1
|
Liu Q, Fan G, Bi J, Qin X, Fang Q, Wu M, Mei S, Wan Z, Lv Y, Song L, Wang Y. Associations of polychlorinated biphenyls and organochlorine pesticides with metabolic dysfunction-associated fatty liver disease among Chinese adults: Effect modification by lifestyle. ENVIRONMENTAL RESEARCH 2024; 240:117507. [PMID: 37918764 DOI: 10.1016/j.envres.2023.117507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/24/2023] [Accepted: 10/24/2023] [Indexed: 11/04/2023]
Abstract
Exposure to environmental pollutants and unhealthy lifestyles are key risk factors for metabolic dysfunction-associated fatty liver disease (MAFLD). While previous studies have suggested links between exposure to organochlorine pesticides (PCBs) and organochlorine pesticides (OCPs) and MAFLD, the results have been inconsistent. Furthermore, the combined effects of PCBs and OCPs on MAFLD and whether lifestyle factors can modify the associations remain unknown. Therefore, this study aimed to investigate the individual and joint effects of PCBs and OCPs on MAFLD and explore the potential modifying role of lifestyle. The study included 1923 participants from Wuhan, China. MAFLD was diagnosed based on ultrasonically diagnosed hepatic steatosis and the presence of overweight/obese, diabetes mellitus, or metabolic dysregulation. Healthy lifestyle score was determined by smoking, alcohol consumption, physical activity, and diet. Logistic regression and weighted quantile sum (WQS) were used to assess associations of individual and mixture of PCBs/OCPs with MAFLD. To explore the potential lifestyle modification, joint associations of PCBs/OCPs and lifestyle on MAFLD were conducted. Single-pollutant analysis showed positive associations of p,p'-DDE, β-HCH, PCB-153, and PCB-180 with MAFLD, with ORs (95% CIs) of 1.18 (1.05, 1.33), 1.57 (1.20, 2.05), 1.45 (1.14, 1.83), and 1.42 (1.12, 1.80), respectively. WQS regression demonstrated a harmful effect of PCBs/OCPs mixture on MAFLD (OR = 1.73, 95% CI = 1.24, 2.43), with β-HCH, p,p'-DDE, and PCB-180 being the major contributors. In the joint association analysis, participants with both high PCBs/OCPs exposure and unhealthy lifestyle have the highest odds of MAFLD. In conclusion, exposure to the mixture of PCBs and OCPs was positively correlated with MAFLD, and adopting a healthy lifestyle can mitigate the adverse impact.
Collapse
Affiliation(s)
- Qing Liu
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, HangKong Road 13, Wuhan 430030, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Gaojie Fan
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, HangKong Road 13, Wuhan 430030, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jianing Bi
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, HangKong Road 13, Wuhan 430030, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiya Qin
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, HangKong Road 13, Wuhan 430030, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qing Fang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, HangKong Road 13, Wuhan 430030, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mingyang Wu
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, HangKong Road 13, Wuhan 430030, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Surong Mei
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhengce Wan
- Health Management Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yongman Lv
- Health Management Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lulu Song
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, HangKong Road 13, Wuhan 430030, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Youjie Wang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, HangKong Road 13, Wuhan 430030, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
2
|
Martins FA, Freitas MP. Theoretical Exploitation of 1,2,3,4,5,6-Hexachloro- and 1,2,3,4,5,6-Hexafluorocyclohexane Isomers as Biologically Active Compounds. Chemphyschem 2023; 24:e202200450. [PMID: 36197010 DOI: 10.1002/cphc.202200450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/03/2022] [Indexed: 11/08/2022]
Abstract
Hexachlorocyclohexanes (HCHs) have been widely explored as biological compounds during the last century. However, most of them were banned due to their potential toxicity in humans, animals, and the environment. Revisiting HCHs to explore their biological activity while improving key features is valuable and may lead to a new class of pesticides that utilizes the biological response of HCHs without their toxic characteristics. In this sense, the fluorine atom can be a possible alternative since a large number of therapeutics and agrochemicals have been developed with this halogen in their structure. We have evaluated herein the conformational behavior of HCHs and their bioisosteric fluorinated compounds, namely, hexafluorocyclohexanes (HFHs), through quantum-chemical calculations. We also explored the potential of the HCH and HFH isomers as biological compounds by docking them inside three possible targets. It was demonstrated that HCH and HFH have similar ligand-protein interactions with three pockets: the picrotoxin and barbiturate sites of the GABAA receptor and the ryanodine receptor. The results support HFHs as possible alternatives for HCHs since the replacement of Cl with F does not forfeit the main ligand-protein interactions. Finally, we demonstrated that HFHs have a lower log P than HCHs by almost two logarithmic units. This result highlights the role of fluorine in distribution and bioaccumulation.
Collapse
Affiliation(s)
- Francisco A Martins
- Department of Chemistry, Institute of Natural Sciences, Federal University of Lavras, 37200-900, Lavras, MG, Brazil
| | - Matheus P Freitas
- Department of Chemistry, Institute of Natural Sciences, Federal University of Lavras, 37200-900, Lavras, MG, Brazil
| |
Collapse
|
3
|
Xie J, Tao L, Wu Q, Bian Z, Wang M, Li Y, Zhu G, Lin T. Bioaccumulation of organochlorine pesticides in Antarctic krill (Euphausia superba): Profile, influencing factors, and mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:128115. [PMID: 34959217 DOI: 10.1016/j.jhazmat.2021.128115] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Accumulation of organochlorine pesticides (OCPs) in Antarctic krill (Euphausia superba), a keystone species in the Southern Ocean, is potentially harmful to the Antarctic ecosystem and human health. In the current study, we collected E. superba specimens (including muscle and carapace tissues) from Bransfield Strait in northern Antarctic Peninsula and South Georgia to analyze the profile, influencing factors and mechanisms of OCPs bioaccumulation in them. Results indicated that the biological traits (δ13C, δ15N and lipid contents) of krill were significantly affected by habitat. There may exist growth dilution of OCPs in Antarctic krill and no fresh OCPs input in Antarctica, except for endosulfan I. Based on lipid-normalized concentrations, no significant differences were observed between the two regions at most sampling sites. However, OCP levels showed tissue and sex dependence. Boosted regression trees (BRTs) and partial least squares structural equation models (PLS-SEMs) were built to better investigate the main factors affecting the bioaccumulation of OCPs. Lipid content, negatively correlated with OCP levels, was the main factor. In vitro silicon modeling indicated that CYP3A4 metabolism capacity in krill contributed to the OCP residues except for endosulfan I. The results of this study expand current knowledge of OCPs in Antarctic marine biota, as well as their influencing factors and potential mechanisms.
Collapse
Affiliation(s)
- Jingqian Xie
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China; Center for Polar Research, Shanghai Ocean University, Shanghai 201306, China; State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environment and Resources, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Ling Tao
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Qiang Wu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Zhihe Bian
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Mengqiu Wang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Yingming Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Guoping Zhu
- Center for Polar Research, Shanghai Ocean University, Shanghai 201306, China; College of Marine Science, Shanghai Ocean University, Shanghai 201306, China; National Engineering Research Center for Oceanic Fisheries, Shanghai 201306, China; Polar Marine Ecosystem Group, Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Shanghai Ocean University, Ministry of Education, Shanghai 201306, China.
| | - Tian Lin
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
4
|
Toupin N, Steinke SJ, Nadella S, Li A, Rohrabaugh TN, Samuels ER, Turro C, Sevrioukova IF, Kodanko JJ. Photosensitive Ru(II) Complexes as Inhibitors of the Major Human Drug Metabolizing Enzyme CYP3A4. J Am Chem Soc 2021; 143:9191-9205. [PMID: 34110801 DOI: 10.1021/jacs.1c04155] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We report the synthesis and photochemical and biological characterization of the first selective and potent metal-based inhibitors of cytochrome P450 3A4 (CYP3A4), the major human drug metabolizing enzyme. Five Ru(II)-based derivatives were prepared from two analogs of the CYP3A4 inhibitor ritonavir, 4 and 6: [Ru(tpy)(L)(6)]Cl2 (tpy = 2,2':6',2″-terpyridine) with L = 6,6'-dimethyl-2,2'-bipyridine (Me2bpy; 8), dimethylbenzo[i]dipyrido[3,2-a:2',3'-c]phenazine (Me2dppn; 10) and 3,6-dimethyl-10,15-diphenylbenzo[i]dipyrido[3,2-a:2',3'-c]phenazine (Me2Ph2dppn; 11), [Ru(tpy)(Me2bpy)(4)]Cl2 (7) and [Ru(tpy)(Me2dppn)(4)]Cl2 (9). Photochemical release of 4 or 6 from 7-11 was demonstrated, and the spectrophotometric evaluation of 7 showed that it behaves similarly to free 4 (type II heme ligation) after irradiation with visible light but not in the dark. Unexpectedly, the intact Ru(II) complexes 7 and 8 were found to inhibit CYP3A4 potently and specifically through direct binding to the active site without heme ligation. Caged inhibitors 9-11 showed dual action properties by combining photoactivated dissociation of 4 or 6 with efficient 1O2 production. In prostate adenocarcinoma DU-145 cells, compound 9 had the best synergistic effect with vinblastine, the anticancer drug primarily metabolized by CYP3A4 in vivo. Thus, our study establishes a new paradigm in CYP inhibition using metalated complexes and suggests possible utilization of photoactive CYP3A4 inhibitory compounds in clinical applications, such as enhancement of therapeutic efficacy of anticancer drugs.
Collapse
Affiliation(s)
- Nicholas Toupin
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Sean J Steinke
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Sandeep Nadella
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Ao Li
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Thomas N Rohrabaugh
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | | | - Claudia Turro
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | | | - Jeremy J Kodanko
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States.,Barbara Ann Karmanos Cancer Institute, Detroit, Michigan 48201, United States
| |
Collapse
|
5
|
Rational Design of CYP3A4 Inhibitors: A One-Atom Linker Elongation in Ritonavir-Like Compounds Leads to a Marked Improvement in the Binding Strength. Int J Mol Sci 2021; 22:ijms22020852. [PMID: 33467005 PMCID: PMC7830545 DOI: 10.3390/ijms22020852] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/09/2021] [Accepted: 01/12/2021] [Indexed: 12/11/2022] Open
Abstract
Inhibition of the major human drug-metabolizing cytochrome P450 3A4 (CYP3A4) by pharmaceuticals and other xenobiotics could lead to toxicity, drug–drug interactions and other adverse effects, as well as pharmacoenhancement. Despite serious clinical implications, the structural basis and attributes required for the potent inhibition of CYP3A4 remain to be established. We utilized a rational inhibitor design to investigate the structure–activity relationships in the analogues of ritonavir, the most potent CYP3A4 inhibitor in clinical use. This study elucidated the optimal length of the head-group spacer using eleven (series V) analogues with the R1/R2 side-groups as phenyls or R1–phenyl/R2–indole/naphthalene in various stereo configurations. Spectral, functional and structural characterization of the inhibitory complexes showed that a one-atom head-group linker elongation, from pyridyl–ethyl to pyridyl–propyl, was beneficial and markedly improved Ks, IC50 and thermostability of CYP3A4. In contrast, a two-atom linker extension led to a multi-fold decrease in the binding and inhibitory strength, possibly due to spatial and/or conformational constraints. The lead compound, 3h, was among the best inhibitors designed so far and overall, the strongest binder (Ks and IC50 of 0.007 and 0.090 µM, respectively). 3h was the fourth structurally simpler inhibitor superior to ritonavir, which further demonstrates the power of our approach.
Collapse
|
6
|
Li Y, Cui J, Jia J. The Activation of Procarcinogens by CYP1A1/1B1 and Related Chemo-Preventive Agents: A Review. Curr Cancer Drug Targets 2021; 21:21-54. [PMID: 33023449 DOI: 10.2174/1568009620666201006143419] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/08/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023]
Abstract
CYP1A1 and CYP1B1 are extrahepatic P450 family members involved in the metabolism of procarcinogens, such as PAHs, heterocyclic amines and halogen-containing organic compounds. CYP1A1/1B1 also participate in the metabolism of endogenous 17-β-estradiol, producing estradiol hydroquinones, which are the intermediates of carcinogenic semiquinones and quinones. CYP1A1 and CYP1B1 proteins share approximately half amino acid sequence identity but differ in crystal structures. As a result, CYP1A1 and CYP1B1 have different substrate specificity to chemical procarcinogens. This review will introduce the general molecular biology knowledge of CYP1A1/1B1 and the metabolic processes of procarcinogens regulated by these two enzymes. Over the last four decades, a variety of natural products and synthetic compounds which interact with CYP1A1/1B1 have been identified as effective chemo-preventive agents against chemical carcinogenesis. These compounds are mainly classified as indirect or direct CYP1A1/1B1 inhibitors based on their distinct mechanisms. Indirect CYP1A1/1B1 inhibitors generally impede the transcription and translation of CYP1A1/1B1 genes or interfere with the translocation of aryl hydrocarbon receptor (AHR) from the cytosolic domain to the nucleus. On the other hand, direct inhibitors inhibit the catalytic activities of CYP1A1/1B1. Based on the structural features, the indirect inhibitors can be categorized into the following groups: flavonoids, alkaloids and synthetic aromatics, whereas the direct inhibitors can be categorized into flavonoids, coumarins, stilbenes, sulfur containing isothiocyanates and synthetic aromatics. This review will summarize the in vitro and in vivo activities of these chemo-preventive agents, their working mechanisms, and related SARs. This will provide a better understanding of the molecular mechanism of CYP1 mediated carcinogenesis and will also give great implications for the discovery of novel chemo-preventive agents in the near future.
Collapse
Affiliation(s)
- Yubei Li
- China-UK Low Carbon College, Shanghai Jiaotong University, Shanghai, China
| | - Jiahua Cui
- School of Environmental Science and Engineering, Shanghai Jiaotong University, Shanghai, China
| | - Jinping Jia
- School of Environmental Science and Engineering, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
7
|
Starek-Świechowicz B, Budziszewska B, Starek A. Hexachlorobenzene as a persistent organic pollutant: Toxicity and molecular mechanism of action. Pharmacol Rep 2017; 69:1232-1239. [DOI: 10.1016/j.pharep.2017.06.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 06/22/2017] [Accepted: 06/22/2017] [Indexed: 11/27/2022]
|
8
|
Jiang P, Wang J, Sheng N, Wei D, Dai J. Effects of pentachlorophenol on the quail (Coturnix japonica) liver detoxification pathway. CHEMOSPHERE 2017; 177:44-50. [PMID: 28284116 DOI: 10.1016/j.chemosphere.2017.02.154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/28/2017] [Accepted: 02/28/2017] [Indexed: 06/06/2023]
Abstract
Pentachlorophenol (PCP), an extensively used pesticide and biocide, is of critical environmental concern due to its toxicity and recalcitrance to degradation. In this study, the effect of PCP on induction of transcription factors, cytochrome P450 (CYP450) genes, and the antioxidative enzyme system were investigated in the quail liver. A total of 60 (4- to 6-week-old) male quails (Coturnix japonica) were administered 0, 0.05, 0.5, and 5 mg/kg/d PCP orally for 42 d. Following exposure, both absolute and relative liver weights were significantly lower than those of the control. Using gas chromatography-mass spectrometry, PCP accumulation was, from highest to lowest, kidney > liver > muscle for all exposure groups. The expressions of CYP1A5, CYP1B1, CYP2C18, nuclear translocator 1 (ARNT1), and aryl hydrocarbon receptor 1 (AHR1) were induced after PCP treatment, and increases were found in the activities of hepatic superoxide dismutase (SOD) and catalase (CAT), and the content of hepatic malondialdehyde (MDA). In addition, exposure to PCP induced an increase in liver 8-hydroxydeoxyguanosine (8-OHdG) and significantly elevated ethoxyresorufin O-deethylase (EROD), methoxyresorufin O-demethylase (MROD), and 7-ethoxycoumarin-O-deethylase (ECOD) activity, but decreased that of glutathione peroxidase (GSH-Px), benzyloxyresorufin O-debenzylase (BROD), pentoxyresorufin O-depentylase (PROD), and erythromycin N-demethylase (END). No significant responses were observed for benzyloxy-trifluoromethyl-coumarin (BFC). The protein level of liver nuclear factor κB (NF-κB) was higher, whereas that of nuclear factor E2-related factor 2 (Nrf2) was lower for exposed quail. These results suggest that PCP affects quail oxidative stress by modulating CYP450 enzymes and nuclear transcription factors.
Collapse
Affiliation(s)
- Peng Jiang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Jianshe Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Nan Sheng
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Dongbing Wei
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Jiayin Dai
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China.
| |
Collapse
|
9
|
Cui Y, Liang L, Zhong Q, He Q, Shan X, Chen K, Huang F. The association of cancer risks with pentachlorophenol exposure: Focusing on community population in the areas along certain section of Yangtze River in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 224:729-738. [PMID: 28094052 DOI: 10.1016/j.envpol.2016.12.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/06/2016] [Accepted: 12/07/2016] [Indexed: 06/06/2023]
Abstract
Pentachlorophenol (PCP) was used in large quantities, and mainly for killing the intermediate host snails of schistosome in China, thereby resulting in ubiquitous PCP residue in the environment. However, studies considering the carcinogenicity of PCP for humans mainly focused on occupational workers, and the actual carcinogenicity of PCP for general population is uncertain. To investigate the association between cancer risks and PCP exposure in a community population, an ecological study was conducted in three contaminated areas along the Yangtze River. Standardized rate ratio (SRR) was calculated to represent the risk of cancer incidence, by using incidence in the low PCP exposure category as the reference group. A total of 15,962 cancer records were collected, and 76 water samples and 213 urine samples in three areas were examined. Our findings suggested that compared with the low PCP group, the high PCP group had significantly excessive incidences of various cancers related to different organs including lymph (SRR = 19.44, 95% CI = 15.00-25.19), blood (SRR = 17.24, 95% CI = 12.92-23.01), nasopharynx (SRR = 3.97, 95% CI = 3.75-4.21), gallbladder (SRR = 3.46, 95% CI = 3.09-3.87), pancreas (SRR = 3.41, 95% CI = 3.07-3.79), respiratory system (SRR = 3.41, 95% CI = 3.27-3.57) and liver (SRR = 3.31, 95% CI = 3.09-3.56). Taken together, our present study provides evidence that general community population exposed to high level of PCP exhibits a broader spectrum of increased cancer risks as compared to occupational groups.
Collapse
Affiliation(s)
- Yanjie Cui
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Anhui, 230032, China
| | - Ling Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Anhui, 230032, China
| | - Qi Zhong
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Anhui, 230032, China
| | - Qian He
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Anhui, 230032, China
| | - Xiaomei Shan
- Physical and Chemical Laboratory of Anhui Provincial Center for Disease Control and Prevention, Hefei, Anhui 230601, China
| | - Keyang Chen
- Department of Hygiene Inspection and Quarantine, School of Public Health, Anhui Medical University, Anhui, 230032, China
| | - Fen Huang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Anhui, 230032, China.
| |
Collapse
|
10
|
Kaur P, Chamberlin AR, Poulos TL, Sevrioukova IF. Structure-Based Inhibitor Design for Evaluation of a CYP3A4 Pharmacophore Model. J Med Chem 2015; 59:4210-20. [PMID: 26371436 DOI: 10.1021/acs.jmedchem.5b01146] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human cytochrome P450 3A4 (CYP3A4) is a key xenobiotic-metabolizing enzyme that oxidizes and clears the majority of drugs. CYP3A4 inhibition may lead to drug-drug interactions, toxicity, and other adverse effects but, in some cases, could be beneficial and enhance therapeutic efficiency of coadministered pharmaceuticals that are metabolized by CYP3A4. On the basis of our investigations of analogs of ritonavir, a potent CYP3A4 inactivator and pharmacoenhancer, we have built a pharmacophore model for a CYP3A4-specific inhibitor. This study is the first attempt to test this model using a set of rationally designed compounds. The functional and structural data presented here agree well with the proposed pharmacophore. In particular, we confirmed the importance of a flexible backbone, the H-bond donor/acceptor moiety, and aromaticity of the side group analogous to Phe-2 of ritonavir and demonstrated the leading role of hydrophobic interactions at the sites adjacent to the heme and phenylalanine cluster in the ligand binding process. The X-ray structures of CYP3A4 bound to the rationally designed inhibitors provide deeper insights into the mechanism of the CYP3A4-ligand interaction. Most importantly, two of our compounds (15a and 15b) that are less complex than ritonavir have comparable submicromolar affinity and inhibitory potency for CYP3A4 and, thus, could serve as templates for synthesis of second generation inhibitors for further evaluation and optimization of the pharmacophore model.
Collapse
Affiliation(s)
- Parminder Kaur
- Departments of †Pharmaceutical Sciences, ‡Chemistry, and §Molecular Biology and Biochemistry, University of California-Irvine , Irvine, California 92697, United States
| | - A Richard Chamberlin
- Departments of †Pharmaceutical Sciences, ‡Chemistry, and §Molecular Biology and Biochemistry, University of California-Irvine , Irvine, California 92697, United States
| | - Thomas L Poulos
- Departments of †Pharmaceutical Sciences, ‡Chemistry, and §Molecular Biology and Biochemistry, University of California-Irvine , Irvine, California 92697, United States
| | - Irina F Sevrioukova
- Departments of †Pharmaceutical Sciences, ‡Chemistry, and §Molecular Biology and Biochemistry, University of California-Irvine , Irvine, California 92697, United States
| |
Collapse
|
11
|
Morales M, Martínez-Paz P, Martín R, Planelló R, Urien J, Martínez-Guitarte JL, Morcillo G. Transcriptional changes induced by in vivo exposure to pentachlorophenol (PCP) in Chironomus riparius (Diptera) aquatic larvae. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 157:1-9. [PMID: 25306060 DOI: 10.1016/j.aquatox.2014.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/22/2014] [Accepted: 09/23/2014] [Indexed: 06/04/2023]
Abstract
Pentachlorophenol (PCP) has been extensively used worldwide as a pesticide and biocide and is frequently detected in the aquatic environment. In the present work, the toxicity of PCP was investigated in Chironomus riparius aquatic larvae. The effects following short- and long-term exposures were evaluated at the molecular level by analyzing changes in the transcriptional profile of different endocrine genes, as well as in genes involved in the stress response and detoxification. Interestingly, although no differences were found after 12- and 24-h treatments, at 96-h exposures PCP was able to induce significant increases in transcripts from the ecdysone receptor gene (EcR), the early ecdysone-inducible E74 gene, the estrogen-related receptor gene (ERR), the Hsp70 gene and the CYP4G gene. In contrast, the Hsp27 gene appeared to be downregulated, while the ultraspiracle gene (usp) (insect ortholog of the retinoid X receptor) was not altered in any of the conditions assayed. Moreover, Glutathione-S-Transferase (GST) activity was not affected. The results obtained show the ability of PCP to modulate transcription of different biomarker genes from important cellular metabolic activities, which could be useful in genomic approaches to monitoring. In particular, the significant upregulation of hormonal genes represents the first evidence at the genomic level of the potential endocrine disruptive effects of PCP on aquatic invertebrates.
Collapse
Affiliation(s)
- Mónica Morales
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Senda del Rey 9, Madrid 28040, Spain.
| | - Pedro Martínez-Paz
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Senda del Rey 9, Madrid 28040, Spain
| | - Raquel Martín
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Senda del Rey 9, Madrid 28040, Spain
| | - Rosario Planelló
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Senda del Rey 9, Madrid 28040, Spain
| | - Josune Urien
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Senda del Rey 9, Madrid 28040, Spain
| | - José Luis Martínez-Guitarte
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Senda del Rey 9, Madrid 28040, Spain
| | - Gloria Morcillo
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Senda del Rey 9, Madrid 28040, Spain
| |
Collapse
|
12
|
Fang Q, Shi X, Zhang L, Wang Q, Wang X, Guo Y, Zhou B. Effect of titanium dioxide nanoparticles on the bioavailability, metabolism, and toxicity of pentachlorophenol in zebrafish larvae. JOURNAL OF HAZARDOUS MATERIALS 2014; 283:897-904. [PMID: 25464334 DOI: 10.1016/j.jhazmat.2014.10.039] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 10/14/2014] [Accepted: 10/27/2014] [Indexed: 05/29/2023]
Abstract
This study investigated the influence of titanium dioxide nanoparticles (n-TiO2) on the bioavailability, metabolism, and toxicity of pentachlorophenol (PCP) in fish. Zebrafish (Danio rerio) embryos or larvae (2-h post-fertilization) were exposed to PCP (0, 3, 10, and 30 μg/L) alone or in combination with n-TiO2 (0.1mg/L) until 6 days post-fertilization. Results showed that n-TiO2 treatment alone did not induce lipid peroxidation, DNA damage, as well as the generation of reactive oxygen species (ROS) in the larvae. As compared with PCP treatment, the co-exposure of PCP and n-TiO2 enhanced the induction of ROS generation, eventually leading to lipid peroxidation and DNA damage. The nuclear factor erythroid 2-related factor 2 gene transcriptions were significantly upregulated in both PCP treatment alone and in combination with n-TiO2. Chemical analysis and histological examination showed that n-TiO2 adsorb PCP, and n-TiO2 are taken up by developing zebrafish larvae; however, PCP content was not enhanced in the presence of n-TiO2, but the metabolism of PCP to tetrachlorohydroquinone was enhanced in larvae. The results indicate that n-TiO2 enhanced the metabolism of PCP and caused oxidative damage and developmental toxicity, suggesting that NPs can influence the fate and toxicity of associated organic pollutants in the aquatic environment.
Collapse
Affiliation(s)
- Qi Fang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Graduate University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xiongjie Shi
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Liping Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qiangwei Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Graduate University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xianfeng Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Graduate University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yongyong Guo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
13
|
Xu T, Zhao J, Hu P, Dong Z, Li J, Zhang H, Yin D, Zhao Q. Pentachlorophenol exposure causes Warburg-like effects in zebrafish embryos at gastrulation stage. Toxicol Appl Pharmacol 2014; 277:183-91. [PMID: 24642059 DOI: 10.1016/j.taap.2014.03.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 02/21/2014] [Accepted: 03/04/2014] [Indexed: 12/31/2022]
Abstract
Pentachlorophenol (PCP) is a prevalent pollutant in the environment and has been demonstrated to be a serious toxicant to humans and animals. However, little is known regarding the molecular mechanism underlying its toxic effects on vertebrate early development. To explore the impacts and underlying mechanisms of PCP on early development, zebrafish (Danio rerio) embryos were exposed to PCP at concentrations of 0, 20 and 50 μg/L, and microscopic observation and cDNA microarray analysis were subsequently conducted at gastrulation stage. The morphological observations revealed that PCP caused a developmental delay of zebrafish embryos in a concentration-dependent manner. Transcriptomic data showed that 50 μg/L PCP treatment resulted in significant changes in gene expression level, and the genes involved in energy metabolism and cell behavior were identified based on gene functional enrichment analysis. The energy production of embryos was influenced by PCP via the activation of glycolysis along with the inhibition of oxidative phosphorylation (OXPHOS). The results suggested that PCP acts as an inhibitor of OXPHOS at 8 hpf (hours postfertilization). Consistent with the activated glycolysis, the cell cycle activity of PCP-treated embryos was higher than the controls. These characteristics are similar to the Warburg effect, which occurs in human tumors. The microinjection of exogenous ATP confirmed that an additional energy supply could rescue PCP-treated embryos from the developmental delay due to the energy deficit. Taken together, our results demonstrated that PCP causes a Warburg-like effect on zebrafish embryos during gastrulation, and the affected embryos had the phenotype of developmental delay.
Collapse
Affiliation(s)
- Ting Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Technology, Tongji University, Shanghai 200092, China
| | - Jing Zhao
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Technology, Tongji University, Shanghai 200092, China
| | - Ping Hu
- Key Laboratory of Model Animal for Disease Study, Ministry of Education, Model Animal Research Center, Nanjing University, Nanjing 210061, China; State Key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing 210029, China
| | - Zhangji Dong
- Key Laboratory of Model Animal for Disease Study, Ministry of Education, Model Animal Research Center, Nanjing University, Nanjing 210061, China
| | - Jingyun Li
- Key Laboratory of Model Animal for Disease Study, Ministry of Education, Model Animal Research Center, Nanjing University, Nanjing 210061, China
| | - Hongchang Zhang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Technology, Tongji University, Shanghai 200092, China
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Technology, Tongji University, Shanghai 200092, China.
| | - Qingshun Zhao
- Key Laboratory of Model Animal for Disease Study, Ministry of Education, Model Animal Research Center, Nanjing University, Nanjing 210061, China.
| |
Collapse
|
14
|
Hudson SA, Mashalidis EH, Bender A, McLean KJ, Munro AW, Abell C. Biofragments: an approach towards predicting protein function using biologically related fragments and its application to Mycobacterium tuberculosis CYP126. Chembiochem 2014; 15:549-55. [PMID: 24677424 PMCID: PMC4159592 DOI: 10.1002/cbic.201300697] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Indexed: 11/21/2022]
Abstract
We present a novel fragment-based approach that tackles some of the challenges for chemical biology of predicting protein function. The general approach, which we have termed biofragments, comprises two key stages. First, a biologically relevant fragment library (biofragment library) can be designed and constructed from known sets of substrate-like ligands for a protein class of interest. Second, the library can be screened for binding to a novel putative ligand-binding protein from the same or similar class, and the characterization of hits provides insight into the basis of ligand recognition, selectivity, and function at the substrate level. As a proof-of-concept, we applied the biofragments approach to the functionally uncharacterized Mycobacterium tuberculosis (Mtb) cytochrome P450 isoform, CYP126. This led to the development of a tailored CYP biofragment library with notable 3D characteristics and a significantly higher screening hit rate (14%) than standard drug-like fragment libraries screened previously against Mtb CYP121 and 125 (4% and 1%, respectively). Biofragment hits were identified that make both substrate-like type-I and inhibitor-like type-II interactions with CYP126. A chemical-fingerprint-based substrate model was built from the hits and used to search a virtual TB metabolome, which led to the discovery that CYP126 has a strong preference for the recognition of aromatics and substrate-like type-I binding of chlorophenol moieties within the active site near the heme. Future catalytic analyses will be focused on assessing CYP126 for potential substrate oxidative dehalogenation.
Collapse
Affiliation(s)
- Sean A Hudson
- Department of Chemistry, University of CambridgeLensfield Road, Cambridge, CB2 1EW (UK) E-mail: Homepage: http://www-abell.ch.cam.ac.uk/
| | - Ellene H Mashalidis
- Department of Chemistry, University of CambridgeLensfield Road, Cambridge, CB2 1EW (UK) E-mail: Homepage: http://www-abell.ch.cam.ac.uk/
| | - Andreas Bender
- Unilever Centre for Molecular Informatics Department of Chemistry, University of CambridgeLensfield Road, Cambridge, CB2 1EW (UK)
| | - Kirsty J McLean
- Manchester Institute of Biotechnology, University of Manchester131 Princess Street, Manchester, M1 7DN (UK)
| | - Andrew W Munro
- Manchester Institute of Biotechnology, University of Manchester131 Princess Street, Manchester, M1 7DN (UK)
| | - Chris Abell
- Department of Chemistry, University of CambridgeLensfield Road, Cambridge, CB2 1EW (UK) E-mail: Homepage: http://www-abell.ch.cam.ac.uk/
| |
Collapse
|
15
|
Ning D, Wang H. Involvement of cytochrome P450 in pentachlorophenol transformation in a white rot fungus Phanerochaete chrysosporium. PLoS One 2012; 7:e45887. [PMID: 23029295 PMCID: PMC3447798 DOI: 10.1371/journal.pone.0045887] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 08/27/2012] [Indexed: 12/22/2022] Open
Abstract
The occurrence of cytochrome P450 and P450-mediated pentachlorophenol oxidation in a white rot fungus Phanerochaete chrysosporium was demonstrated in this study. The carbon monoxide difference spectra indicated induction of P450 (103±13 pmol P450 per mg protein in the microsomal fraction) by pentachlorophenol. The pentachlorophenol oxidation by the microsomal P450 was NADPH-dependent at a rate of 19.0±1.2 pmol min−1 (mg protein)−1, which led to formation of tetrachlorohydroquinone and was significantly inhibited by piperonyl butoxide (a P450 inhibitor). Tetrachlorohydroquinone was also found in the cultures, while the extracellular ligninases which were reported to be involved in tetrachlorohydroquinone formation were undetectable. The formation of tetrachlorohydroquinone was not detectable in the cultures added with either piperonyl butoxide or cycloheximide (an inhibitor of de novo protein synthesis). These results revealed the pentachlorophenol oxidation by induced P450 in the fungus, and it should be the first time that P450-mediated pentachlorophenol oxidation was demonstrated in a microorganism. Furthermore, the addition of the P450 inhibitor to the cultures led to obvious increase of pentachlorophenol, suggesting that the relationship between P450 and pentachlorophenol methylation is worthy of further research.
Collapse
Affiliation(s)
- Daliang Ning
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, People's Republic of China
| | - Hui Wang
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, People's Republic of China
- * E-mail:
| |
Collapse
|
16
|
An L, Hu J, Yang M, Zheng B, Wei A, Shang J, Zhao X. CYP1A mRNA expression in redeye mullets (Liza haematocheila) from Bohai Bay, China. MARINE POLLUTION BULLETIN 2011; 62:718-725. [PMID: 21310441 DOI: 10.1016/j.marpolbul.2011.01.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 01/12/2011] [Accepted: 01/12/2011] [Indexed: 05/30/2023]
Abstract
Induction of cytochrome P4501A (CYP1A) has been used as a biomarker in fish for monitoring aromatic and organic contaminants. In this study, a partial of CYP1A gene in redeye mullet (Liza haematocheila) was isolated and sequenced, and then a real-time quantitative reverse-transcription polymerase chain reaction assay was developed for quantification of CYP1A mRNA normalized to β-actin. The developed method was applied to detect CYP1A mRNA expression in redeye mullets collected from Nandaihe (reference site) and Dashentang (impacted site) in Bohai Bay, China. CYP1A mRNA expression values were significantly elevated in redeye mullets from Dashentang compared to a reference site--Nandaihe, which was correlated with the contents of different environmentally relevant pollutants in tissues, particularly with PCBs and PBDEs.
Collapse
Affiliation(s)
- Lihui An
- MOE Laboratory of Earth Surface Processes, College of Urban and Environmental Science, Peking University, Beijing 100871, China
| | | | | | | | | | | | | |
Collapse
|
17
|
Gładkowski W, Mazur M, Białońska A, Wawrzeńczyk C. Lactones 35 . Metabolism of iodolactones with cyclohexane ring in Absidia cylindrospora culture. Enzyme Microb Technol 2011; 48:326-33. [DOI: 10.1016/j.enzmictec.2010.12.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 12/11/2010] [Accepted: 12/14/2010] [Indexed: 11/29/2022]
|
18
|
|
19
|
Reed L, Buchner V, Tchounwou PB. Environmental toxicology and health effects associated with hexachlorobenzene exposure. REVIEWS ON ENVIRONMENTAL HEALTH 2007; 22:213-243. [PMID: 18078005 DOI: 10.1515/reveh.2007.22.3.213] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The synthetic industrial chemical hexachlorobenzene (HCB) is a white crystalline solid compound. The substance is a bioaccumulative, persistent, and toxic pollutant. Historically HCB was commonly used as a pesticide and fungicide. Although HCB production and use has ceased in many countries, the compound is still generated inadvertently, as a byproduct and/or impurity in the manufacture of various chlorinated compounds, and released into the environment. Hexachlorobenzene is ubiquitous in air, water, soil, and biological matrices, as well as in major environmental compartments. Exposure to this substance is a public health concern because of its association with a wide range of adverse health effects. The International Agency for Research on Cancer and the United States Environmental Protection Agency classify HCB as a probable human carcinogen. Although globally the consumption of HCB-contaminated food is the principal source of environmental exposure, exposure can also occur through the inhalation of HCB-contaminated air, by dermal contact, or through in utero exposure and breast milk. In addition to cancer, the human health effects associated with HCB exposure involve systemic impairment (thyroid, liver, bone, skin), as well as damage to the kidneys and blood cells and the immune, endocrine, developmental, and nervous systems. In this review, we discuss the sources of HCB and the potential for human exposure, as well as systemic, carcinogenic, and teratogenic health effects.
Collapse
Affiliation(s)
- Lamar Reed
- Environmental Toxicology Research Laboratory, NIH-RCMI Center for Environmental Health, College of Science, Engineering and Technology, Jackson State University, Jackson, Mississippi 39217, USA
| | | | | |
Collapse
|
20
|
Brambilla G, Martelli A. Failure of the standard battery of short-term tests in detecting some rodent and human genotoxic carcinogens. Toxicology 2004; 196:1-19. [PMID: 15036752 DOI: 10.1016/j.tox.2003.11.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2003] [Revised: 11/03/2003] [Accepted: 11/03/2003] [Indexed: 10/26/2022]
Abstract
Theoretical reasons and experimental evidence indicate that a no-effect level generally cannot be expected for genotoxic carcinogens; as a consequence, in quantitative risk assessment the capability of distinguishing genotoxic from non-genotoxic carcinogens is of fundamental importance in order to identify relevant levels of human exposure. According to generally accepted guidelines, the standard three-test battery for the detection of genotoxic compounds consists of: (i) an in vitro test for gene mutation in bacteria; (ii) an in vitro test in mammalian cells with cytogenetic evaluation of chromosomal damage and/or a test that detects gene mutations; (iii) an in vivo test for chromosomal damage using rodent hematopoietic cells. This test battery is designed to avoid the risk of false negative results for compounds with genotoxic potential, but it cannot be taken for granted that the risk is completely eliminated. As a matter of fact there are some chemicals, classified by the International Agency for Research on Cancer (IARC) as probably or possibly carcinogenic to humans, which gave consistent negative results in this test battery, and in contrast provided positive results in other not routinely employed genotoxicity assays. The failure of the standard test battery in detecting some genotoxic carcinogens is attributable to several causes, but the principal of them are the following ones: in vitro, the artificial metabolic activity of the liver S9-mix, and the different biotransformation of chemicals in cells of different type and from different animal species; in vivo, the pharmacokinetic behaviour of the test compound, and its possible species-, sex- and tissue-specificity.
Collapse
Affiliation(s)
- Giovanni Brambilla
- Department of Internal Medicine, Division of Clinical Pharmacology and Toxicology, University of Genoa, Viale Benedetto XV 2, I-16132 Genoa, Italy.
| | | |
Collapse
|
21
|
Abstract
Despite being banned in many countries and having its use severely restricted in others, pentachlorophenol (PCP) remains an important pesticide from a toxicological perspective. It is a stable and persistent compound. In humans it is readily absorbed by ingestion and inhalation but is less well absorbed dermally. Its distribution is limited, its metabolism extensive and it is eliminated only slowly. Assessment of the toxicity of PCP is confounded by the presence of contaminants known to cause effects identical to those attributed to PCP. However, severe exposure by any route may result in an acute and occasionally fatal illness that bears all the hallmarks of being mediated by uncoupling of oxidative phosphorylation. Tachycardia, tachypnoea, sweating, altered consciousness, hyperthermia, convulsions and early onset of marked rigor (if death occurs) are the most notable features. Pulmonary oedema, intravascular haemolysis, pancreatitis, jaundice and acute renal failure have been reported. There is no antidote and no adequate data to support the use of repeat-dose oral cholestyramine, forced diuresis or urine alkalinisation as effective methods of enhancing PCP elimination in poisoned humans. Supportive care and vigorous management of hyperthermia should produce a satisfactory outcome. Chronic occupational exposure to PCP may produce a syndrome similar to acute systemic poisoning, together with conjunctivitis and irritation of the upper respiratory and oral mucosae. Long-term exposure has also been reported to result in chronic fatigue or neuropsychiatric features in combination with skin infections (including chloracne), chronic respiratory symptoms, neuralgic pains in the legs, and impaired fertility and hypothyroidism secondary to endocrine disruption. PCP is a weak mutagen but the available data for humans are insufficient to classify it more strongly than as a probable carcinogen.
Collapse
Affiliation(s)
- Alex T Proudfoot
- National Poisons Information Service (Birmingham Centre), City Hospital, Birmingham, UK
| |
Collapse
|
22
|
Tsai CH, Lin PH, Waidyanatha S, Rappaport SM. Characterization of metabolic activation of pentachlorophenol to quinones and semiquinones in rodent liver. Chem Biol Interact 2001; 134:55-71. [PMID: 11248222 DOI: 10.1016/s0009-2797(00)00318-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Pentachlorophenol (PCP), a widely used biocide, induces liver tumors in mice but not in rats. Metabolic activation of PCP to chlorinated quinones and semiquinones in liver cytosol from Sprague-Dawley rats and B6C3F1 mice was investigated in vitro (1) with microsomes in the presence of either beta-nicotinamide adenine dinucleotide phosphate (NADPH) or cumene hydroperoxide (CHP), (2) with CHP in the absence of microsomes, and (3) with horseradish peroxidase (HRP) and H2O2. Mono-S- and multi-S-substituted adducts of tetrachloro-1,4-benzoquinone (Cl4-1,4-BQ) and Cl4-1,2-BQ and their corresponding semiquinones [i.e. tetrachloro-1,4-benzosemiquinone (Cl4-1,4-SQ) and tetrachloro-1,2-benzosemiquinone (Cl4-1,2-SQ)] were measured by gas chromatography-mass spectrometry (GC-MS). Qualitatively, the metabolites of PCP were the same in both rats and mice for all activation systems. Induction of PCP metabolism by either 3MC or PB-treated microsomes was observed in NADPH- but not in CHP-supported systems. In rats, the amount of induction was comparable with either 3MC or PB. 3MC was a stronger inducer than PB in mice and also induced a greater amount of metabolism than in rats. This suggests that induction of specific P450 isozymes may play a role in the toxicity of PCP to mice. Both HRP/H2O2 and CHP led to production of the full spectrum of chlorinated quinones and semiquinones, confirming the direct oxidation of PCP. CHP (with or without microsomes) converted PCP into much greater quantities of quinones and semiquinones than did microsomal P450/NADPH or HRP/H2O2 in both species. This implies that, under conditions of oxidative stress, endogenous lipid hydroperoxides may increase PCP metabolism sufficiently to enhance the toxicity and carcinogenicity of PCP.
Collapse
Affiliation(s)
- C H Tsai
- Department of Environmental Sciences and Engineering, School of Public Health, University of North Carolina, CB7400, Chapel Hill, NC 27599-7400, USA
| | | | | | | |
Collapse
|
23
|
Mehmood Z, Kelly DE, Kelly SL. Cytochrome P450 3A4 mediated metabolism of 2,4-dichlorophenol. CHEMOSPHERE 1997; 34:2281-2291. [PMID: 9192464 DOI: 10.1016/s0045-6535(97)00040-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The metabolism of the environmental pollutant and hepatocarcinogen 2,4-dichlorophenol (2,4-DCP) was studied using microsomal fractions and whole-cells of Saccharomyces cerevisiae containing human cytochrome P450 3A4. 2,4-DCP exhibited a typical type I substrate binding spectrum with a K, of 75 microM. 2,4-DCP was metabolised into two major metabolites identified as 2-chloro-1,4-hydroxyquinone and 2-chloro-1,4-benzoquinone in microsomal fractions and whole cells of yeast expressing human cytochrome P450 3A4. A further metabolite, 1,2,4-hydroxybenzene, was also detected during biotransformation by whole cells, but was not observed in microsomal fractions. 2,4-DCP metabolism was dependent on NADPH in microsomal fractions and no activity was observed in microsomal fractions or whole cells of control transformants. Metabolites were identified by TLC followed by GC-MS.
Collapse
Affiliation(s)
- Z Mehmood
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, UK
| | | | | |
Collapse
|