1
|
Scott JE, Rector AL, Villmoare B. William Howard Kimbel (1954-2022). Evol Anthropol 2022; 31:218-221. [PMID: 35758548 DOI: 10.1002/evan.21949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/06/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Jeremiah E Scott
- Department of Medical Anatomical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Science, Pomona, California, USA
| | - Amy L Rector
- Anthropology, School of World Studies, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Brian Villmoare
- Department of Anthropology, University of Nevada Las Vegas, Las Vegas, Nevada, USA
| |
Collapse
|
2
|
White S, Soligo C, Pope M, Hillson S. Taxonomic variation in the supraorbital region of catarrhine primates. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2019; 171:198-218. [PMID: 31762014 DOI: 10.1002/ajpa.23975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 10/28/2019] [Accepted: 11/04/2019] [Indexed: 11/07/2022]
Abstract
OBJECTIVES This study aimed to test the taxonomic utility of the catarrhine supraorbital region using 3D geometric morphometrics, with the aim of establishing its potential use in elucidating the position of more debated hominin groups. MATERIALS AND METHODS 230 3D coordinates were used to record the supraorbital morphology of two datasets: one containing 460 non-hominin catarrhine primates from species and subspecies of Gorilla, Pan, Papio, and Macaca; and the other containing 55 Pleistocene hominins from Homo, Australopithecus, and Paranthropus. Principal component analyses in tangent, form, and allometry-free shape space were used to assess differentiation of taxa, with biological distinctiveness of taxa being established using step-wise discriminant analysis with subsampling. RESULTS Results indicated that the recorded supraorbital morphology could be used to separate non-hominin catarrhine primate genera, species, and subspecies, although accuracy was found to decrease with decreasing Linnaean rank. In addition, analyses in tangent space were found to produce the highest accuracy when classifying primates of known taxonomy. Biological distinctiveness of the middle and later Homo species was comparable to or higher than that of the non-hominin primates, and relatively lower for the earlier groups of Homo. DISCUSSION This study indicates that the supraorbital region preserves taxonomic information that can be used to delineate between closely related groups, both within hominins and wider catarrhine primates. Therefore, this region may be used to provide insight when assessing the taxonomic affiliation of disputed hominin specimens.
Collapse
Affiliation(s)
- Suzanna White
- Department of Anthropology, University College London, London, UK
| | | | - Matt Pope
- Institute of Archaeology, University College London, London, UK
| | - Simon Hillson
- Institute of Archaeology, University College London, London, UK
| |
Collapse
|
3
|
Foley RA. Mosaic evolution and the pattern of transitions in the hominin lineage. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0244. [PMID: 27298474 DOI: 10.1098/rstb.2015.0244] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2016] [Indexed: 12/19/2022] Open
Abstract
Humans are uniquely unique, in terms of the extreme differences between them and other living organisms, and the impact they are having on the biosphere. The evolution of humans can be seen, as has been proposed, as one of the major transitions in evolution, on a par with the origins of multicellular organisms or the eukaryotic cell (Maynard Smith & Szathmáry 1997 Major transitions in evolution). Major transitions require the evolution of greater complexity and the emergence of new evolutionary levels or processes. Does human evolution meet these conditions? I explore the diversity of evidence on the nature of transitions in human evolution. Four levels of transition are proposed-baseline, novel taxa, novel adaptive zones and major transitions-and the pattern of human evolution considered in the light of these. The primary conclusions are that changes in human evolution occur continuously and cumulatively; that novel taxa and the appearance of new adaptations are not clustered very tightly in particular periods, although there are three broad transitional phases (Pliocene, Plio-Pleistocene and later Quaternary). Each phase is distinctive, with the first based on ranging and energetics, the second on technology and niche expansion, and the third on cognition and cultural processes. I discuss whether this constitutes a 'major transition' in the context of the evolutionary processes more broadly; the role of behaviour in evolution; and the opportunity provided by the rich genetic, phenotypic (fossil morphology) and behavioural (archaeological) record to examine in detail major transitions and the microevolutionary patterns underlying macroevolutionary change. It is suggested that the evolution of the hominin lineage is consistent with a mosaic pattern of change.This article is part of the themed issue 'Major transitions in human evolution'.
Collapse
Affiliation(s)
- Robert A Foley
- Leverhulme Centre for Human Evolutionary Studies, Department of Archaeology and Anthropology, University of Cambridge, Henry Wellcome Building, Fitzwilliam Street, Cambridge CB2 1QH, UK
| |
Collapse
|
4
|
BRUNER EMILIANO. The Species Concept as a Cognitive Tool for Biological Anthropology. Am J Primatol 2012; 75:10-5. [DOI: 10.1002/ajp.22087] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 08/31/2012] [Accepted: 09/09/2012] [Indexed: 11/08/2022]
|
5
|
Bae CJ. The late Middle Pleistocene hominin fossil record of eastern Asia: Synthesis and review. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2010; 143 Suppl 51:75-93. [PMID: 21086528 DOI: 10.1002/ajpa.21442] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Christopher J Bae
- Department of Anthropology, University of Hawaii, Honolulu, HI 96822, USA.
| |
Collapse
|
6
|
|
7
|
Spoor F, Leakey MG, Gathogo PN, Brown FH, Antón SC, McDougall I, Kiarie C, Manthi FK, Leakey LN. Implications of new early Homo fossils from Ileret, east of Lake Turkana, Kenya. Nature 2007; 448:688-91. [PMID: 17687323 DOI: 10.1038/nature05986] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Accepted: 06/05/2007] [Indexed: 11/09/2022]
Abstract
Sites in eastern Africa have shed light on the emergence and early evolution of the genus Homo. The best known early hominin species, H. habilis and H. erectus, have often been interpreted as time-successive segments of a single anagenetic evolutionary lineage. The case for this was strengthened by the discovery of small early Pleistocene hominin crania from Dmanisi in Georgia that apparently provide evidence of morphological continuity between the two taxa. Here we describe two new cranial fossils from the Koobi Fora Formation, east of Lake Turkana in Kenya, that have bearing on the relationship between species of early Homo. A partial maxilla assigned to H. habilis reliably demonstrates that this species survived until later than previously recognized, making an anagenetic relationship with H. erectus unlikely. The discovery of a particularly small calvaria of H. erectus indicates that this taxon overlapped in size with H. habilis, and may have shown marked sexual dimorphism. The new fossils confirm the distinctiveness of H. habilis and H. erectus, independently of overall cranial size, and suggest that these two early taxa were living broadly sympatrically in the same lake basin for almost half a million years.
Collapse
Affiliation(s)
- F Spoor
- Department of Anatomy and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Pilbrow V. Population systematics of chimpanzees using molar morphometrics. J Hum Evol 2006; 51:646-62. [PMID: 16965803 DOI: 10.1016/j.jhevol.2006.07.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Revised: 05/24/2005] [Accepted: 07/21/2006] [Indexed: 11/21/2022]
Abstract
When dental morphological variation within extant species is used as a guideline to partition variation within fossil samples into species, the underlying assumption is that fossil species are equivalent to extant species. This is the case despite the fact that dental morphology, which is commonly used to differentiate fossil species, is rarely used to differentiate extant species. Aspects of external morphology, ecology, behavior, breeding patterns, and molecular structure that are used to delineate living species are generally not available for fossils. In this paper, the utility of dental evidence for sorting fossil samples into species is evaluated by testing whether molar occlusal morphology is capable of sorting populations of Pan into the species and subspecies already well-established by nondental evidence. The dentitions of 341 chimpanzee individuals, sampled from regions throughout equatorial Africa, were sorted into 16 populations using rivers to demarcate the boundaries between populations. Digital-imaging software was used to measure 15 traits on the occlusal surface of each upper molar and 19 on each lower molar. After applying size adjustments, size-transformed and untransformed variables were subjected to discriminant analysis, with separate analyses carried out for each molar type. Results indicate that populations of Pan troglodytes and Pan paniscus are well differentiated at all molar positions. Populations of P. t. verus are distinct from other populations of P. troglodytes. Populations of P. t. troglodytes and P. t. schweinfurthii show close dental similarity. A distinct population is recognized at the Nigeria-Cameroon border, indicating the presence of P. t. vellerosus. The concordance between the patterns of diversity recognized by this study and other molecular and nonmolecular studies indicates that paleontological species that are similar to species of Pan in terms of size and patterns of diversification may be differentiated using molar morphology.
Collapse
Affiliation(s)
- Varsha Pilbrow
- Department of Anthropology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
9
|
Scott JE, Lockwood CA. Patterns of tooth crown size and shape variation in great apes and humans and species recognition in the hominid fossil record. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2005; 125:303-19. [PMID: 15386248 DOI: 10.1002/ajpa.10406] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
It has been suggested that patterns of craniodental variation in living hominids (Gorilla, Homo, Pan, and Pongo) may be useful for evaluating variation in fossil hominid assemblages. Using this approach, a fossil sample exhibiting a pattern of variation that deviates from one shared among living taxa would be regarded as taxonomically heterogeneous. Here we examine patterns of tooth crown size and shape variation in great apes and humans to determine 1) if these taxa share a pattern of dental variation, and 2) if such a pattern can reliably discriminate between samples that contain single species and those that contain multiple species. We use parametric and nonparametric correlation methods to establish the degree of pattern similarity among taxa, and randomization tests to assess their statistical significance. The results of this study show that extant hominids do not share a pattern of dental size variation, and thus these taxa cannot be used to generate expectations for patterns of size variation in fossil hominid species. The hominines (Gorilla, Homo, and Pan) do share a pattern of shape variation in the mandibular dentition; however, Pongo is distinct, and thus it is unclear which, if either, pattern should be expected in fossil hominids. Moreover, in this case, most combined-species samples exhibit patterns of shape variation that are similar to those for single hominine species samples. Thus, although a common pattern of shape variation is present in the mandibular dentition, it is not useful for recognizing taxonomically mixed paleontological samples.
Collapse
Affiliation(s)
- Jeremiah E Scott
- Department of Anthropology, Arizona State University, Tempe, Arizona 85287, USA.
| | | |
Collapse
|
10
|
Mcbrearty S, Brooks AS. The revolution that wasn't: a new interpretation of the origin of modern human behavior. J Hum Evol 2000; 39:453-563. [PMID: 11102266 DOI: 10.1006/jhev.2000.0435] [Citation(s) in RCA: 649] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Proponents of the model known as the "human revolution" claim that modern human behaviors arose suddenly, and nearly simultaneously, throughout the Old World ca. 40-50 ka. This fundamental behavioral shift is purported to signal a cognitive advance, a possible reorganization of the brain, and the origin of language. Because the earliest modern human fossils, Homo sapiens sensu stricto, are found in Africa and the adjacent region of the Levant at >100 ka, the "human revolution" model creates a time lag between the appearance of anatomical modernity and perceived behavioral modernity, and creates the impression that the earliest modern Africans were behaviorally primitive. This view of events stems from a profound Eurocentric bias and a failure to appreciate the depth and breadth of the African archaeological record. In fact, many of the components of the "human revolution" claimed to appear at 40-50 ka are found in the African Middle Stone Age tens of thousands of years earlier. These features include blade and microlithic technology, bone tools, increased geographic range, specialized hunting, the use of aquatic resources, long distance trade, systematic processing and use of pigment, and art and decoration. These items do not occur suddenly together as predicted by the "human revolution" model, but at sites that are widely separated in space and time. This suggests a gradual assembling of the package of modern human behaviors in Africa, and its later export to other regions of the Old World. The African Middle and early Late Pleistocene hominid fossil record is fairly continuous and in it can be recognized a number of probably distinct species that provide plausible ancestors for H. sapiens. The appearance of Middle Stone Age technology and the first signs of modern behavior coincide with the appearance of fossils that have been attributed to H. helmei, suggesting the behavior of H. helmei is distinct from that of earlier hominid species and quite similar to that of modern people. If on anatomical and behavioral grounds H. helmei is sunk into H. sapiens, the origin of our species is linked with the appearance of Middle Stone Age technology at 250-300 ka.
Collapse
Affiliation(s)
- S Mcbrearty
- Department of Anthropology, University of Connecticut, Storrs, Connecticut 06269, USA.
| | | |
Collapse
|
11
|
Ahern JC. Underestimating intraspecific variation: the problem with excluding Sts 19 from Australopithecus africanus. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 1998; 105:461-80. [PMID: 9584889 DOI: 10.1002/(sici)1096-8644(199804)105:4<461::aid-ajpa5>3.0.co;2-r] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Two analyses conclude that Sts 19 cannot be accommodated within the Australopithecus africanus hypodigm (Kimbel and Rak [1993] In Kimbel and Martin [eds.]: Species, Species Concepts, and Primate Evolution. New York: Plenum, pp. 461-484; Sarmiento [1993] Am. J. Phys. Anthropol. [Suppl.] 16:173). Both studies exclude Sts 19 because it possesses synapomorphies with Homo. Furthermore, according to Kimbel and Rak (1993), including Sts 19 in A. africanus results in an unacceptably high degree of polymorphism. This study aims to refute the null hypothesis that Sts 19 belongs to A. africanus. Twelve basicranial characters, as defined and implemented in Kimbel and Rak's study, were scored for casts of seven A. africanus and seven Homo habilis basicranial specimens. These characters were also examined on specimens from a large (N = 87) sample of African pongids. Contrary to Kimbel and Rak's (1993) findings, the null hypothesis is not refuted. The degree of polymorphism among A. africanus with Sts 19 included is less than that seen in Pan troglodytes. In addition, Sts 19 shares only one apomorphy with Homo. However, when treated metrically, Sts 19's morphology for this character is not significantly divergent from other A. africanus specimens.
Collapse
Affiliation(s)
- J C Ahern
- Department of Anthropology, University of Michigan, Ann Arbor 48109-1382, USA.
| |
Collapse
|
12
|
Koncepcje gatunku: Przegląd i ocena stosowalności do badań materiałów kopalnych. ANTHROPOLOGICAL REVIEW 1996. [DOI: 10.18778/1898-6773.59.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
13
|
|
14
|
Kramer A. Human taxonomic diversity in the pleistocene: does Homo erectus represent multiple hominid species? AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 1993; 91:161-71. [PMID: 8317558 DOI: 10.1002/ajpa.1330910203] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Recently, nomina such as "Homo heidelbergensis" and "H. ergaster" have been resurrected to refer to fossil hominids that are perceived to be specifically distinct from Homo sapiens and Homo erectus. This results in a later human fossil record that is nearly as speciose as that documenting the earlier history of the family Hominidae. However, it is agreed that there remains only one extant hominid species: H. sapiens. Has human taxonomic diversity been significantly pruned over the last few hundred millennia, or have the number of taxa been seriously overestimated? To answer this question, the following null hypothesis is tested: polytypism was established relatively early and the species H. erectus can accommodate all spatio-temporal variation from ca. 1.7 to 0.5 Ma. A disproof of this hypothesis would suggest that modern human polytypism is a very recent phenomenon and that speciation throughout the course of human evolution was the norm and not the exception. Cranial variation in a taxonomically mixed sample of fossil hominids, and in a modern human sample, is analyzed with regard to the variation present in the fossils attributed to H. erectus. The data are examined using both univariate (coefficient of variation) and multivariate (determinant) analyses. Employing randomization methodology to offset the small size and non-normal distribution of the fossil samples, the CV and determinant results reveal a pattern and degree of variation in H. erectus that most closely approximates that of the single species H. sapiens. It is therefore concluded that the null hypothesis cannot be rejected.
Collapse
Affiliation(s)
- A Kramer
- Department of Anthropology, University of Tennessee, Knoxville 37996-0720
| |
Collapse
|