected with altered expression in the LL-like tumors. In addition, 13 lncRNAs whose neighboring genes also showed differentially expression and 2 conserved novel lncRNAs, XLOC_001407 and XLOC_022595, may have previously un-appreciated roles in tumor development in human. Furthermore, 14 lncRNAs, especially XLOC_004542, exhibited strong potential as competing endogenous RNAs via sponging miRNAs. The analysis also showed that ALV subgroup E viral gene Gag/Gag-pol and the MD vaccine SB-1 viral gene R-LORF1 and ORF413 were particularly detectable in the LL-like tumor samples. In addition, we discovered 982 novel lncRNAs that were absent in the current annotation of chicken genome and 39 of them were aberrantly expressed in the tumors. This is the first time that lncRNA signature is identified in avian lymphoid leukosis-like lymphoma and suggests the epigenetic factor, lncRNA, is involved with the avian lymphoid leukosis-like lymphoma formation and development in susceptible chickens. Further studies to elucidate the genetic and epigenetic mechanisms underlying the avian lymphoid leukosis-like lymphoma is indeed warranted.
Collapse
|
3
|
Endogenous Avian Leukosis Virus in Combination with Serotype 2 Marek's Disease Virus Significantly Boosted the Incidence of Lymphoid Leukosis-Like Bursal Lymphomas in Susceptible Chickens. J Virol 2019; 93:JVI.00861-19. [PMID: 31554689 PMCID: PMC6854487 DOI: 10.1128/jvi.00861-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/10/2019] [Indexed: 01/05/2023] Open
Abstract
Lymphoid leukosis (LL)-like lymphoma is a low-incidence yet costly and poorly understood disease of domestic chickens. The observed unique characteristics of LL-like lymphomas are that the incidence of the disease is chicken line dependent; pathologically, it appeared to mimic avian leukosis but is free of exogenous ALV infection; inoculation of the nonpathogenic ALV-E or MDV-2 (SB-1) boosts the incidence of the disease; and inoculation of both the nonpathogenic ALV-E and SB-1 escalates it to much higher levels. This study was designed to test the impact of two new ALV-E isolates, recently derived from commercial broiler breeder flocks, in combination with the nonpathogenic SB-1 on LL-like lymphoma incidences in both an experimental egg layer line of chickens and a commercial broiler breeder line of chickens under a controlled condition. Data from this study provided an additional piece of experimental evidence on the potency of nonpathogenic ALV-E, MDV-2, and ALV-E plus MDV-2 in boosting the incidence of LL-like lymphomas in susceptible chickens. This study also generated the first piece of genomic evidence that suggests host transcriptomic variation plays an important role in modulating LL-like lymphoma formation. In 2010, sporadic cases of avian leukosis virus (ALV)-like bursal lymphoma, also known as spontaneous lymphoid leukosis (LL)-like tumors, were identified in two commercial broiler breeder flocks in the absence of exogenous ALV infection. Two individual ALV subgroup E (ALV-E) field strains, designated AF227 and AF229, were isolated from two different breeder farms. The role of these ALV-E field isolates in development of and the potential joint impact in conjunction with a Marek’s disease virus (MDV) vaccine (SB-1) were further characterized in chickens of an experimental line and commercial broiler breeders. The experimental line 0.TVB*S1, commonly known as the rapid feathering-susceptible (RFS) line, of chickens lacks all endogenous ALV and is fully susceptible to all subgroups of ALV, including ALV-E. Spontaneous LL-like tumors occurred following infection with AF227, AF229, and a reference ALV-E strain, RAV60, in RFS chickens. Vaccination with serotype 2 MDV, SB-1, in addition to AF227 or AF229 inoculation, significantly enhanced the spontaneous LL-like tumor incidence in the RFS chickens. The spontaneous LL-like tumor incidence jumped from 14% by AF227 alone to 42 to 43% by AF227 in combination with SB-1 in the RFS chickens under controlled conditions. RNA-sequencing analysis of the LL-like lymphomas and nonmalignant bursa tissues of the RFS line of birds identified hundreds of differentially expressed genes that are reportedly involved in key biological processes and pathways, including signaling and signal transduction pathways. The data from this study suggested that both ALV-E and MDV-2 play an important role in enhancement of the spontaneous LL-like tumors in susceptible chickens. The underlying mechanism may be complex and involved in many chicken genes and pathways, including signal transduction pathways and immune system processes, in addition to reported viral genes. IMPORTANCE Lymphoid leukosis (LL)-like lymphoma is a low-incidence yet costly and poorly understood disease of domestic chickens. The observed unique characteristics of LL-like lymphomas are that the incidence of the disease is chicken line dependent; pathologically, it appeared to mimic avian leukosis but is free of exogenous ALV infection; inoculation of the nonpathogenic ALV-E or MDV-2 (SB-1) boosts the incidence of the disease; and inoculation of both the nonpathogenic ALV-E and SB-1 escalates it to much higher levels. This study was designed to test the impact of two new ALV-E isolates, recently derived from commercial broiler breeder flocks, in combination with the nonpathogenic SB-1 on LL-like lymphoma incidences in both an experimental egg layer line of chickens and a commercial broiler breeder line of chickens under a controlled condition. Data from this study provided an additional piece of experimental evidence on the potency of nonpathogenic ALV-E, MDV-2, and ALV-E plus MDV-2 in boosting the incidence of LL-like lymphomas in susceptible chickens. This study also generated the first piece of genomic evidence that suggests host transcriptomic variation plays an important role in modulating LL-like lymphoma formation.
Collapse
|
4
|
Dittmar T, Zänker KS. Horizontal gene transfers with or without cell fusions in all categories of the living matter. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 714:5-89. [PMID: 21506007 PMCID: PMC7120942 DOI: 10.1007/978-94-007-0782-5_2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This article reviews the history of widespread exchanges of genetic segments initiated over 3 billion years ago, to be part of their life style, by sphero-protoplastic cells, the ancestors of archaea, prokaryota, and eukaryota. These primordial cells shared a hostile anaerobic and overheated environment and competed for survival. "Coexist with, or subdue and conquer, expropriate its most useful possessions, or symbiose with it, your competitor" remain cellular life's basic rules. This author emphasizes the role of viruses, both in mediating cell fusions, such as the formation of the first eukaryotic cell(s) from a united crenarchaeon and prokaryota, and the transfer of host cell genes integrated into viral (phages) genomes. After rising above the Darwinian threshold, rigid rules of speciation and vertical inheritance in the three domains of life were established, but horizontal gene transfers with or without cell fusions were never abolished. The author proves with extensive, yet highly selective documentation, that not only unicellular microorganisms, but the most complex multicellular entities of the highest ranks resort to, and practice, cell fusions, and donate and accept horizontally (laterally) transferred genes. Cell fusions and horizontally exchanged genetic materials remain the fundamental attributes and inherent characteristics of the living matter, whether occurring accidentally or sought after intentionally. These events occur to cells stagnating for some 3 milliard years at a lower yet amazingly sophisticated level of evolution, and to cells achieving the highest degree of differentiation, and thus functioning in dependence on the support of a most advanced multicellular host, like those of the human brain. No living cell is completely exempt from gene drains or gene insertions.
Collapse
Affiliation(s)
- Thomas Dittmar
- Inst. Immunologie, Universität Witten/Herdecke, Stockumer Str. 10, Witten, 58448 Germany
| | - Kurt S. Zänker
- Institute of Immunologie, University of Witten/Herdecke, Stockumer Str. 10, Witten, 58448 Germany
| |
Collapse
|
5
|
Haq K, Abdul-Careem MF, Shanmuganthan S, Thanthrige-Don N, Read LR, Sharif S. Vaccine-induced host responses against very virulent Marek's disease virus infection in the lungs of chickens. Vaccine 2010; 28:5565-72. [DOI: 10.1016/j.vaccine.2010.06.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 05/07/2010] [Accepted: 06/10/2010] [Indexed: 02/02/2023]
|
6
|
Salter DW, Payne W, Kung HJ, Robinson D, Ewert D, Olson W, Crittenden LB, Fadly AM. Enhancement of spontaneous bursal lymphoma frequency by serotype 2 Marek's disease vaccine, SB-1, in transgenic and non-transgenic line 0 white leghorn chickens. Avian Pathol 2010; 28:147-54. [DOI: 10.1080/03079459994876] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
7
|
Aly MM, Witter RL, Fadly AM. Enhancement of reticuloendotheliosis virus-induced bursal lymphomas by serotype 2 Marek's disease virus. Avian Pathol 2009; 25:81-94. [PMID: 18645839 DOI: 10.1080/03079459608419122] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The effect of serotype 2 and 3 Marek's disease virus (MDV) vaccines on the pathogenesis of reticuloendotheliosis virus (REV)-induced bursal and non-bursal lymphomas was examined in chickens of RPRL lines 15I(5) X 7(1) and 6(3) X 0, respectively. At hatch, chickens were vaccinated with strain 301B/1 of serotype 2 MDV or strain FC126 of turkey herpesvirus (HVT), a serotype 3 MDV and inoculated with spleen necrosis virus (SNV), a non-defective strain of REV. In another experiment, bursas from 14-week-old 15I(1) X 7(1) chickens coinfected with strain 301B of serotype 2 MDV and SNV strain of REV at hatch were examined microscopically for REV-induced transformed follicles by methyl green pyronin stain and for the presence of MDV by in situ hybridization. The incidence of REV-induced bursal lymphomas was significantly higher in 15I(5) X 7(1) chickens vaccinated with serotype 2 MDV than in unvaccinated chickens or chickens vaccinated with HVT. On the other hand, the incidence of REV induced nonbursal lymphoma in chickens of line 63 X 0 vaccinated with serotype 2 MDV was comparable to that in unvaccinated chickens or chickens vaccinated with HVT. The average number of hyperplastic follicles in bursas from REV-infected 15I(5) X 7(1) chickens was significantly higher in chickens vaccinated with serotype 2 MDV than that in unvaccinated chickens or chickens vaccinated with HVT, and the MDV was more frequently detected in REV-transformed than in untransformed bursal follicles. Data from this study suggest that serotype 2, but not serotype 3, of MDV may enhance the development of REV-induced bursal lymphomas, and that neither serotype 2 nor serotype 3 MDV influence the development of REV-induced nonbursal lymphomas. The data also suggest that the enhancement effects of serotype 2 MDV on REV bursal lymphomas may be at the stage of formation of hyperplastic or transformed bursal follicles.
Collapse
Affiliation(s)
- M M Aly
- USDA-Agricultural Research Service, Avian Disease and Oncology Laboratory, East Lansing, MI, USA
| | | | | |
Collapse
|
8
|
Venugopal K, Payne LN. Molecular pathogenesis of Marek's disease—recent developments. Avian Pathol 2007; 24:597-609. [DOI: 10.1080/03079459508419100] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Witter RL. Attenuation of lymphoid leukosis enhancement by serotype 2 Marek's disease virus. Avian Pathol 2007; 24:665-78. [DOI: 10.1080/03079459508419106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Davidson I, Borovskaya A, Perl S, Malkinson M. Use of the polymerase chain reaction for the diagnosis of natural infection of chickens and turkeys with Marek's disease virus and reticuloendotheliosis virus. Avian Pathol 2007; 24:69-94. [PMID: 18645767 DOI: 10.1080/03079459508419050] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
11
|
Davidson I, Silva RF. Creation of diversity in the animal virus world by inter-species and intra-species recombinations: lessons learned from poultry viruses. Virus Genes 2007; 36:1-9. [DOI: 10.1007/s11262-007-0165-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Accepted: 09/24/2007] [Indexed: 10/22/2022]
|
12
|
Zavala G, Cheng S. Detection and characterization of avian leukosis virus in Marek's disease vaccines. Avian Dis 2006; 50:209-15. [PMID: 16863069 DOI: 10.1637/7444-092405r.1] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Avian leukosis virus (ALV) infection in chickens is known to induce increased mortality, tumors, delayed growth, and suboptimal egg production. Countries importing specified pathogen-free eggs, vaccines, and poultry breeding stock require freedom of infection or contamination with ALV in such products among other avian pathogens. Recently, ALV was found as a contaminant in a limited number of commercial poultry vaccines, even after routine quality assurance procedures cleared the vaccines for commercialization. The contaminated vaccines were promptly withdrawn from the market, and no direct detrimental effects were reported in poultry vaccinated with such vaccines. We describe herein the characterization in vitro of the contaminant viruses. All exogenous viruses detected in four vaccine lots belong to subgroup A of ALV based on cell receptor interaction, subgroup-specific polymerase chain reaction (PCR), envelope gene sequencing, and virus neutralization. A combination of thermal treatment and serial dilutions of the contaminated vaccines facilitated detection of contaminating ALVs in cell culture coupled with antigen-capture enzyme-linked immunosorbent assay. Subgroup-specific PCR readily detected ALV-A directly in the contaminated vaccines but not in naive vaccines or cell controls. Our methods are proposed as complementary procedures to the currently required complement fixation for avian leukosis test for detection of ALV in commercial poultry vaccines.
Collapse
Affiliation(s)
- Guillermo Zavala
- Department of Population Health, University of Georgia, Athens 30602, USA
| | | |
Collapse
|
13
|
Rath NC, Parcells MS, Xie H, Santin E. Characterization of a spontaneously transformed chicken mononuclear cell line. Vet Immunol Immunopathol 2003; 96:93-104. [PMID: 14522138 DOI: 10.1016/s0165-2427(03)00143-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We describe the characterization of a spontaneously transformed chicken monocytic cell line that developed as a single colony of cells in a heterophil culture that was inadvertently left in the incubator over a period of 25 days. These cells, hitherto named HTC, grow efficiently at both 37 or 41 degrees C in culture medium containing either 5% FBS or 2% chicken serum. The HTC cells are acid phosphatase positive, show expressions of both class I and class II major histocompatibility complex (MHC), CD44, K1, and K55 cell surface antigens, and engulf latex beads, produce nitrite and interleukin-6 on stimulation with bacterial lipopolysaccharide (LPS). Treatment with phorbol myristate acetate (PMA) induces respiratory burst in HTC cells and the secretion of matrix metalloproteinase (MMP) into culture medium. Using gene-specific primers and reverse transcriptase-polymerase chain reaction (RT-PCR), the presence of mRNA trancripts for interferon-gamma (IFN-gamma), interleukin-1 (IL-1), interleukin-6 (IL-6), nitric oxide synthase (NOS), matrix metalloproteinase-2 (MMP-2), and transforming growth factor-beta (TGF-beta) were detected. Lipopolysaccharide (LPS) treatment of HTC cells modulated IL-1, IL-6, IFN-gamma, NOS mRNA levels as detected by RT-PCR analyses. Using different avian tumor virus gene-specific primers and PCR, the HTC cells were positive for the presence of avian leukosis virus (ALV) and Marek's disease virus (MDV) but negative for reticuloendothelial virus (REV), chicken infectious anemia virus (CIAV), and herpes virus of turkeys (HVT). The production of ALV antigens by HTC cells was further confirmed using p27 gag protein ELISA. Collectively, these results show that the HTC cells belong to myeloid/macrophage lineage and were likely transformed by ALV and MDV but retain many interesting and useful biological activities.
Collapse
Affiliation(s)
- N C Rath
- Poultry Production and Product Safety Research Unit, Agricultural Research Service, USDA, Fayetteville, AR 72701, USA.
| | | | | | | |
Collapse
|
14
|
Morgan RW, Sofer L, Anderson AS, Bernberg EL, Cui J, Burnside J. Induction of host gene expression following infection of chicken embryo fibroblasts with oncogenic Marek's disease virus. J Virol 2001; 75:533-9. [PMID: 11119623 PMCID: PMC113947 DOI: 10.1128/jvi.75.1.533-539.2001] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microarrays containing 1,126 nonredundant cDNAs selected from a chicken activated T-cell expressed sequence tag database (http://chickest.udel.edu) were used to examine changes in host cell gene expression that accompany infection of chicken embryo fibroblasts (CEF) with Marek's disease virus (MDV). Host genes that were reproducibly induced by infection of CEF with the oncogenic RB1B strain of MDV included macrophage inflammatory protein, interferon response factor 1, interferon-inducible protein, quiescence-specific protein, thymic shared antigen 1, major histocompatibility complex (MHC) class I, MHC class II, beta(2)-microglobulin, clusterin, interleukin-13 receptor alpha chain, ovotransferrin, a serine/threonine kinase, and avian leukosis virus subgroup J glycoprotein.
Collapse
Affiliation(s)
- R W Morgan
- Delaware Agricultural Experiment Station, Department of Animal and Food Sciences, College of Agriculture and Natural Resources, University of Delaware, Newark, Delaware 19717-1303, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Sacco MA, Flannery DM, Howes K, Venugopal K. Avian endogenous retrovirus EAV-HP shares regions of identity with avian leukosis virus subgroup J and the avian retrotransposon ART-CH. J Virol 2000; 74:1296-306. [PMID: 10627540 PMCID: PMC111464 DOI: 10.1128/jvi.74.3.1296-1306.2000] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The existence of novel endogenous retrovirus elements in the chicken genome, designated EAV-HP, with close sequence identity to the env gene of avian leukosis virus (ALV) subgroup J has been reported (L. M. Smith, A. A. Toye, K. Howes, N. Bumstead, L. N. Payne, and K. Venugopal, J. Gen. Virol. 80:261-268, 1999). To resolve the genome structure of these retroviral elements, we have determined the complete sequence of two proviral clones of EAV-HP from a line N chicken genomic DNA yeast artificial chromosome library and from a meat-type chicken line 21 lambda library. The EAV-HP sequences from the two lines were 98% identical and had a typical provirus structure. The two EAV-HP clones showed identical large deletions spanning part of the gag, the entire pol, and part of the env genes. The env region of the EAV-HP clones was 97% identical to the env sequence of HPRS-103, the prototype subgroup J ALV. The 5' region of EAV-HP comprising the R and U5 regions of the long terminal repeat (LTR), the untranslated leader, and the 5' end of the putative gag region were 97% identical to the avian retrotransposon sequence, ART-CH. The remaining gag sequence shared less than 60% identity with other ALV sequences. The U3 region of the LTR was distinct from those of other retroviruses but contained some of the conserved motifs required for functioning as a promoter. To examine the ability of this endogenous retroviral LTR to function as a transcriptional promoter, the EAV-HP and HPRS-103 LTR U3 regions were compared in a luciferase reporter gene assay. The low luciferase activity detected with the EAV-HP LTR U3 constructs, at levels close to those observed for a control vector lacking the promoter or enhancer elements, suggested that these elements function as a weak promoter, possibly accounting for their low expression levels in chicken embryos.
Collapse
Affiliation(s)
- M A Sacco
- Institute for Animal Health, Compton, Newbury, Berkshire RG20 7NN, United Kingdom
| | | | | | | |
Collapse
|
16
|
Herbst LH, Jacobson ER, Klein PA, Balazs GH, Moretti R, Brown T, Sundberg JP. Comparative pathology and pathogenesis of spontaneous and experimentally induced fibropapillomas of green turtles (Chelonia mydas). Vet Pathol 1999; 36:551-64. [PMID: 10568436 DOI: 10.1354/vp.36-6-551] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Tumor biopsy samples from 25 Floridian and 15 Hawaiian green turtles (Chelonia mydas) with spontaneous green turtle fibropapillomatosis (GTFP) and from 27 captive-reared green turtles with experimentally induced GTFP were examined microscopically to differentiate the histologic features that result from GTFP pathogenesis and those that result from incidental factors that may vary according to geographic region. Common histologic features for spontaneous and experimentally induced tumors included fibroblast proliferation in the superficial dermis, epidermal acanthosis and hyperkeratosis, epidermal basal cell degeneration with dermal-epidermal cleft formation, spinous layer degeneration with intraepidermal vesicle and pustule formation, and ulceration. Visceral tumors, found in eight of 10 (80%) free-ranging turtles with cutaneous disease that were examined after death, had extensive interstitial fibrous proliferation. The presence of spirorchid trematode eggs and associated foreign body granulomas, common secondary findings within spontaneous tumors, varied by geographic location, and these findings were not observed in experimentally induced tumors. Eosinophilic intranuclear inclusions and intranuclear herpesvirus-associated antigen immunoreactivity were found in 18 of 38 (47%) experimentally induced cutaneous tumors and nine of 119 (7.5%) spontaneous tumors from Floridian but not Hawaiian turtles. The possible involvement of GTFP-associated herpesvirus in the pathogenesis of epidermal degenerative changes and GTFP pathogenesis is discussed.
Collapse
Affiliation(s)
- L H Herbst
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
Hara H, Kaji A. The U3 region of the long terminal repeat of a subgroup A transformation-defective rous sarcoma virus (tdPH2010) converts a noncytopathic virus to a cytopathic virus. Virus Genes 1998; 15:171-80. [PMID: 9421881 DOI: 10.1023/a:1007919125995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The molecular basis of the cytopathic effects (CPE) of the transformation-defective avian retrovirus mutant, tdPH2010, was studied. tdPH2010 is a subgroup A virus isolated from the Schmidt-Ruppin (NY) subgroup A strain (SRA(NY)). Subgroup A avian retroviruses are generally considered noncytopathic. Integrated tdPH2010 was molecularly cloned from infected quail cells. A noncytopathic, transformation-defective control strain, BSU, was created by deleting the src gene from the molecularly cloned wild type SRA(NY) virus. Chimeras between tdPH2010 and BSU were constructed and viruses were recovered from transfected chick embryo fibroblasts. Growth curves of cells infected with chimeric viruses indicated that the long terminal repeat (LTR) of tdPH2010 converts BSU to a cytopathic virus. Nucleotide sequencing revealed two point mutations unique to tdPH2010 in the U3 region of LTR at positions -126 and -23 from the transcription start site. Both mutations were located inside or near the promoter/enhancer elements of U3. The mutation at -126 (G to T) converted one of the very well-conserved pentanucleotide repeat (PRE) motifs from GGTGG to GGTGT. The other at -23 (G to A) is located next to the TATA box. The G at this position is conserved in all other known avian retrovirus promoters.
Collapse
Affiliation(s)
- H Hara
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia 19104, USA
| | | |
Collapse
|
18
|
Abstract
Avian leukosis virus (ALV) and reticuloendotheliosis virus (REV) are the most common naturally occurring avian retroviruses associated with neoplastic disease conditions in domesticated poultry. Avian leukosis virus infects primarily chickens, whereas REV infects chickens, turkeys, and other avian species. In addition to causing tumors, both ALV and REV can reduce productivity and induce immunosuppression and other production problems in affected flocks.
Collapse
Affiliation(s)
- A M Fadly
- United States Department of Agriculture, Avian Disease and Oncology Laboratory, East Lansing, Michigan, USA
| |
Collapse
|
19
|
Le Rouzic E, Perbal B. Retroviral insertional activation of the c-myb proto-oncogene in a Marek's disease T-lymphoma cell line. J Virol 1996; 70:7414-23. [PMID: 8892859 PMCID: PMC190808 DOI: 10.1128/jvi.70.11.7414-7423.1996] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Marek's disease virus (MDV) is an avian herpesvirus that causes, in chickens, a lymphoproliferative disease characterized by malignant transformation of T lymphocytes. The rapid onset of polyclonal tumors indicates the existence of MDV-encoded oncogenic products. However, the molecular basis of MDV-induced lymphoproliferative disease and latency remains largely unclear. Several lines of evidence suggest that MDV and Rous-associated virus (RAV) might cooperate in the development of B-cell lymphomas induced by RAV. Our present results indicate for the first time that MDV and RAV might also act synergistically in the development of T-cell lymphomas. We report an example of an MDV-transformed T-lymphoblastoid cell line (T9) expressing high levels of a truncated C-MYB protein as a result of RAV integration within one c-myb allele. The chimeric RAV-c-myb mRNA species initiated in the 5' long terminal repeat of RAV are deprived of sequences corresponding to c-myb exons 1 to 3. The attenuation of MDV oncogenicity has been strongly related to structural changes in the MDV BamHI-D and BamHI-H DNA fragments. We have established that both DNA restriction fragments are rearranged in the T9 MDV-transformed cells. Our results suggest that retroviral insertional activation of the c-myb proto-oncogene is a critical factor involved in the maintenance of the transformed phenotype and the tumorigenic potential of this T-lymphoma cell line.
Collapse
Affiliation(s)
- E Le Rouzic
- Laboratoire d'Oncologie Virale et Moléculaire, UMR CNRS 146, Institut Curie, Centre Universitaire, Orsay, France
| | | |
Collapse
|
20
|
Affiliation(s)
- A Ruddell
- Department of Microbiology and Immunology, University of Rochester, New York 14642
| |
Collapse
|
21
|
De Boer G, Van Roozelaar D, Moormann R, Jeurissen S, Van Den Wijngaard J, Hilbink F, Koch G. Interaction between chicken anaemia virus and live Newcastle disease vaccine. Avian Pathol 1994; 23:263-75. [DOI: 10.1080/03079459408418994] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
22
|
Fadly AM, Witter RL. Effects of age at infection with serotype 2 Marek's disease virus on enhancement of avian leukosis virus‐induced lymphomas. Avian Pathol 1993; 22:565-76. [DOI: 10.1080/03079459308418944] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|