1
|
Daikoku T, Mizuguchi M, Obita T, Yokoyama T, Yoshida Y, Takemoto M, Shiraki K. Characterization of susceptibility variants of poliovirus grown in the presence of favipiravir. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2017; 51:581-586. [PMID: 28709841 DOI: 10.1016/j.jmii.2017.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/01/2017] [Accepted: 03/13/2017] [Indexed: 02/05/2023]
Abstract
BACKGROUND T-705 (favipiravir) is a potent inhibitor of RNA-dependent RNA polymerases of influenza viruses and no favipiravir-resistant virus has been isolated. Poliovirus RNA polymerase has been well characterized and isolation of resistant virus was examined in poliovirus. METHODS Susceptibility variants of poliovirus I (Sabin strain) were isolated during passages in the presence of favipiravir and characterized for their susceptibility and the sequence of RNA polymerase. RESULTS Five variants with 0.47-1.88 times the 50% inhibitory concentration for plaque formation of the parent poliovirus had amino acid variations in the 3D gene of the RNA polymerase. The distribution of amino acid variations was not related to ribavirin resistance, and two amino acid variation sites were found near the finger domain. CONCLUSION Favipiravir as a chain terminator would not be incorporated and replicate to cause lethal mutagenesis as a mutagen like ribavirin, and resistant mutants were not isolated. A high replication level would generate mutations leading to favipiravir resistance as ribavirin resistance was generated, but generated mutations would be lethal to the RNA polymerase function.
Collapse
Affiliation(s)
- Tohru Daikoku
- Department of Virology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; Department of Microbiology, Faculty of Pharmaceutical Sciences, Hokuriku University, 1-1 Taiyogaoka, Kanazawa 920-1180, Japan
| | - Mineyuki Mizuguchi
- Laboratory of Structural Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Takayuki Obita
- Laboratory of Structural Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Takeshi Yokoyama
- Laboratory of Structural Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Yoshihiro Yoshida
- Department of Virology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Masaya Takemoto
- Department of Virology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; Department of Microbiology, Faculty of Pharmaceutical Sciences, Hokuriku University, 1-1 Taiyogaoka, Kanazawa 920-1180, Japan
| | - Kimiyasu Shiraki
- Department of Virology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| |
Collapse
|
2
|
Arita M, Shimizu H, Miyamura T. Characterization of in vitro and in vivo phenotypes of poliovirus type 1 mutants with reduced viral protein synthesis activity. J Gen Virol 2004; 85:1933-1944. [PMID: 15218178 DOI: 10.1099/vir.0.19768-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sabin vaccine strains of poliovirus (PV) contain major attenuation determinants in the internal ribosomal entry site (IRES), an area that directs viral protein synthesis. To examine the effect of reduced viral protein synthesis on PV neurovirulence, spacer sequences, consisting of short open reading frames of different lengths, were introduced between the IRES and the initiation codon of viral polyprotein, resulting in PV mutants with reduced viral protein synthesis. These PV mutants had a viral protein synthesis activity 8.8-55 % of that of the parental Mahoney strain as measured in HeLa S3 cells. Only viruses with more than 28 % of the wild-type activity had intact spacer sequences following plaque purification. Mutants with 17 % or 21 % of the wild-type activity were unstable and a mutant with 8.8 % was lethal. The neurovirulence of PV mutants was evaluated in transgenic mice carrying the human PV receptor gene. In this test, mutants with more than 28 % of the wild-type activity remained neurovirulent, while a mutant with 17 % of wild-type activity exhibited a partially attenuated phenotype. This mutant stably replicated in the spinal cord; however, the stability was severely affected during the course of virus infection from the cerebrum to the spinal cord. These results suggest that reduced viral protein synthesis activity as measured in cultured cells (17-55 % of the wild-type activity) is not the main determinant of PV attenuation.
Collapse
Affiliation(s)
- Minetaro Arita
- Department of Virology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo 208-0011, Japan
| | - Hiroyuki Shimizu
- Department of Virology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo 208-0011, Japan
| | - Tatsuo Miyamura
- Department of Virology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo 208-0011, Japan
| |
Collapse
|
3
|
Lyle JM, Clewell A, Richmond K, Richards OC, Hope DA, Schultz SC, Kirkegaard K. Similar structural basis for membrane localization and protein priming by an RNA-dependent RNA polymerase. J Biol Chem 2002; 277:16324-31. [PMID: 11877407 DOI: 10.1074/jbc.m112429200] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein primers are used to initiate genomic synthesis of several RNA and DNA viruses, although the structural details of the primer-polymerase interactions are not yet known. Poliovirus polymerase binds with high affinity to the membrane-bound viral protein 3AB but uridylylates only the smaller peptide 3B in vitro. Mutational analysis of the polymerase identified four surface residues on the three-dimensional structure of poliovirus polymerase whose wild-type identity is required for 3AB binding. These mutants also decreased 3B uridylylation, arguing that the binding sites for the membrane tether and the protein primer overlap. Mutation of flanking residues between the 3AB binding site and the polymerase active site specifically decreased 3B uridylylation, likely affecting steps subsequent to binding. The physical overlap of sites for protein priming and membrane association should facilitate replication initiation in the membrane-associated complex.
Collapse
Affiliation(s)
- John M Lyle
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | | | | | | | |
Collapse
|
4
|
Teterina NL, Egger D, Bienz K, Brown DM, Semler BL, Ehrenfeld E. Requirements for assembly of poliovirus replication complexes and negative-strand RNA synthesis. J Virol 2001; 75:3841-50. [PMID: 11264373 PMCID: PMC114875 DOI: 10.1128/jvi.75.8.3841-3850.2001] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
HeLa cells were transfected with several plasmids that encoded all poliovirus (PV) nonstructural proteins. Viral RNAs were transcribed by T7 RNA polymerase expressed from recombinant vaccinia virus. All plasmids produced similar amounts of viral proteins that were processed identically; however, RNAs were designed either to serve as templates for replication or to contain mutations predicted to prevent RNA replication. The mutations included substitution of the entire PV 5' noncoding region (NCR) with the encephalomyocarditis virus (EMCV) internal ribosomal entry site, thereby deleting the 5'-terminal cloverleaf-like structure, or insertion of three nucleotides in the 3Dpol coding sequence. Production of viral proteins was sufficient to induce the characteristic reorganization of intracellular membranes into heterogeneous-sized vesicles, independent of RNA replication. The vesicles were stably associated with viral RNA only when RNA replication could occur. Nonreplicating RNAs localized to distinct, nonoverlapping regions in the cell, excluded from the viral protein-membrane complexes. The absence of accumulation of positive-strand RNA from both mutated RNAs in transfected cells was documented. In addition, no minus-strand RNA was produced from the EMCV chimeric template RNA in vitro. These data show that the 5'-terminal sequences of PV RNA are essential for initiation of minus-strand RNA synthesis at its 3' end.
Collapse
Affiliation(s)
- N L Teterina
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | |
Collapse
|
5
|
Affiliation(s)
- D J Evans
- Division of Virology, University of Glasgow, United Kingdom
| |
Collapse
|
6
|
Bell YC, Semler BL, Ehrenfeld E. Requirements for RNA replication of a poliovirus replicon by coxsackievirus B3 RNA polymerase. J Virol 1999; 73:9413-21. [PMID: 10516050 PMCID: PMC112976 DOI: 10.1128/jvi.73.11.9413-9421.1999] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A chimeric poliovirus type 1 (PV1) genome was constructed in which the 3D RNA polymerase (3D(pol)) coding sequences were replaced with those from coxsackievirus B3 (CVB3). No infectious virus was produced from HeLa cells transfected with the chimeric RNA. Processing of the PV1 capsid protein precursor was incomplete, presumably due to inefficient recognition of the P1 protein substrate by the chimeric 3CD proteinase containing CVB3 3D sequences. The ability of the chimeric RNA to replicate in the absence of capsid formation was measured after replacement of the P1 region with a luciferase reporter gene. No RNA synthesis was detected, despite efficient production of enzymatically active 3D(pol) from the 3D portion of the chimeric 3CD. The chimeric 3CD protein was unable to efficiently bind to the cloverleaf-like structure (CL) at the 5' end of PV1 RNA, which has been demonstrated previously to be required for viral RNA synthesis. The CVB3 3CD protein bound the PV1 CL as well as PV1 3CD. An additional chimeric PV1 RNA that contained CVB3 3CD sequences also failed to produce virus after transfection. Since processing of PV1 capsid protein precursors by the CVB3 3CD was again incomplete, a luciferase-containing replicon was also analyzed for RNA replication. The 3CD chimera replicated at 33 degrees C, but not at 37 degrees C. Replacement of the PV1 5'-terminal CL with that of CVB3 did not rescue the temperature-sensitive phenotype. Thus, there is an essential interaction(s) between 3CD and other viral P2 or P3 protein products required for efficient RNA replication which is not fully achieved between proteins from the two different members of the same virus genus.
Collapse
Affiliation(s)
- Y C Bell
- Department of Molecular Biology, College of Medicine, University of California, Irvine, California 92697, USA
| | | | | |
Collapse
|
7
|
Gavin DK, Young SM, Xiao W, Temple B, Abernathy CR, Pereira DJ, Muzyczka N, Samulski RJ. Charge-to-alanine mutagenesis of the adeno-associated virus type 2 Rep78/68 proteins yields temperature-sensitive and magnesium-dependent variants. J Virol 1999; 73:9433-45. [PMID: 10516052 PMCID: PMC112978 DOI: 10.1128/jvi.73.11.9433-9445.1999] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/1999] [Accepted: 07/23/1999] [Indexed: 11/20/2022] Open
Abstract
The adeno-associated virus type 2 (AAV) replication (Rep) proteins Rep78 and 68 (Rep78/68) exhibit a number of biochemical activities required for AAV replication, including specific binding to a 22-bp region of the terminal repeat, site-specific endonuclease activity, and helicase activity. Individual and clusters of charged amino acids were converted to alanines in an effort to generate a collection of conditionally defective Rep78/68 proteins. Rep78 variants were expressed in human 293 cells and analyzed for their ability to mediate replication of recombinant AAV vectors at various temperatures. The biochemical activities of Rep variants were further characterized in vitro by using Rep68 His-tagged proteins purified from bacteria. The results of these analyses identified a temperature-sensitive (ts) Rep protein (D40,42,44A-78) that exhibited a delayed replication phenotype at 32 degrees C, which exceeded wild-type activity by 48 h. Replication activity was reduced by more than threefold at 37 degrees C and was undetectable at 39 degrees C. Stability of the Rep78 protein paralleled replication levels at each temperature, further supporting a ts phenotype. Replication differences resulted in a 3-log-unit difference in virus yields between the permissive and nonpermissive temperatures (2.2 x 10(6) and 3 x 10(3), respectively), demonstrating that this is a relatively tight mutant. In addition to the ts Rep mutant, we identified a nonconditional mutant with a reduced ability to support viral replication in vivo. Additional characterization of this mutant demonstrated an Mg(2+)-dependent phenotype that was specific to Rep endonuclease activity and did not affect helicase activity. The two mutants described here are unique, in that Rep ts mutants have not previously been described and the D412A Rep mutant represents the first mutant in which the helicase and endonuclease functions can be distinguished biochemically. Further understanding of these mutants should facilitate our understanding of AAV replication and integration, as well as provide novel strategies for production of viral vectors.
Collapse
Affiliation(s)
- D K Gavin
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Parsley TB, Cornell CT, Semler BL. Modulation of the RNA binding and protein processing activities of poliovirus polypeptide 3CD by the viral RNA polymerase domain. J Biol Chem 1999; 274:12867-76. [PMID: 10212275 DOI: 10.1074/jbc.274.18.12867] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To study the role of the RNA polymerase domain (3D) in the proteinase substrate recognition and RNA binding properties of poliovirus polypeptide 3CD, we generated recombinant 3C and 3CD polypeptides and purified them to near homogeneity. By using these purified proteins in in vitro cleavage assays with structural and non-structural viral polyprotein substrates, we found that 3CD processes the poliovirus structural polyprotein precursor (P1) 100 to 1000 times more efficiently than 3C processes P1. We also found that trans-cleavage of other 3CD molecules and sites within the non-structural P3 precursor is more efficiently mediated by 3CD than 3C. However, 3C and 3CD appear to be equally efficient in the processing of a non-structural polyprotein precursor, 2C3AB. Four mutated 3CD polyproteins with site-directed lesions in the 3D domain of the proteinase were analyzed for their ability to process viral polyprotein precursors and to form a ternary complex with RNA sequences encoded in the 5' terminus of the viral genome. Analysis of mutated 3CD polypeptides revealed that specific mutations within the 3D amino acid sequences of 3CD confer differential effects on 3CD activity. All four mutated 3CD proteins tested were able to process the P1 structural precursor with wild type or near wild type efficiency. However, three of the mutated enzymes demonstrated an impaired ability to process some sites within the P3 non-structural precursor, relative to wild type 3CD. One of the mutant 3CD polypeptides, 3CD-3DK127A, also displayed a defect in its ability to form a ternary ribonucleoprotein complex with poliovirus 5' RNA sequences.
Collapse
Affiliation(s)
- T B Parsley
- Department of Microbiology and Molecular Genetics, College of Medicine, University of California, Irvine, California 92697, USA
| | | | | |
Collapse
|
9
|
O'Reilly EK, Kao CC. Analysis of RNA-dependent RNA polymerase structure and function as guided by known polymerase structures and computer predictions of secondary structure. Virology 1998; 252:287-303. [PMID: 9878607 DOI: 10.1006/viro.1998.9463] [Citation(s) in RCA: 246] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
RNA-dependent RNA polymerases (RdRps) function as the catalytic subunit of the viral replicase required for the replication of all positive strand RNA viruses. The vast majority of RdRps have been identified solely on the basis of sequence similarity. Structural studies of RdRps have lagged behind those of the DNA-dependent DNA polymerases, DNA-dependent RNA polymerases, and reverse transcriptases until the recent report of the partial crystal structure of the poliovirus RdRp, 3Dpol [Hansen, J. L., et al. (1997). Structure 5, 1109-1122]. We seek to address whether all RdRps will have structures similar to those found in the poliovirus polymerase structure. Therefore, the PHD method of Rost and Sander [Rost, B., and Sander, C. (1993a). J. Mol. Biol. 232, 584-599; Rost, B., and Sander, C. (1994). Protein 19, 55-77] was used to predict the secondary structure of the RdRps from six different viral families: bromoviruses, tobamoviruses, tombusvirus, leviviruses, hepatitis C-like viruses, and picornaviruses. These predictions were compared with the known crystal structure of the poliovirus polymerase. The PHD method was also used to predict picornavirus structures in places in which the poliovirus crystal structure was disordered. All five families and the picornaviruses share a similar order of secondary structure elements present in their polymerase proteins. All except the leviviruses have the unique region observed in the poliovirus 3Dpol that is suggested to be involved in polymerase oligomerization. These structural predictions are used to explain the phenotypes of a collection of mutations that exist in several RNA polymerases. This analysis will help to guide further characterization of RdRps.
Collapse
Affiliation(s)
- E K O'Reilly
- Department of Biology, Indiana University, Bloomington, Indiana, 47405, USA
| | | |
Collapse
|
10
|
Khramtsov NV, Upton SJ. High-temperature inducible cell-free transcription and replication of double-stranded RNAs within the parasitic protozoan Cryptosporidium parvum. Virology 1998; 245:331-7. [PMID: 9636372 DOI: 10.1006/viro.1998.9181] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sporozoites of the protozoan parasite, Cryptosporidium parvum, were found to contain free, full-size plus strands transcribed from two extrachromosomal, cytoplasmic, virus-like double-stranded RNAs (dsRNAs). Cell-free transcription and replication of both dsRNAs were observed in crude sporozoite lysates. RNA polymerase activity was found to be dependent upon addition of Mg2+ or Mn2+, as well as the four ribonucleoside triphosphates, and was insensitive to inhibitors of cellular DNA-dependent RNA polymerase. Semiconservative transcription of the dsRNAs (plus strand synthesis) was observed at a wide range of temperatures, with an optimum of 50 degrees C. In contrast, replication (minus strand synthesis) was detected only at 50 and 60 degrees C.
Collapse
Affiliation(s)
- N V Khramtsov
- Division of Biology, Kansas State University, Manhattan 66506, USA.
| | | |
Collapse
|
11
|
Richards OC, Baker S, Ehrenfeld E. Mutation of lysine residues in the nucleotide binding segments of the poliovirus RNA-dependent RNA polymerase. J Virol 1996; 70:8564-70. [PMID: 8970981 PMCID: PMC190949 DOI: 10.1128/jvi.70.12.8564-8570.1996] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The poliovirus 3D RNA-dependent RNA polymerase contains two peptide segments previously shown to cross-link to nucleotide substrates via lysine residues. To determine which lysine residue(s) might be implicated in catalytic function, we engineered mutations to generate proteins with leucine residues substituted individually for each of the lysine residues in the NTP binding regions. These proteins were expressed in Escherichia coli and were examined for their abilities to bind nucleotides and to catalyze RNA chain elongation in vitro. Replacement of each lysine residue in the NTP binding segment located in the central portion of the 3D molecule (Lys-276, -278, or -283) with leucine produced no impairment of GTP binding or polymerase activity. Substitution of leucine for Lys-61 in the N-terminal portion of the protein, however, abolished the binding of protein to GTP-agarose and all detectable polymerase activity. A nearby lysine replacement with leucine at position 66 had no effect on enzyme activity. The three mutations in the central region of 3D were introduced into full-length viral cDNAs, and the infectivities of RNA transcripts were examined in transfected HeLa cells. Growth of virus containing 3D with a mutation at residue 278 (3Dmu278) or 3Dmu283 was indistinguishable from that of the wild type; however, 3Dmu276 generated extremely slow-growing, small-plaque virus. Polyprotein processing by 3CDmu276 was unaffected. Large-plaque variants, in which the Leu-276 codon had mutated again to an arginine codon, emerged at high frequency. The results suggest that a lysine residue at position 61 of 3Dpol is essential for polymerase catalytic function and that a basic (lysine or arginine) residue at position 276 is required for some other function of 3D important for virus growth but not for RNA chain elongation or polyprotein processing.
Collapse
Affiliation(s)
- O C Richards
- Department of Molecular Biology and Biochemistry, University of California, Irvine 92697, USA
| | | | | |
Collapse
|
12
|
Walker DE, McPherson D, Jablonski SA, McPherson S, Morrow CD. An aspartic acid at amino acid 108 is required to rescue infectious virus after transfection of a poliovirus cDNA containing a CGDD but not SGDD amino acid motif in 3Dpol. J Virol 1995; 69:8173-7. [PMID: 7494345 PMCID: PMC189777 DOI: 10.1128/jvi.69.12.8173-8177.1995] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The poliovirus RNA-dependent RNA polymerase (3Dpol) contains a region of homology centered around the amino acid motif YGDD (amino acids 326 to 329), which has been postulated to be involved in the catalytic activity of the enzyme. Previous studies from this laboratory have used oligonucleotide site-directed mutagenesis to substitute the tyrosine amino acid at this motif with other amino acids (S. A. Jablonski and C. D. Morrow, J. Virol. 67:373-381, 1993). The viruses recovered with 3Dpol genes with a methionine mutation also contained a second mutation at amino acid 108 resulting in a glutamic acid-to-aspartic acid change (3D-E-108 to 3D-D-108) in the poliovirus RNA polymerase. On the basis of these results, we suggested that the amino acid at position 108 might interact with the YGDD region of the poliovirus polymerase. To further investigate this possibility, we have constructed a series of constructs in which the poliovirus RNA polymerases contained a mutation at amino acid 108 (3D-E-108 to 3D-D-108) as well as a mutation in which the tyrosine amino acid (3D-Y-326) was substituted with cysteine (3D-C-326) or serine (3D-S-326). The mutant 3Dpol polymerases were expressed in Escherichia coli, and in vitro enzyme activity was analyzed. Enzymes containing the 3D-D-108 mutation with the wild-type amino acid (3D-Y-326) demonstrated in vitro enzyme activity similar to that of the wild-type enzyme containing 3D-E-108. In contrast, enzymes with the 3D-C-326 or 3D-S-326 mutation had less in vitro activity than the wild type. The inclusion of the second mutation at amino acid 3D-D-108 did not significantly affect the in vitro activity of the polymerases containing 3D-C-326 or 3D-S-326 mutation. Transfections of poliovirus cDNAs containing the substitution at amino acid 326 with or without the second mutation at amino acid 108 were performed. Consistent with previous findings, we found that transfection of poliovirus cDNAs containing the 3D-C-326 or 3D-S-326 mutation in 3Dpol did not result in the production of virus. Surprisingly, transfection of the poliovirus cDNAs containing the 3D-D-108/C-326 double mutation, but not the 3D-D-108/S-326 mutation, resulted in the production of virus. The virus obtained from transfection of polio-virus cDNAs containing 3D-D-108/C-326 mutation replicated with kinetics similar to that of the wild-type virus. RNA sequence analysis of the region of the 3Dpol containing the 3D-C-326 mutation revealed that the codon for cysteine (UGC) reverted to the codon for tyrosine (UAC). The results of these studies establish that under the appropriate conditions, poliovirus has the capacity to revert mutations within the YGDD amino acid motif of the poliovirus 3Dpol gene and further strengthen the idea that interaction between amino acid 108 and the YGDD region of 3Dpol is required for viral replication.
Collapse
Affiliation(s)
- D E Walker
- Department of Microbiology, University of Alabama at Birmingham 35294, USA
| | | | | | | | | |
Collapse
|
13
|
Jablonski SA, Morrow CD. Mutation of the aspartic acid residues of the GDD sequence motif of poliovirus RNA-dependent RNA polymerase results in enzymes with altered metal ion requirements for activity. J Virol 1995; 69:1532-9. [PMID: 7853486 PMCID: PMC188746 DOI: 10.1128/jvi.69.3.1532-1539.1995] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The poliovirus RNA-dependent RNA polymerase, 3Dpol, is known to share a region of sequence homology with all RNA polymerases centered at the GDD amino acid motif. The two aspartic acids have been postulated to be involved in the catalytic activity and metal ion coordination of the enzyme. To test this hypothesis, we have utilized oligonucleotide site-directed mutagenesis to generate defined mutations in the aspartic acids of the GDD motif of the 3Dpol gene. The codon for the first aspartate (3D-D-328 [D refers to the single amino acid change, and the number refers to its position in the polymerase]) was changed to that for glutamic acid, histidine, asparagine, or glutamine; the codons for both aspartic acids were simultaneously changed to those for glutamic acids; and the codon for the second aspartic acid (3D-D-329) was changed to that for glutamic acid or asparagine. The mutant enzymes were expressed in Escherichia coli, and the in vitro poly(U) polymerase activity was characterized. All of the mutant 3Dpol enzymes were enzymatically inactive in vitro when tested over a range of Mg2+ concentrations. However, when Mn2+ was substituted for Mg2+ in the in vitro assays, the mutant that substituted the second aspartic acid for asparagine (3D-N-329) was active. To further substantiate this finding, a series of different transition metal ions were substituted for Mg2+ in the poly(U) polymerase assay. The wild-type enzyme was active with all metals except Ca2+, while the 3D-N-329 mutant was active only when FeC6H7O5 was used in the reaction. To determine the effects of the mutations on poliovirus replication, the mutant 3Dpol genes were subcloned into an infectious cDNA of poliovirus. The cDNAs containing the mutant 3Dpol genes did not produce infectious virus when transfected into tissue culture cells under standard conditions. Because of the activity of the 3D-N-329 mutant in the presence of Fe2+ and Mn2+, transfections were also performed in the presence of the different metal ions. Surprisingly, the transfection of the cDNA containing the 3D-N-329 mutation resulted in the production of virus at a low frequency in the presence of FeSO4 or CoCl2. The virus derived from transfection in the presence of FeSO4 grew slowly, while the viruses recovered from transfection in CoCl2 grew at a rate which was similar to that of the wild-type poliovirus.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- S A Jablonski
- Department of Microbiology, University of Alabama at Birmingham 35294
| | | |
Collapse
|
14
|
Neufeld KL, Galarza JM, Richards OC, Summers DF, Ehrenfeld E. Identification of terminal adenylyl transferase activity of the poliovirus polymerase 3Dpol. J Virol 1994; 68:5811-8. [PMID: 8057462 PMCID: PMC236985 DOI: 10.1128/jvi.68.9.5811-5818.1994] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A terminal adenylyl transferase (TATase) activity has been identified in preparations of purified poliovirus RNA-dependent RNA polymerase (3Dpol). Highly purified 3Dpol is capable of adding [32P]AMP to the 3' ends of chemically synthesized 12-nucleotide (nt)-long RNAs. The purified 52-kDa polypeptide, isolated after sodium dodecyl sulfate-polyacrylamide gel electrophoresis and renatured, retained the TATase activity. Two 3Dpol mutants, purified from Escherichia coli expression systems, displayed no detectable polymerase activity and were unable to catalyze TATase activity. Likewise, extracts from the parental E. coli strain that harbored no expression plasmid were unable to catalyze formation of the TATase products. With the RNA oligonucleotide 5'-CCUGCUUUUGCA-3' used as an acceptor, the products formed by wild-type 3Dpol were 9 and 18 nt longer than the 12-nt oligomer. GTP, CTP, and UTP did not serve as substrates for transfer to this RNA, either by themselves or when all deoxynucleoside triphosphates were present in the reaction. Results from kinetic and stoichiometric analyses suggest that the reaction is catalytic and shows substrate and enzyme dependence. The 3'-terminal 13 nt of poliovirus minus-strand RNA also served as an acceptor for TATase activity, raising the possibility that this activity functions in poliovirus RNA replication. The efficiency of utilization and the nature of the products formed during the reaction were dependent on the acceptor RNA.
Collapse
Affiliation(s)
- K L Neufeld
- Department of Cellular, Viral and Molecular Biology, University of Utah School of Medicine, Salt Lake City 84132
| | | | | | | | | |
Collapse
|
15
|
Khromykh AA, Westaway EG. Completion of Kunjin virus RNA sequence and recovery of an infectious RNA transcribed from stably cloned full-length cDNA. J Virol 1994; 68:4580-8. [PMID: 8207832 PMCID: PMC236385 DOI: 10.1128/jvi.68.7.4580-4588.1994] [Citation(s) in RCA: 114] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Completion of the Kunjin virus (KUN) RNA sequence showed that it is the longest flavivirus sequence reported (11,022 bases), commencing with a 5' noncoding region of 96 bases. The 3' noncoding sequence of 624 nucleotides included a unique insertion sequence of 46 bases adjacent to the stop codon, but otherwise it had properties similar to those of RNAs of closely related flaviviruses. A full-length KUN cDNA clone which could be stably propagated in Escherichia coli DH5 alpha was constructed; SP6 polymerase RNA transcripts from amplified cDNA were infectious when transfected into BHK-21 cells. A mutational change abolishing the BamHI restriction site at position 4049, leading to a conservative amino acid change of Arg-175 to Lys in the NS2A protein, was introduced into the cDNA during construction and was retained in the recovered virus. Extra terminal nucleotides introduced during cloning of the cDNA were shown to be present in the in vitro RNA transcripts but absent in the RNA of recovered virus. Although recovered virus differed from the parental KUN by a smaller plaque phenotype and delayed growth rate in BHK-21 cells and mice, it was very similar as assessed by several other criteria, such as peak titer during growth in cells, infectivity titer in cells and in mice, rate of adsorption and penetration in cells, replication at 39 degrees C, and neurovirulence after intraperitoneal injection in mice. The KUN stably cloned cDNA will provide a useful basis for future studies in defining and characterizing functional roles of all the gene products.
Collapse
MESH Headings
- Animals
- Base Sequence
- Cells, Cultured
- Cloning, Molecular
- Cricetinae
- DNA, Complementary
- DNA, Viral/genetics
- Encephalitis Viruses, Japanese/genetics
- Encephalitis Viruses, Japanese/isolation & purification
- Encephalitis Viruses, Japanese/pathogenicity
- Escherichia coli/genetics
- Mice
- Mice, Inbred BALB C
- Molecular Sequence Data
- Plasmids
- RNA, Messenger/genetics
- RNA, Messenger/isolation & purification
- RNA, Viral/genetics
- RNA, Viral/isolation & purification
- Sequence Homology, Nucleic Acid
- Vero Cells
Collapse
Affiliation(s)
- A A Khromykh
- Sir Albert Sakzewski Virus Research Centre, Royal Childrens Hospital, Brisbane, Australia
| | | |
Collapse
|
16
|
Diamond SE, Kirkegaard K. Clustered charged-to-alanine mutagenesis of poliovirus RNA-dependent RNA polymerase yields multiple temperature-sensitive mutants defective in RNA synthesis. J Virol 1994; 68:863-76. [PMID: 8289389 PMCID: PMC236523 DOI: 10.1128/jvi.68.2.863-876.1994] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
To generate a collection of conditionally defective poliovirus mutants, clustered charged-to-alanine mutagenesis of the RNA-dependent RNA polymerase 3D was performed. Clusters of charged residues in the polymerase coding region were replaced with alanines by deoxyoligonucleotide-directed mutagenesis of a full-length poliovirus cDNA clone. Following transfection of 27 mutagenized cDNA clones, 10 (37%) gave rise to viruses with temperature-sensitive (ts) phenotypes. Three of the ts mutants displayed severe ts plaque reduction phenotypes, producing at least 10(3)-fold fewer plaques at 39.5 degrees C than at 32.5 degrees C; the other seven mutants displayed ts small-plaque phenotypes. Constant-temperature, single-cycle infections showed defects in virus yield or RNA accumulation at the nonpermissive temperature for eight stable ts mutants. In temperature shift experiments, seven of the ts mutants showed reduced accumulation of viral RNA at the nonpermissive temperature and showed no other ts defects. The mutations responsible for the phenotypes of most of these ts mutants lie in the N-terminal third of the 3D coding region, where no well-characterized mutations responsible for viable mutants had been previously identified. Clustered charged-to-alanine mutagenesis (S. H. Bass, M. G. Mulkerrin, and J. A. Wells, Proc. Natl. Acad. Sci. USA 88:4498-4502, 1991; W. F. Bennett, N. F. Paoni, B. A. Keyt, D. Botstein, J. J. S. Jones, L. Presta, F. M. Wurm, and M. J. Zoller, J. Biol. Chem. 266:5191-5201, 1991; and K. F. Wertman, D. G. Drubin, and D. Botstein, Genetics 132:337-350, 1992) is designed to target residues on the surfaces of folded proteins; thus, extragenic suppression analysis of such mutant viruses may be very useful in identifying components of the viral replication complex.
Collapse
Affiliation(s)
- S E Diamond
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder 80309-0347
| | | |
Collapse
|
17
|
Hughes SA, Denison MR, Bonilla P, Leibowitz JL, Baric RS, Weiss SR. A newly identified MHV-A59 ORF1a polypeptide p65 is temperature sensitive in two RNA negative mutants. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1994; 342:221-6. [PMID: 8209734 DOI: 10.1007/978-1-4615-2996-5_35] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Polypeptide products of MHV-A59 gene 1 have been identified in infected DBT cells and in the products of in vitro translations of genome RNA. In this paper we report the identification in infected cell lysates of a 65-kDa polypeptide (p65) encoded in ORF 1a. Studies on the kinetics of appearance and processing of p65 show that p65 is detectable after p28 but before the appearance of p290, p240 and p50. No homologue of the p65 polypeptide identified in infected cell lysates was immunoprecipitated from in vitro translations of genomic RNA, providing further evidence that in vitro processing of polypeptides encoded in ORF 1a of gene 1 differs from that which occurs late in infection of DBT cells. Although the function of p65 is unknown, two MHV-A59 ts mutants isolated and characterized by Baric et al. (3,4) do not produce detectable levels of p65 at the non-permissive temperature indicating that p65 may play an important role in the virus life cycle.
Collapse
Affiliation(s)
- S A Hughes
- University of Pennsylvania School of Medicine, Phila
| | | | | | | | | | | |
Collapse
|
18
|
Tardy-Panit M, Blondel B, Martin A, Tekaia F, Horaud F, Delpeyroux F. A mutation in the RNA polymerase of poliovirus type 1 contributes to attenuation in mice. J Virol 1993; 67:4630-8. [PMID: 8392604 PMCID: PMC237848 DOI: 10.1128/jvi.67.8.4630-4638.1993] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The attenuated Sabin strain of poliovirus type 1 (PV-1) differs from the neurovirulent PV-1 Mahoney strain by 55 nucleotide mutations. Only one of these mutations (A-480-->G, in the 5' noncoding (5' NC) region of the genome, is well characterized, and it confers a strong attenuating effect. We attempted to identify genetic attenuation determinants in the 3'-terminal part of the Sabin 1 genome including the 3D polymerase (3Dpol) gene and the 3' NC region. Previous studies suggested that some of the 11 mutations in this region of the Sabin 1 genome, and in particular a mutation in the polymerase gene (U-6203-->C, Tyr-73-->His), are involved to some extent in the attenuation of PV-1. We analyzed the attenuating effect in the mouse model by using the mouse-adapted PV-1/PV-2 chimeric strain v510 (a Mahoney strain carrying nine amino acids of the VP1 capsid protein from the Lansing strain of PV-2). Mutagenesis of locus 6203 was performed on the original v510 (U-6203-->C) and also on a hybrid v510/Sabin 1 (C-6203-->U) carrying the downstream 1,840 nucleotides of the Sabin 1 genome including the 3Dpol and 3' NC regions. Statistical analysis of disease incidence and time to disease onset in numerous mice inoculated with these strains strongly suggested that nucleotide C-6203 is involved in the attenuation of the Sabin 1 strain. Results also suggested that, among the mutations located in the 3Dpol and 3' NC regions, nucleotide C-6203 may be the principal or the only one to be involved in attenuation in this mouse model. We also found that the effect of C-6203 was weaker than that of nucleotide G-480; the two nucleotides acted independently and may have a cumulative effect on attenuation. The U-6203-->C substitution also appeared to contribute to the thermosensitivity of the Sabin 1 strain.
Collapse
Affiliation(s)
- M Tardy-Panit
- Unité de Virologie Médicale, Institut Pasteur, Paris, France
| | | | | | | | | | | |
Collapse
|