1
|
Simeone KA, Matthews SA, Samson KK, Simeone TA. Targeting deficiencies in mitochondrial respiratory complex I and functional uncoupling exerts anti-seizure effects in a genetic model of temporal lobe epilepsy and in a model of acute temporal lobe seizures. Exp Neurol 2013; 251:84-90. [PMID: 24270080 DOI: 10.1016/j.expneurol.2013.11.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 10/30/2013] [Accepted: 11/03/2013] [Indexed: 12/13/2022]
Abstract
Mitochondria actively participate in neurotransmission by providing energy (ATP) and maintaining normative concentrations of reactive oxygen species (ROS) in both presynaptic and postsynaptic elements. In human and animal epilepsies, ATP-producing respiratory rates driven by mitochondrial respiratory complex (MRC) I are reduced, antioxidant systems are attenuated and oxidative damage is increased. We report that MRCI-driven respiration and functional uncoupling (an inducible antioxidant mechanism) are reduced and levels of H2O2 are elevated in mitochondria isolated from KO mice. Experimental impairment of MRCI in WT hippocampal slices via rotenone reduces paired-pulse ratios (PPRs) at mossy fiber-CA3 synapses (resembling KO PPRs), and exacerbates seizure-like events in vitro. Daily treatment with AATP [a combination therapy composed of ascorbic acid (AA), alpha-tocopherol (T), sodium pyruvate (P) designed to synergistically target mitochondrial impairments] improved mitochondrial functions, mossy fiber PPRs, and reduced seizure burden index (SBI) scores and seizure incidence in KO mice. AATP pretreatment reduced severity of KA-induced seizures resulting in 100% protection from the severe tonic-clonic seizures in WT mice. These data suggest that restoration of bioenergetic homeostasis in the brain may represent a viable anti-seizure target for temporal lobe epilepsy.
Collapse
Affiliation(s)
- Kristina A Simeone
- Pharmacology Department, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Stephanie A Matthews
- Pharmacology Department, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Kaeli K Samson
- Pharmacology Department, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Timothy A Simeone
- Pharmacology Department, Creighton University School of Medicine, Omaha, NE 68178, USA
| |
Collapse
|
2
|
Tabassum H, Parvez S, Pasha ST, Banerjee BD, Raisuddin S. Protective effect of lipoic acid against methotrexate-induced oxidative stress in liver mitochondria. Food Chem Toxicol 2010; 48:1973-9. [DOI: 10.1016/j.fct.2010.04.047] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 03/30/2010] [Accepted: 04/30/2010] [Indexed: 10/19/2022]
|
3
|
Sanz A, Caro P, Gómez J, Barja G. Testing the vicious cycle theory of mitochondrial ROS production: effects of H2O2 and cumene hydroperoxide treatment on heart mitochondria. J Bioenerg Biomembr 2006; 38:121-7. [PMID: 16841200 DOI: 10.1007/s10863-006-9011-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Accepted: 03/02/2006] [Indexed: 10/24/2022]
Abstract
Vicious cycle theories of aging and oxidative stress propose that ROS produced by the mitochondrial electron transport chain damage the mitochondria leading exponentially to more ROS production and mitochondrial damage. Although this theory is widely discussed in the field of research on aging and oxidative stress, there is little supporting data. Therefore, in order to help clarify to what extent the vicious cycle theory of aging is correct, we have exposed mitochondria in vitro to different concentrations of hydrogen peroxide or cumene-hydroperoxide (0, 30, 100 and 500 muM). We have found that 30 muM hydrogen peroxide (or higher concentrations) inhibit oxygen consumption in state 3 and increase ROS production with pyruvate/malate but not with succinate as substrate, indicating that these effects occur specifically at complex I. Similar levels of cumene-OOH inhibit state 3 respiration with both kinds of substrates, and increase ROS production in both state 4 and state 3 with pyruvate/malate and with succinate. The effects of cumene-OOH on ROS generation are due to action of the peroxide in the complex III or in the complex III plus complex I ROS generators. In all cases, the increase in ROS production occurred at a threshold level of peroxide exposure without further exponential increase in ROS generation. These results are consistent with the idea that ROS production can contribute to increase oxidative stress in old animals, but the results do not fit with a vicious cycle theory in which peroxide generation leads exponentially to more and more ROS production with age.
Collapse
Affiliation(s)
- Alberto Sanz
- Department of Animal Physiology-II, Faculty of Biology, Complutense University, Madrid, 28040, Spain
| | | | | | | |
Collapse
|
4
|
Weber H, Roesner JP, Nebe B, Rychly J, Werner A, Schröder H, Jonas L, Leitzmann P, Schneider KP, Dummler W. Increased cytosolic Ca2+ amplifies oxygen radical-induced alterations of the ultrastructure and the energy metabolism of isolated rat pancreatic acinar cells. Digestion 2000; 59:175-85. [PMID: 9643676 DOI: 10.1159/000007486] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Oxygen radicals have been implicated as important mediators in the early pathogenesis of acute pancreatitis, but the mechanism by which they produce pancreatic tissue injury remains unclear. We have, therefore, investigated the effects of oxygen radicals on isolated rat pancreatic acinar cells as to the ultrastructure, cytosolic Ca2+ concentration and energy metabolism. METHODS Acinar cells were exposed to an oxygen radical-generating system consisting of xanthine oxidase, hypoxanthine and chelated iron ions. Cell injury was assessed by LDH release and electron microscopy. Cytosolic Ca2+ levels and mitochondrial membrane potential were determined by flow cytometry; adenine nucleotide concentrations by HPLC. Mitochondrial dehydrogenase activity was measured by spectrophotometric assay. RESULTS Oxygen radicals damaged the plasma membrane as shown by a 6-fold LDH increase in the incubation medium within 180 min. At the ultrastructural level, mitochondria were the most susceptible to oxidative stress. In correlation to the pronounced mitochondrial damage, the mitochondrial dehydrogenase activity declined by 70%, whereas the mitochondrial membrane potential was enhanced by 27% after 120 min. Together this may cause the 85% decrease in the ATP concentration and the corresponding increase in ADP/AMP observed in parallel. In addition, an immediate 26% increase in cytosolic Ca2+ was found, a change which could be inhibited by BAPTA, reducing cellular damage. CONCLUSION Cytosolic Ca2+ synergizes with oxygen radicals causing alterations of the ultrastructure and energy metabolism of acinar cells which might contribute to the cellular changes found in early stages of acute pancreatitis.
Collapse
Affiliation(s)
- H Weber
- Institute of Clinical Chemistry and Pathobiochemistry, University of Rostock, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Sastre J, Pallardó FV, García de la Asunción J, Viña J. Mitochondria, oxidative stress and aging. Free Radic Res 2000; 32:189-98. [PMID: 10730818 DOI: 10.1080/10715760000300201] [Citation(s) in RCA: 175] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the eighties, Miquel and Fleming suggested that mitochondria play a key role in cellular aging. Mitochondria, and specially mitochondrial DNA (mtDNA), are major targets of free radical attack. At present, it is well established that mitochondrial deficits accumulate upon aging due to oxidative damage. Thus, oxidative lesions to mtDNA accumulate with age in human and rodent tissues. Furthermore, levels of oxidative damage to mtDNA are several times higher than those of nuclear DNA. Mitochondrial size increases whereas mitochondrial membrane potential decreases with age in brain and liver. Recently, we have shown that treatment with certain antioxidants, such as sulphur-containing antioxidants, vitamins C and E or the Ginkgo biloba extract EGb 761, protects against the age-associated oxidative damage to mtDNA and oxidation of mitochondrial glutathione. Moreover, the extract EGb 761 also prevents changes in mitochondrial morphology and function associated with aging of the brain and liver. Thus, mitochondrial aging may be prevented by antioxidants. Furthermore, late onset administration of certain antioxidants is also able to prevent the impairment in physiological performance, particularly motor co-ordination, that occurs upon aging.
Collapse
Affiliation(s)
- J Sastre
- Facultad de Medicina, Departamento de Fisiología, Universitat de Valencia, Spain
| | | | | | | |
Collapse
|
6
|
Sastre J, Millán A, García de la Asunción J, Plá R, Juan G, O'Connor E, Martin JA, Droy-Lefaix MT, Viña J. A Ginkgo biloba extract (EGb 761) prevents mitochondrial aging by protecting against oxidative stress. Free Radic Biol Med 1998; 24:298-304. [PMID: 9433905 DOI: 10.1016/s0891-5849(97)00228-1] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The effect of aging on indices of oxidative damage in rat mitochondria and the protective effect of the Ginkgo biloba extract EGb 761 was investigated. Mitochondrial DNA from brain and liver of old rats exhibited oxidative damage that is significantly higher than that from young rats. Mitochondrial glutathione is also more oxidized in old than in young rats. Peroxide formation in mitochondria from old animals was higher than in those from young ones. According to morphological parameters (size and complexity), there are two populations of mitochondria. One is composed of large, highly complex mitochondria, and the other population is smaller and less complex. Brain and liver from old animals had a higher proportion of the large, highly complex mitochondria than seen in organs from young animals. Treatment with the Ginkgo biloba extract EGb 761 partially prevented these morphological changes as well as the indices of oxidative damage observed in brain and liver mitochondria from old animals.
Collapse
Affiliation(s)
- J Sastre
- Departamento de Fisiología, Facultad de Medicina, Univ. Valencia, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Park JW, Chun YS, Kim YH, Kim CH, Kim MS. Ischemic preconditioning reduces Op6 generation and prevents respiratory impairment in the mitochondria of post-ischemic reperfused heart of rat. Life Sci 1997; 60:2207-19. [PMID: 9188764 DOI: 10.1016/s0024-3205(97)00236-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The present study was performed to test whether the ischemic preconditioning could reduce mitochondrial O2.- production and prevent mitochondrial respiratory impairment upon reperfusion of ischemic hearts. The isolated perfused rat hearts were subjected to 30 min of global ischemia and 20 min of reperfusion. Ischemic preconditioning was performed, involving three 5-min periods of ischemia, each followed by a 5-min reperfusion just before a sustained ischemia. Ischemic preconditioning improved the post-ischemic cardiac function and reduced LDH release and malondialdehyde production upon reperfusion. 02.- generation of mitochondria isolated from the preconditioned hearts was significantly lower than that of mitochondria from the non-preconditioned hearts, and none of the activities of mitochondrial antioxidant enzymes (SOD, catalase, glutathione peroxidase) was altered as a consequence of the ischemic preconditioning alone. The impairment of mitochondrial state 3 respiration induced by ischemia and reperfusion was prevented by ischemic preconditioning. Amytal, a reversible respiratory chain blocker suppressing 02.- production in mitochondria, prevented the ischemia/reperfusion injury. The cardioprotective effect of Amytal could not be distinguished from that of ischemic preconditioning. These results suggest that the cardioprotective effect of ischemic preconditioning against the ischemia/reperfusion injury is attributed partly to the reduction of mitochondrial oxygen radical generation and prevention of the respiratory impairment during ischemia and reperfusion.
Collapse
Affiliation(s)
- J W Park
- Department of Pharmacology, Seoul National University, College of Medicine, Chongno-gu, Korea
| | | | | | | | | |
Collapse
|
8
|
Sastre J, Pallardó FV, Plá R, Pellín A, Juan G, O'Connor JE, Estrela JM, Miquel J, Viña J. Aging of the liver: age-associated mitochondrial damage in intact hepatocytes. Hepatology 1996; 24:1199-205. [PMID: 8903398 DOI: 10.1002/hep.510240536] [Citation(s) in RCA: 169] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Mitochondrial damage may be a major cause of cellular aging. So far, this hypothesis had only been tested using isolated mitochondria. The aim of this study was to investigate the involvement of mitochondria in aging using whole liver cells and not isolated mitochondria only. Using flow cytometry, we found that age is associated with a decrease in mitochondrial membrane potential (30%), an increase in mitochondrial size, and an increase in mitochondrial peroxide generation (23%). Intracellular peroxide levels were also increased. The number of mitochondria per cell and inner mitochondrial membrane mass did not change. Gluconeogenesis from glycerol or fructose (mitochondrial-independent) did not change with age, whereas it did from lactate (mitochondrial-dependent). The change in the rate of gluconeogenesis was not accompanied by changes in any of the following parameters: phosphoenolpyruvate carboxykinase or pyruvate carboxylase activities or mitochondrial ATP/ADP or cytosolic NADH/NAD+ ratios. This was caused by a decreased rate of malate export (to 20% of the controls) from mitochondria. The impairment of the mitochondrial malate transporter is posttranscriptional because its expression in Xenopus oocytes using polyadenylated RNA from livers of young or old animals did not change. Ketogenesis from oleate also fell in hepatocytes from old rats. Our results show, for the first time in intact cells, a correlation between age-associated impairment of cell metabolism and specific changes in mitochondrial function and morphology, supporting the hypothesis that mitochondrial damage plays a key role in aging.
Collapse
Affiliation(s)
- J Sastre
- Departamento de Fisiología, Facultad de Medicina, Universidad de Valencia, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Takeyama N, Matsuo N, Tanaka T. Oxidative damage to mitochondria is mediated by the Ca(2+)-dependent inner-membrane permeability transition. Biochem J 1993; 294 ( Pt 3):719-25. [PMID: 7691056 PMCID: PMC1134522 DOI: 10.1042/bj2940719] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The ability of O2 metabolites derived from the xanthine-xanthine oxidase system to inhibit mitochondrial function was examined using freshly isolated rat liver mitochondria. Under 2,4-dinitrophenol-uncoupled conditions, mitochondria exposed to free radicals exhibited a significant decrease in O2 consumption supported by NAD(+)-linked substrates, but showed almost no change in O2 consumption in the presence of succinate and ascorbate. Oxidative stress caused the loss of intramitochondrial nicotinamide nucleotides, and addition of NAD+ fully prevented any fall in O2 consumption with NAD(+)-linked substrates. The activity of electron-transfer complex I (NADH oxidase and NADH-cytochrome c oxidoreductase) and the energy-dependent reduction of NAD+ by succinate were unaltered by oxidative stress. Exposure to free radicals also had an uncoupling effect at all three coupling sites. The degree of mitochondrial swelling was closely correlated with the inhibition of State-3 oxidation of site-I substrates and with the increase in State-4 oxidation of succinate. The immunosuppressive agent cyclosporin A completely prevented the mitochondrial damage induced by oxygen free radicals (swelling, Ca2+ release, sucrose trapping, uncoupling and selective inhibition of the mitochondrial respiration of site-I substrates). The same protective effect was found when Ca2+ cycling was prevented, either by chelating Ca2+ with EGTA or by inhibiting Ca2+ reuptake with Ruthenium Red. These findings suggest that the deleterious effect of free radicals on mitochondria in the present experimental system was triggered by the cyclosporin A-sensitive and Ca(2+)-dependent membrane transition, and not by direct impairment of the mitochondrial inner-membrane enzymes.
Collapse
Affiliation(s)
- N Takeyama
- Department of Emergency and Critical Care Medicine, Kansai Medical University, Osaka, Japan
| | | | | |
Collapse
|
10
|
Bittles AH. Evidence for and against the causal involvement of mitochondrial DNA mutation in mammalian ageing. Mutat Res 1992; 275:217-25. [PMID: 1383763 DOI: 10.1016/0921-8734(92)90025-k] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Current experimental evidence on the role of mitochondrial DNA mutation in ageing is assessed alongside reports implicating other genetic and non-genetic causes, including inter-relationships between the mitochondrial and nuclear genomes and their potential effect on mitochondrial structure and function. The role of a 5-kb mtDNA deletion, identified as age-dependent in a variety of human and other mammalian species, is specifically evaluated in the context of its functional effect in mitotic and non-mitotic adult tissue. Downstream effects of mitochondrial decline are considered in terms of the maintenance of ATP production. Associated sequelae then are discussed specifically with reference to restrictions in the supply of ribose moieties for DNA and RNA synthesis, and to disruption of NADPH production and hence cellular anti-oxidant defences.
Collapse
Affiliation(s)
- A H Bittles
- Biomedical Sciences Division, King's College, University of London, Strand, UK
| |
Collapse
|
11
|
Remacle J, Lambert D, Raes M, Pigeolet E, Michiels C, Toussaint O. Importance of various antioxidant enzymes for cell stability. Confrontation between theoretical and experimental data. Biochem J 1992; 286 ( Pt 1):41-6. [PMID: 1325782 PMCID: PMC1133015 DOI: 10.1042/bj2860041] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A theoretical model was developed taking into account the production and destruction of oxygen-derived free radicals. The steady state of the system was derived by using the rate equations of these reactions, and the stability of the system was tested. In the simplified model, only one stable steady state was found. However, we know that glutathione peroxidase can be inhibited by hydroperoxides, and, when incorporated into the model, this effect led to a complex situation with the presence of some stable and some unstable domains according to the concentration of either the enzyme or the hydroperoxide. This qualitative description of the system was compared with experimental data on the protection given by three antioxidant enzymes, and concordance of data was found which allows some quantification of the system. A general view of the efficiency of the three antioxidant enzymes and of the stability of the system according to their concentrations could be produced.
Collapse
Affiliation(s)
- J Remacle
- Laboratoire de Biochimie Cellulaire, Facultés Notre-Dame de la Paix, Namur, Belgium
| | | | | | | | | | | |
Collapse
|
12
|
Yen TC, Su JH, King KL, Wei YH. Ageing-associated 5 kb deletion in human liver mitochondrial DNA. Biochem Biophys Res Commun 1991; 178:124-31. [PMID: 2069552 DOI: 10.1016/0006-291x(91)91788-e] [Citation(s) in RCA: 165] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Using PCR technique and restriction mapping, we analyzed liver mitochondrial DNA (mtDNA) of 2 stillborn babies and 55 Chinese subjects from 27 to 86 years old and blood cell mtDNA from 20 subjects of various ages. An ageing-associated 4,977-bp deletion was detected between nucleotide position 8,469 and 13,447 (or between 8,482 and 13,460) in the liver mtDNA of older subjects. In the region containing the junction fragment, we observed a 13 bp repeat "ACCTCCCTCACCA". Moreover, the incidence of the deleted mtDNA of each of the study subjects was found to increase with age. The deletion was found in 5 out of 8 patients of the 31-40 age group and 9 out of 11 patients of the 41-50 age group, and in all the patients over 50 years old. The deletion was not observed in either the mtDNA of the liver of the stillbirth or the blood cells of subjects of all the age groups. These results support our previous contention that liver mitochondrial respiratory functions decline with age and the hypothesis that continuous accumulation of mitochondrial DNA mutation is an important contributor to ageing process.
Collapse
Affiliation(s)
- T C Yen
- Department of Biochemistry, National Yang-Ming Medical College, Taipei, Taiwan, Republic of China
| | | | | | | |
Collapse
|