1
|
Atallah N, Gaudichon C, Boulier A, Baniel A, Azzout-Marniche D, Khodorova N, Chaumontet C, Piedcoq J, Chapelais M, Calvez J. Moderate adiposity levels counteract protein metabolism modifications associated with aging in rats. Eur J Nutr 2022; 61:3189-3200. [PMID: 35435502 DOI: 10.1007/s00394-022-02881-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/22/2022] [Indexed: 12/01/2022]
Abstract
PURPOSE Physiological parameters such as adiposity and age are likely to influence protein digestion and utilization. The aim of this study was to evaluate the combined effects of age and adiposity on casein protein and amino acid true digestibility and its postprandial utilization in rats. METHODS Four groups were included (n = 7/8): 2 months/normal adiposity, 2 months/high adiposity, 11 months/normal adiposity and 11 months/high adiposity. Rats were given a calibrated meal containing 15N-labeled casein (Ingredia, Arras, France) and were euthanized 6 h later. Digestive contents were collected to assess protein and amino acid digestibilities. 15N enrichments were measured in plasma and urine to determine total body deamination. Fractional protein synthesis rate (FSR) was determined in different organs using a flooding dose of 13C valine. RESULTS Nitrogen and amino acid true digestibility of casein was around 95-96% depending on the group and was increased by 1% in high adiposity rats (P = 0.04). Higher adiposity levels counteracted the increase in total body deamination (P = 0.03) that was associated with older age. Significant effects of age (P = 0.006) and adiposity (P = 0.002) were observed in the muscle FSR, with age decreasing it and adiposity increasing it. CONCLUSION This study revealed that a higher level of adiposity resulted in a slight increase in protein and individual amino acid true digestibility values and seemed to compensate for the metabolic postprandial protein alterations observed at older age.
Collapse
Affiliation(s)
- Nathalie Atallah
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 75005, Paris, France.,Ingredia S.A., 62033, Arras Cedex, France.,UMR Transfrontalière BioEcoAgro N°1158, University Lille, INRAE, University Liège, UPJV, YNCREA, University Artois, University Littoral Côte d'Opale, ICV - Institut Charles Viollette, 59000, Lille, France
| | - Claire Gaudichon
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 75005, Paris, France
| | | | | | | | - Nadezda Khodorova
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 75005, Paris, France
| | | | - Julien Piedcoq
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 75005, Paris, France
| | - Martin Chapelais
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 75005, Paris, France
| | - Juliane Calvez
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 75005, Paris, France.
| |
Collapse
|
2
|
Saoi M, Li A, McGlory C, Stokes T, von Allmen MT, Phillips SM, Britz-McKibbin P. Metabolic Perturbations from Step Reduction in Older Persons at Risk for Sarcopenia: Plasma Biomarkers of Abrupt Changes in Physical Activity. Metabolites 2019; 9:metabo9070134. [PMID: 31288431 PMCID: PMC6680920 DOI: 10.3390/metabo9070134] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 06/27/2019] [Accepted: 07/04/2019] [Indexed: 12/14/2022] Open
Abstract
Sarcopenia is the age-related loss of skeletal muscle mass, strength and function, which may be accelerated during periods of physical inactivity. Declines in skeletal muscle and functionality not only impacts mobility but also increases chronic disease risk, such as type 2 diabetes. The aim of this study was to measure adaptive metabolic responses to acute changes in habitual activity in a cohort of overweight, pre-diabetic older adults (age = 69 ± 4 years; BMI = 27 ± 4 kg/m2, n = 17) when using non-targeted metabolite profiling by multisegment injection-capillary electrophoresis-mass spectrometry. Participants completed two weeks of step reduction (<1000 steps/day) followed by a two week recovery period, where fasting plasma samples were collected at three time intervals at baseline, after step reduction and following recovery. Two weeks of step reduction elicited increases in circulatory metabolites associated with a decline in muscle energy metabolism and protein degradation, including glutamine, carnitine and creatine (q < 0.05; effect size > 0.30), as well as methionine and deoxycarnitine (p < 0.05; effect size ≈ 0.20) as compared to baseline. Similarly, decreases in uremic toxins in plasma that promote muscle inflammation, indoxyl sulfate and hippuric acid, as well as oxoproline, a precursor used for intramuscular glutathione recycling, were also associated with physical inactivity (p < 0.05; effect size > 0.20). Our results indicate that older persons are susceptible to metabolic perturbations due to short-term step reduction that were not fully reversible with resumption of normal ambulatory activity over the same time period. These plasma biomarkers may enable early detection of inactivity-induced metabolic dysregulation in older persons at risk for sarcopenia not readily measured by current imaging techniques or muscle function tests, which is required for the design of therapeutic interventions to counter these deleterious changes in support of healthy ageing.
Collapse
Affiliation(s)
- Michelle Saoi
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON L8S 4M1, Canada
| | - Alice Li
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON L8S 4M1, Canada
| | - Chris McGlory
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Tanner Stokes
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Mark T von Allmen
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Stuart M Phillips
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Philip Britz-McKibbin
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON L8S 4M1, Canada.
| |
Collapse
|
3
|
McGilvray WD, Johnson B, Wooten H, Rakhshandeh AR, Rakhshandeh A. Immune System Stimulation Reduces the Efficiency of Whole-Body Protein Deposition and Alters Muscle Fiber Characteristics in Growing Pigs. Animals (Basel) 2019; 9:ani9060323. [PMID: 31174289 PMCID: PMC6617207 DOI: 10.3390/ani9060323] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/01/2019] [Accepted: 06/04/2019] [Indexed: 01/18/2023] Open
Abstract
Simple Summary Disease reduces growth and protein retention in pigs. Protein retention is the balance between two energy-consuming processes in the body of pigs: protein synthesis and breakdown. Previous reports on the effects of disease on these components of protein metabolism and their consecutive effects on protein retention are inconsistent. In addition, limited information is available about the effects of disease on the composition of muscle fibers in pigs. Thus, we evaluated these parameters, since they help us to understand protein metabolism during disease in pigs. We used twelve gilts; five were used as a control and seven were made ill. Experimental diets were designed to supply nutrients that closely met the daily requirements of each group. Protein synthesis, protein breakdown, and protein retention were measured over 72 h. Pigs were then euthanized and various muscles were sampled. Our findings suggested that disease not only reduces protein retention by decreasing protein synthesis and protein breakdown, but also by reducing the efficiency of protein deposition. In other words, ill pigs synthesize more protein per unit of protein retention, compared to healthy pigs. In addition, disease reduces muscle mass and changes the composition of the muscle fibers. The latter might negatively affect pork quality. Abstract The effects of immune system stimulation (ISS), induced by repeated injection of Escherichia coli lipopolysaccharide, on the whole-body protein synthesis versus degradation rates, the efficiency of protein deposition (PD), and muscle fiber characteristics in pigs were evaluated. Twelve growing gilts were assigned to two levels of amino acid intake that was predicted based on the potential of each group’s health status for PD and feed intake. Isotope tracer, nitrogen balance, and immunohistochemical staining techniques were used to determine protein turnover, PD, and muscle fiber characteristics, respectively. Protein synthesis, degradation, and PD were lower in immune-challenged pigs than in control pigs (p < 0.05). Strong tendencies for a higher protein synthesis-to-PD ratio (p = 0.055) and a lower protein synthesis-to-degradation ratio (p = 0.065) were observed in immune-challenged pigs. A decrease in muscle cross-sectional area of fibers and a shift from myosin heavy chain (MHC)-II towards MHC-I fibers (p < 0.05) were observed in immune-challenged pigs. These results indicated that ISS reduces PD not only by suppressing the whole-body protein synthesis and degradation rates, but also by decreasing the efficiency of PD in growing pigs. In addition, ISS induces atrophy in skeletal muscles and favors a slow-twitch oxidative fiber type composition.
Collapse
Affiliation(s)
- Whitney D McGilvray
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX 79409, USA.
| | - Bradley Johnson
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX 79409, USA.
| | - Hailey Wooten
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX 79409, USA.
| | | | - Anoosh Rakhshandeh
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|
4
|
|
5
|
Bechshøft CL, Schjerling P, Bornø A, Holm L. Existence of life-time stable proteins in mature rats-Dating of proteins' age by repeated short-term exposure to labeled amino acids throughout age. PLoS One 2017; 12:e0185605. [PMID: 28957442 PMCID: PMC5619800 DOI: 10.1371/journal.pone.0185605] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 09/15/2017] [Indexed: 01/08/2023] Open
Abstract
In vivo turnover rates of proteins covering the processes of protein synthesis and breakdown rates have been measured in many tissues and protein pools using various techniques. Connective tissue and collagen protein turnover is of specific interest since existing results are rather diverging. The aim of this study is to investigate whether we can verify the presence of protein pools within the same tissue with very distinct turnover rates over the life-span of rats with special focus on connective tissue. Male and female Lewis rats (n = 35) were injected with five different isotopically labeled amino acids tracers. The tracers were injected during fetal development (Day -10 to -2), after birth (Day 5-9), at weaning (Day 25-32) at puberty (Day 54-58) and at adulthood (Day 447-445). Subgroups of rats were euthanized three days after every injection period, at different time point between injection periods and lastly at day 472. Tissue (liver, muscle, eye lens and patellar tendon) and blood samples were collected after euthanization. The enrichment of the labeled amino acids in the tissue or blood samples was measured using GC-MS-MS. In muscle and liver we demonstrated a rapid decrease of tracer enrichments throughout the rat's life, indicating that myofibrillar and cytoskeleton proteins have a high turnover. In contrast, the connective tissue protein in the eye lens and patellar tendon of the mature rat showed detainment of tracer enrichment injected during fetal development and first living days, indicating very slow turnover. The data support the hypothesis that some proteins synthesized during the early development and growth still exist much later in life of animals and hence has a very slow turnover rate.
Collapse
Affiliation(s)
- Cecilie Leidesdorff Bechshøft
- Institute of Sports Medicine, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center of Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| | - Peter Schjerling
- Institute of Sports Medicine, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center of Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Bornø
- Clinical Metabolomics Core Facility, Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
| | - Lars Holm
- Institute of Sports Medicine, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center of Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Clinical Metabolomics Core Facility, Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
- Institute of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Rudar M, Zhu CL, de Lange CF. Dietary Leucine Supplementation Decreases Whole-Body Protein Turnover before, but Not during, Immune System Stimulation in Pigs. J Nutr 2017; 147:45-51. [PMID: 27798336 DOI: 10.3945/jn.116.236893] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 07/10/2016] [Accepted: 10/03/2016] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Immune system stimulation (ISS) adversely affects protein metabolism and reduces pig productivity. Leu has a regulatory role in skeletal muscle and whole-body protein turnover, which may be affected by ISS. OBJECTIVE We sought to determine the effect of supplemental Leu intake on whole-body protein turnover in pigs before and during ISS. METHODS Pigs [mean ± SD initial body weight (BW): 10.6 ± 1.1 kg] were surgically fitted with jugular vein catheters and assigned to 1 of 3 treatments: 1.36% standardized ileal-digestible (SID) Leu (CON; n = 13); 2.04% SID Leu (LEU-M; n = 8); and 2.72% SID Leu (LEU-H; n = 7). Pigs were infused continuously with 0.66 ± 0.05 mmol 15N ⋅ kg BW-1 ⋅ d-1 to determine whole-body protein kinetics. The study consisted of a 72-h prechallenge period followed by a 36-h challenge period. At the start of the challenge period, ISS was induced in all LEU-M and LEU-H pigs and half of the CON pigs with LPS (ISS+); the remaining CON pigs were administered saline (ISS-). RESULTS Whole-body protein synthesis (309, 273, and 260 ± 14 mmol N ⋅ kg BW-1 ⋅ d-1 for CON, LEU-M, and LEU-H pigs, respectively) and protein degradation (233, 203, and 185 ± 14 mmol N ⋅ kg BW-1 ⋅ d-1 for CON, LEU-M, and LEU-H pigs, respectively) were reduced with increasing Leu intake during the prechallenge period (P < 0.05). ISS reduced whole-body protein synthesis (203 compared with 169 ± 12 mmol N ⋅ kg BW-1 ⋅ d-1 for ISS- and ISS+ pigs fed CON, respectively; P < 0.05) and protein deposition (PD) (64.9 compared with 45.0 ± 2.9 mmol N ⋅ kg BW-1 ⋅ d-1 for ISS- and ISS+ pigs fed CON, respectively; P < 0.01), whereas ISS did not affect whole-body protein degradation. Leu intake did not affect whole-body protein synthesis or degradation in ISS+ pigs. CONCLUSIONS Our results indicate that supplemental Leu intake improves the efficiency of PD rather than PD directly in healthy pigs but did not affect whole-body protein turnover during ISS.
Collapse
Affiliation(s)
- Marko Rudar
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada
| | - Cuilan L Zhu
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada
| | | |
Collapse
|
7
|
Abstract
Glutamine, reviewed extensively in the last century, is a key substrate for the splanchnic bed in the whole body and is a nutrient of particular interest in gastrointestinal research. A marked decrease in the plasma glutamine concentration has recently been observed in neonates and adults during acute illness and stress. Although some studies in newborns have shown parenteral and enteral supplementation with glutamine to be of benefit (by decreasing proteolysis and activating the immune system), clinical trials have not demonstrated prolonged advantages such as reductions in mortality or risk of infections in adults. In addition, glutamine is not able to combat the muscle wasting associated with disease or age-related sarcopenia. Oral glutamine supplementation initiated before advanced age in rats increases gut mass and improves the villus height of mucosa, thereby preventing the gut atrophy encountered in advanced age. Enterocytes from very old rats continuously metabolize glutamine into citrulline, which allowed, for the first time, the use of citrulline as a noninvasive marker of intestinal atrophy induced by advanced age.
Collapse
Affiliation(s)
- Dominique Meynial-Denis
- D. Meynial-Denis is with the Unit of Human Nutrition (UNH), French National Institute for Agricultural Research (INRA), Joint Research Unit (UMR) 1019, Center for Research in Human Nutrition (CRNH) Auvergne, Clermont-Ferrand, France.
| |
Collapse
|
8
|
Gatineau E, Savary-Auzeloux I, Migné C, Polakof S, Dardevet D, Mosoni L. Chronic Intake of Sucrose Accelerates Sarcopenia in Older Male Rats through Alterations in Insulin Sensitivity and Muscle Protein Synthesis. J Nutr 2015; 145:923-30. [PMID: 25809681 DOI: 10.3945/jn.114.205583] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 02/20/2015] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Today, high chronic intake of added sugars is frequent, which leads to inflammation, oxidative stress, and insulin resistance. These 3 factors could reduce meal-induced stimulation of muscle protein synthesis and thus aggravate the age-related loss of muscle mass (sarcopenia). OBJECTIVES Our aims were to determine if added sugars could accelerate sarcopenia and to assess the capacity of antioxidants and anti-inflammatory agents to prevent this. METHODS For 5 mo, 16-mo-old male rats were starch fed (13% sucrose and 49% wheat starch diet) or sucrose fed (62% sucrose and 0% wheat starch diet) with or without rutin (5 g/kg diet), vitamin E (4 times), vitamin A (2 times), vitamin D (5 times), selenium (10 times), and zinc (+44%) (R) supplementation. We measured the evolution of body composition and inflammation, plasma insulin-like growth factor 1 (IGF-I) concentration and total antioxidant status, insulin sensitivity (oral-glucose-tolerance test), muscle weight, superoxide dismutase activity, glutathione concentration, and in vivo protein synthesis rates. RESULTS Sucrose-fed rats lost significantly more lean body mass (-8.1% vs. -5.4%, respectively) and retained more fat mass (+0.2% vs. -33%, respectively) than starch-fed rats. Final muscle mass was 11% higher in starch-fed rats than in sucrose-fed rats. Sucrose had little effect on inflammation, oxidative stress, and plasma IGF-I concentration but reduced the insulin sensitivity index (divided by 2). Meal-induced stimulation of muscle protein synthesis was significantly lower in sucrose-fed rats (+7.3%) than in starch-fed rats (+22%). R supplementation slightly but significantly reduced oxidative stress and increased muscle protein concentration (+4%) but did not restore postprandial stimulation of muscle protein synthesis. CONCLUSIONS High chronic sucrose intake accelerates sarcopenia in older male rats through an alteration of postprandial stimulation of muscle protein synthesis. This effect could be explained by a decrease of insulin sensitivity rather than by changes in plasma IGF-I, inflammation, and/or oxidative stress.
Collapse
Affiliation(s)
- Eva Gatineau
- National Institute of Agronomic Research, Joint Research Unit 1019 for Human Nutrition, Saint Genès Champanelle, France; and Clermont 1 University, Research and Training Unit Medicine, Joint Research Unit 1019 for Human Nutrition, Clermont-Ferrand, France
| | - Isabelle Savary-Auzeloux
- National Institute of Agronomic Research, Joint Research Unit 1019 for Human Nutrition, Saint Genès Champanelle, France; and Clermont 1 University, Research and Training Unit Medicine, Joint Research Unit 1019 for Human Nutrition, Clermont-Ferrand, France
| | - Carole Migné
- National Institute of Agronomic Research, Joint Research Unit 1019 for Human Nutrition, Saint Genès Champanelle, France; and Clermont 1 University, Research and Training Unit Medicine, Joint Research Unit 1019 for Human Nutrition, Clermont-Ferrand, France
| | - Sergio Polakof
- National Institute of Agronomic Research, Joint Research Unit 1019 for Human Nutrition, Saint Genès Champanelle, France; and Clermont 1 University, Research and Training Unit Medicine, Joint Research Unit 1019 for Human Nutrition, Clermont-Ferrand, France
| | - Dominique Dardevet
- National Institute of Agronomic Research, Joint Research Unit 1019 for Human Nutrition, Saint Genès Champanelle, France; and Clermont 1 University, Research and Training Unit Medicine, Joint Research Unit 1019 for Human Nutrition, Clermont-Ferrand, France
| | - Laurent Mosoni
- National Institute of Agronomic Research, Joint Research Unit 1019 for Human Nutrition, Saint Genès Champanelle, France; and Clermont 1 University, Research and Training Unit Medicine, Joint Research Unit 1019 for Human Nutrition, Clermont-Ferrand, France
| |
Collapse
|
9
|
Comparison of α2-macroglobulin synthesis by juvenile vs. mature rats after identical inflammatory stimulation. Inflammation 2014; 36:1448-52. [PMID: 23856939 DOI: 10.1007/s10753-013-9685-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Synthesis of α2-macoglobulin (α2M) by 3-week-old juvenile rats was compared to that of mature 7- and 11-week-old rats. Serum concentrations of α2M, interleukin (IL)-6- and cytokine-induced neutrophil chemoattractant (CINC)-1 were measured by enzyme-linked immunosorbent assay. The area under the concentration vs. time curve (AUC) for α2M was significantly different among the three groups. The synthesis of α2M increased in an age-dependent manner. No significant difference was observed for the AUC of IL-6, but that of CINC-1 in 3-week-old rats was significantly lower than that in 7- or 11-week-old rats. These results suggest that synthesis of α2M was increased in mature compared to juvenile rats, possibly due to differences in liver function. The maximum concentration of CINC-1 in 3-week-old rats was observed 6 h after turpentine oil injection. The serum concentrations of IL-6 and CINC-1 increased more quickly in juvenile rats than in mature rats after inflammatory stimulation.
Collapse
|
10
|
Unilateral hindlimb casting induced a delayed generalized muscle atrophy during rehabilitation that is prevented by a whey or a high protein diet but not a free leucine-enriched diet. PLoS One 2013; 8:e70130. [PMID: 24015173 PMCID: PMC3754992 DOI: 10.1371/journal.pone.0070130] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 06/17/2013] [Indexed: 11/19/2022] Open
Abstract
Sarcopenia is the general muscle mass and strength loss associated with ageing. Muscle atrophy could be made worse by exposure to acute periods of immobilization, because muscle disuse by itself is a stimulus for atrophy. Using a model of unilateral hindlimb casting in old adult rats, we have already demonstrated that the primary effect of immobilization was atrophy in the casted leg, but was also surprisingly associated with a retarded atrophy in the non-casted leg during rehabilitation. In search of mechanisms involved in this generalized atrophy, we demonstrated in the present study that contrary to pair-fed non-immobilized control animals, muscle protein synthesis in the non-immobilized limb was unable to adapt and to respond positively to food intake. Because pair-fed control rats did not lose muscle mass, this defect in muscle protein synthesis may represent one of the explanation for the muscle mass loss observed in the non-immobilized rats. Nevertheless, in order to stimulate protein turn over and generate a positive nitrogen balance required to maintain the whole muscle mass in immobilized rats, we tested a dietary free leucine supplementation (an amino acid known for its stimulatory effect on protein metabolism) during the rehabilitation period. Leucine supplementation was able to overcome the anabolic resistance in the non-immobilized limb. A greater muscle protein synthesis up-regulation associated with a stimulation of the mTOR signalling pathway was indeed recorded but it remained inefficient to prevent the loss of muscle in the non-immobilized limb. By contrast, we demonstrated here that whey protein or high protein diets were able to prevent the muscle mass loss of the non-immobilized limb by sustaining muscle protein synthesis during the entire rehabilitation period.
Collapse
|
11
|
Grizard J, Dardevet D, Papet I, Mosoni L, Mirand PP, Attaix D, Tauveron I, Bonin D, Arnal M. Nutrient regulation of skeletal muscle protein metabolism in animals. The involvement of hormones and substrates. Nutr Res Rev 2012; 8:67-91. [PMID: 19094280 DOI: 10.1079/nrr19950007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- J Grizard
- Laboratoire d'Etude du Métabolisme Azoté, Institut National de la Recherche Agronomique, Centre de Clermont-Ferrand - Theix, Centre de Recherche en Nutrition Humaine d'Auvergne, 63122 Saint-Genès-Champanelle, France
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Dardevet D, Savary-Auzeloux I, Remond D, Mosoni L, Marzetti E, Buford TW, Bernabei R, Dionne IJ, Buford TW, Marzetti E, Manini TM, Buehring B, Kirchner E, Calabrese L, Manini TM, Clark BC, Fonseca HM, Delbono O, Taylor JR, Aubertin-Leheudre M, Barbat-Artigas S, Pion CH, Thornell LE, Gustafsson T, Cederholm T, Ulfhake B. Commentaries on Viewpoint: Muscle atrophy is not always sarcopenia. J Appl Physiol (1985) 2012; 113:680-4. [PMID: 22896680 PMCID: PMC4459919 DOI: 10.1152/japplphysiol.00667.2012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
13
|
Effect of fast dietary proteins on muscle protein synthesis rate and muscle strength in ad libitum-fed and energy-restricted old rats. Br J Nutr 2011; 106:1683-90. [PMID: 21736767 DOI: 10.1017/s0007114511002182] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Sarcopenia is defined as age-related loss of muscle mass and strength. Energy restriction (ER) delays fibre loss by limiting the accumulated deleterious effects of reactive oxygen species on muscle. However, insufficient protein intake during ER might affect muscle mass and function. We hypothesised that ingestion of fast-digested proteins such as whey protein (WP) improves muscle protein synthesis and muscle strength in aged ER rats. The effect of WP or casein (CAS, slow protein) on muscle mass, protein synthesis and strength was evaluated in 21-month-old rats fed for 5 months either ad libitum (AL) or a 40 % protein and energy-restricted (PER) or 40 % AL-isonitrogenous ER diet. The nitrogen balance was reduced in PER-CAS rats only ( - 48 % v. AL-CAS). WP stimulated muscle protein synthesis rates compared with CAS in all groups (+21,+37 and +34 % in AL, PER and ER conditions, respectively). Muscle strength was higher in ER rats than in AL rats (+23 and +12 % for WP or CAS, respectively). Muscle performance tended to be greater in ER rats fed WP than in ER-CAS rats (P < 0·09). In conclusion, we observed that long-term ER combined with maintained protein intake had a beneficial impact on muscle protein synthesis rate and function during ageing.
Collapse
|
14
|
Abstract
The liver plays a unique role in nutrient homeostasis. Its anatomical location makes it ideally suited to control the systemic supply of absorbed nutrients, and it is the primary organ that can both consume and produce substantial amounts of glucose. Moreover, it is the site of a substantial fraction (about 25 %) of the body's protein synthesis, and the liver and other organs of the splanchnic bed play an important role in sparing dietary N by storing ingested amino acids. This hepatic anabolism is under the control of hormonal and nutritional changes that occur during food intake. In particular, the route of nutrient delivery, i.e. oral (or intraportal) v. peripheral venous, appears to impact upon the disposition of the macronutrients and also to affect both hepatic and whole-body nutrient metabolism. Intraportal glucose delivery significantly enhances net hepatic glucose uptake, compared with glucose infusion via a peripheral vein. On the other hand, concomitant intraportal infusion of both glucose and gluconeogenic amino acids significantly decreases net hepatic glucose uptake, compared with infusion of the same mass of glucose by itself. Delivery of amino acids via the portal vein may enhance their hepatic uptake, however. Elevation of circulating lipids under postprandial conditions appears to impair both hepatic and whole-body glucose disposal. Thus, the liver's role in nutrient disposal and metabolism is highly responsive to the route of nutrient delivery, and this is an important consideration in planning nutrition support and optimising anabolism in vulnerable patients.
Collapse
|
15
|
Brooks NE, Schuenke MD, Hikida RS. Ageing influences myonuclear domain size differently in fast and slow skeletal muscle of rats. Acta Physiol (Oxf) 2009; 197:55-63. [PMID: 19254285 DOI: 10.1111/j.1748-1716.2009.01983.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
AIM In multinucleated skeletal muscle, a myonuclear domain is the region of cytoplasm governed by one nucleus, and myofibres are mosaics of overlapping myonuclear domains. Association of ageing and myonuclear domain is important in the understanding of sarcopenia and with prevention or combating age-related muscle declines. This study examined the effects of age, fibre type and muscle on nucleo-cytoplasmic (N/C) relationships as reflecting myonuclear domain size. METHODS The N/C was compared in fibre types of soleus and plantaris muscles from young (n = 6) and ageing (n = 8) male Fisher 344 rats. RESULTS There were no significant differences in fibre type composition or cross-sectional area of the soleus across ages. The old soleus had significantly more myonuclei, resulting in a significantly smaller myonuclear domain size. The plantaris muscle showed a higher percentage of slow fibres in old compared with young fibres. There were no differences in the number of myonuclei or in myonuclear domain size between young and older animals. CONCLUSION We found muscle-specific differences in the effects of ageing on myonuclear domain, possibly as a result of reduced efficiency of the myonuclei in the slow muscles.
Collapse
Affiliation(s)
- Naomi E Brooks
- Department of Physiological Sciences, Stellenbosch University, Matieland, Stellenbosch, South Africa.
| | | | | |
Collapse
|
16
|
Dardevet D, Kimball SR, Jefferson LS, Cherrington AD, Rémond D, DiCostanzo CA, Moore MC. Portal infusion of amino acids is more efficient than peripheral infusion in stimulating liver protein synthesis at the same hepatic amino acid load in dogs. Am J Clin Nutr 2008; 88:986-96. [PMID: 18842785 PMCID: PMC2750082 DOI: 10.1093/ajcn/88.4.986] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Hepatic glucose uptake is enhanced by the portal delivery of glucose, which creates a negative arterioportal substrate gradient. Hepatic amino acid (AA) utilization may be regulated by the same phenomenon, but this has not been proven. OBJECTIVE We aimed to assess hepatic AA balance and protein synthesis with or without a negative arterioportal AA gradient. DESIGN Somatostatin was infused intravenously, and insulin and glucagon were replaced intraportally at 4- and 3-fold basal rates, respectively, in 3 groups (n = 9 each) of conscious dogs with catheters for hepatic balance measurement. Arterial glucose concentrations were clamped at 9 mmol/L. An AA mixture was infused intravenously to maintain basal concentrations (EuAA), intraportally to mimic the postmeal AA increase (PoAA), or intravenously (PeAA) to match the hepatic AA load in PoAA. Protein synthesis was assessed with a primed, continuous [(14)C]leucine infusion. RESULTS Net hepatic glucose uptake in the PoAA condition was < or =50% of that in the EuAA and PeAA conditions (P < 0.05). In the PoAA and PeAA conditions, hepatic intracellular leucine concentrations were 2- to 2.5-fold those in the EuAA condition (P < 0.05); net hepatic leucine uptake and [(14)C]leucine utilization were approximately 2-fold greater (P < 0.05) and albumin synthesis was 30% greater (P < 0.05) in the PoAA condition than in the EuAA and PeAA conditions. Phosphorylation of ribosomal protein S6 [downstream of the mammalian target of Rapamycin complex 1 (mTORC1)] was significantly higher in the PoAA, but not PeAA, condition than in the EuAA condition. CONCLUSIONS Portal, but not peripheral, AA delivery significantly enhanced hepatic protein synthesis under conditions in which AAs, glucose, insulin, and glucagon did not differ at the liver, an effect apparently mediated by mTORC1 signaling.
Collapse
Affiliation(s)
- Dominique Dardevet
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
Meier JM, Alavi A, Iruvuri S, Alzeair S, Parker R, Houseni M, Hernandez-Pampaloni M, Mong A, Torigian DA. Assessment of Age-Related Changes in Abdominal Organ Structure and Function With Computed Tomography and Positron Emission Tomography. Semin Nucl Med 2007; 37:154-72. [PMID: 17418149 DOI: 10.1053/j.semnuclmed.2007.02.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
With the size of the aged population in the United States expected to grow considerably during the next several decades, the number of imaging studies performed on such aged individuals will similarly increase. Thus, it is important to understand normal age-related changes in the structural and functional imaging appearance of the abdominal organs. We therefore present preliminary data and a review of the literature relevant to structural and functional changes in the abdominal organs of children and older adults. In a retrospective study of both adult and pediatric populations, we used computed tomography (CT), positron emission tomography (PET), and PET/CT imaging to investigate age-associated changes in size, attenuation, and metabolic function of the abdominal organs. Organs of interest include the liver, spleen, pancreas, kidneys, adrenal glands, stomach, small bowel, colon, and rectum. Although volumes of adult liver, spleen, pancreas, and kidneys do not change significantly with age, adult left and right adrenal gland volumes do significantly increase with age (r = 0.2823, P = 0.0334, and r = 0.3676, P = 0.0049, respectively). Also, the attenuation of adult liver (r = -0.2122, P = 0.0412), spleen (r = -0.4508, P < 0.0001), pancreas (r = -0.5124, P = 0.0007), and left and right adrenal gland (r = -0.5835, P < 0.0001 and r = -0.6135, P < 0.0001, respectively) decrease significantly with increasing age. Every organ studied in the pediatric population demonstrates a positive association between organ volume and age. Significant age-related changes in organ function are noted in the adult liver and small bowel, with the liver demonstrating a positive association between metabolic activity and age (r = 0.4434, P = 0.0029) and the small bowel showing an inverse association between mean small bowel standardize uptake value and age (r = -0.2435, P = 0.0174). Also, the maximum overall small bowel and colon metabolic activity in children increases with age (r = 0.6478, P = 0.0008). None of the other organs studied (ie, spleen, pancreas, adrenal glands, stomach, colon, rectum) demonstrate significant changes in metabolism with advancing age. The metabolic volumetric product (calculated as the product of organ volume and mean organ SUV) of the liver and spleen does not change significantly with age. In conclusion, various abdominal organs demonstrate differential changes in volume, attenuation, and/or metabolism with increasing age in pediatric and adult populations.
Collapse
Affiliation(s)
- Jeffrey M Meier
- Department of Radiology, Division of Nuclear Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-4283, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Pinel C, Coxam V, Mignon M, Taillandier D, Cubizolles C, Lebecque P, Darmaun D, Meynial-Denis D. Alterations in glutamine synthetase activity in rat skeletal muscle are associated with advanced age. Nutrition 2006; 22:778-85. [PMID: 16815492 DOI: 10.1016/j.nut.2006.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2005] [Revised: 04/28/2006] [Accepted: 05/10/2006] [Indexed: 10/24/2022]
Abstract
OBJECTIVE Glutamine synthetase (GS), a key enzyme in the production of glutamine, is preserved in skeletal muscle during early aging (<24 mo). Because the effects of advanced age on GS are unknown, we investigated the effect of advanced age (>24 mo) on GS activity in skeletal muscle. We hypothesized that advanced age would enhance muscle GS activity. METHODS Muscle GS activities were assessed in adult (8 mo), mature adult (15 mo), aged (20-22 mo), advanced age (25-27 mo), or very advanced age (29-32 mo) female Wistar rats. Male Wistar (6-27 mo) were used to investigate the effect of gender on this activity. RESULTS Glutamine synthetase activity remained low and unaltered in rats from 8 to 22 mo of age, as previously demonstrated. In contrast, GS activity was high ( approximately 75% of individual values were higher than the low value mean) in 25-mo to 27-mo-old rats. In very-old-aged rats (29-32 mo), approximately 55% of GS activity data points exhibited low values. Changes in GS protein content paralleled those in GS activities. In male rats, GS activity was also high ( approximately 80% of individual values were higher than the mean value of 6-mo to 19-mo-old rats) at the upper limit of life expectancy (27 mo). CONCLUSION There is enhanced GS activity in old female and male rats suggesting a greater need for glutamine. In some very old rats, low GS activity may be associated with longevity or reflect a limitation in glutamine production due to extremely advanced age per se.
Collapse
Affiliation(s)
- Carole Pinel
- UMR INRA 1019, Unité de Nutrition Humaine, Human Nutrition Research Center, Clermont-Ferrand Theix, France
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Attaix D, Mosoni L, Dardevet D, Combaret L, Mirand PP, Grizard J. Altered responses in skeletal muscle protein turnover during aging in anabolic and catabolic periods. Int J Biochem Cell Biol 2005; 37:1962-73. [PMID: 15905114 DOI: 10.1016/j.biocel.2005.04.009] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2004] [Revised: 03/15/2005] [Accepted: 04/12/2005] [Indexed: 12/25/2022]
Abstract
One of the most important effects of aging is sarcopenia, which is associated with impaired locomotion and general weakness. In addition, there is increased susceptibility to illness in aging, which often results in muscle wasting episodes. In such instances, the mobilization of muscle proteins provides free amino acids that are used for energetic purpose, the synthesis of acute phase proteins, and the immune response. However, since muscle protein mass is already depleted, the ability of the aged organism to recover from stress is impaired. Therefore, elucidating the mechanisms that result in sarcopenia is of obvious importance. Age-related changes in protein synthesis and proteolysis are rather small and our current methodology does not enable one to establish unequivocally whether sarcopenia results from depressed protein synthesis, increased proteolysis or both. By contrast, in anabolic and catabolic periods, a number of dysregulations in muscle protein turnover became clearly apparent. The aim of this review is to provide an overview of such altered responses to nutrients and catabolic treatments, which may ultimately contribute to explain sarcopenia. This includes impaired recovery in catabolic states, impaired anabolic effects of nutrients, in particular leucine, and a lack of regulation of the ubiquitin-proteasome proteolytic system. These alterations are discussed with respect to modifications in the insulin/IGF-1 axis and glucocorticoid related effects.
Collapse
Affiliation(s)
- Didier Attaix
- Human Nutrition Research Center of Clermont-Ferrand, Institut National de la Recherche Agronomique, Nutrition and Protein Metabolism Unit, 63122 Ceyrat, France.
| | | | | | | | | | | |
Collapse
|
20
|
Wauthier V, Verbeeck RK, Buc Calderon P. The use of precision-cut liver slices from male Wistar rats as a tool to study age related changes in CYP3A induction and in formation of paracetamol conjugates. Toxicol In Vitro 2005; 18:879-85. [PMID: 15465655 DOI: 10.1016/j.tiv.2004.04.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2003] [Accepted: 04/28/2004] [Indexed: 11/27/2022]
Abstract
Precision-cut liver slices (PCLS) offer a lot of advantages because all heterogeneity and cell-cell interactions within the original tissue matrix are maintained. This in vitro model was used to study the effect of ageing on certain aspects of drug metabolism and liver function in young (3 months), adult (9 months) and old (24 months) Wistar male rats. Protein synthesis, an important liver function, was not modified in young, adult and old rats, suggesting that ageing does not impair liver functionality but it affects some specific targets. Among them, a decrease in total P450 in liver microsomes and the loss of CYP3A23 inducibility in PCLS were clearly observed in old rats as compared to adult rats. Finally, the amount of total paracetamol conjugates was not modified between 9 and 24 months but in old rats, sulfoconjugation of paracetamol, its major route of elimination, was decreased.
Collapse
Affiliation(s)
- Valérie Wauthier
- Unité de Pharmacocinétique, Métabolisme, Nutrition, et Toxicologie (PMNT), Département des Sciences Pharmaceutiques, Université Catholique de Louvain, 73 Avenue Mounier, 1200 Bruxelles, Belgium
| | | | | |
Collapse
|
21
|
Capel F, Buffière C, Patureau Mirand P, Mosoni L. Differential variation of mitochondrial H2O2 release during aging in oxidative and glycolytic muscles in rats. Mech Ageing Dev 2005; 125:367-73. [PMID: 15130754 DOI: 10.1016/j.mad.2004.02.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2003] [Accepted: 02/17/2004] [Indexed: 10/26/2022]
Abstract
Mitochondrial free radical (ROS) production could be involved in sarcopenia. Our aim was to measure this production in various muscles during aging. Male Wistar rats aged 4.5 and 24 months were used. H(2)O(2) release and protein carbonyls were evaluated in isolated mitochondria from an oxidative (soleus) and a glycolytic (tibialis anterior) muscle. Total and Mn-superoxide dismutase (SOD), catalase, glutathione peroxidase (GPX) and glutathione reductase (GR) activities were measured in tibialis anterior. In soleus, glutamate/malate supported mitochondrial H(2)O(2) release was lower than in tibialis anterior in young rats, but increased significantly with age. In tibialis anterior, glutamate/malate or succinate supported H(2)O(2) release was unchanged with age. ROS generators were complexes I and III. Mitochondrial carbonyl content remained stable during aging in both muscles but tended to be higher in tibialis anterior than in soleus. Tibialis anterior total SOD (+17%), catalase (+84%), and GPX (-17%) activities varied significantly with age but Mn-SOD was unchanged, suggesting an increase in cytosolic ROS production. In conclusion, the higher life-long H(2)O(2) release observed in tibialis anterior is consistent with the known sensitivity of glycolytic muscles to sarcopenia. The fact that the rate of H(2)O(2) release increases with age in soleus seems to have little impact.
Collapse
Affiliation(s)
- Frédéric Capel
- Unité de Nutrition et Métabolisme Protéique, Institut National de la Recherche Agronomique, Centre INRA de Clermont-Ferrand-Theix, 63122 Theix, France
| | | | | | | |
Collapse
|
22
|
Guillet C, Zangarelli A, Mishellany A, Rousset P, Sornet C, Dardevet D, Boirie Y. Mitochondrial and sarcoplasmic proteins, but not myosin heavy chain, are sensitive to leucine supplementation in old rat skeletal muscle. Exp Gerontol 2004; 39:745-51. [PMID: 15130669 DOI: 10.1016/j.exger.2004.02.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2003] [Revised: 02/16/2004] [Accepted: 02/20/2004] [Indexed: 10/26/2022]
Abstract
Leucine has a major anabolic impact on muscle protein synthesis in young as in old animals. However, myosin heavy chain (MHC), sarcoplasmic and mitochondrial proteins may differently respond to anabolic factors, especially during aging. To test this hypothesis, fractional synthesis rates (FSR) of the three muscle protein fractions were measured using a flooding dose of [1-(13)C] phenylalanine, in gastrocnemius muscle of adult (8 months) and old (22 months) rats, either in postabsorptive state (PA), or 90-120 min after ingestion of a alanine-supplemented meal (PP+A) or a leucine-supplemented meal (PP+L). In adult and old rats, in comparison with PA, leucine stimulated mitochondrial (adult: 0.260+/-0.011 vs 0.238+/-0.012%h(-1); old: 0.289+/-0.010 vs 0.250+/-0.010%h(-1); PP+L vs PA, P<0.05) and sarcoplasmic (adult: 0.182+/-0.011 vs 0.143+/-0.006%h(-1); old: 0.195+/-0.010 vs 0.149+/-0.008%h(-1); PP+L vs PA, P<0.05) protein FSR, but not MHC synthesis in old rats (0.101+/-0.009 vs 0.137+/-0.018%h(-1); PP+L vs PA, P=NS). In conclusion, synthesis of specific muscle protein is activated by leucine supplementation, but MHC may be less sensitive to anabolic factors with aging.
Collapse
Affiliation(s)
- Christelle Guillet
- Laboratoire de Nutrition Humaine, Centre de Recherche en Nutrition Humaine, Unité du Métabolisme Protéino-Energétique, UMR Université d'Auvergne-INRA, Centre Hospitalier Universitaire, BP 321, 58 rue Montalembert, 63009 Clermont-Ferrand cedex 1, France
| | | | | | | | | | | | | |
Collapse
|
23
|
Papet I, Dardevet D, Sornet C, Béchereau F, Prugnaud J, Pouyet C, Obled C. Acute phase protein levels and thymus, spleen and plasma protein synthesis rates differ in adult and old rats. J Nutr 2003; 133:215-9. [PMID: 12514293 DOI: 10.1093/jn/133.1.215] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Aging induces a dysregulation of immune and inflammation functions that may affect protein synthesis rates in lymphoid tissue and plasma proteins. We quantified in vivo synthesis rates of thymus, spleen and plasma proteins, including albumin and acute phase proteins, in adult (8 mo old) and old (22 mo old) rats using the flooding dose method [L-(1-(13)C) phenylalanine]. Immunosenescence was reflected by thymus atrophy and spleen hypertrophy in old rats but not in adult rats. A low albumin plasma level associated with high concentrations of fibrinogen, alpha(2)-macroglobulin, alpha(1)-acid glycoprotein and proteins other than albumin revealed a low grade inflammation in old rats. Protein fractional synthesis rates (FSR) and protein synthesis efficiencies of thymus were 29 and 26% lower in old than in adult rats, respectively; these variables did not differ in spleen. Protein absolute synthesis rates (ASR) of the thymus and spleen were 76% lower and 67% greater in old than adult rats, respectively. The FSR and ASR of albumin and other plasma proteins were greater in old than in adult rats. Protein synthesis measurement is a valuable nonimmunological tool to assess, in vivo, immune and inflammatory variables. Alterations in secondary lymphoid organs and plasma protein synthesis may contribute to the significant repartitioning of amino acids in old compared with adult rats and may be involved in sarcopenia.
Collapse
Affiliation(s)
- Isabelle Papet
- Unité de Nutrition et Métabolisme Protéique, Institut National de la Recherche Agronomique, Theix, 63 122 Saint-Genès-Champanelle, France.
| | | | | | | | | | | | | |
Collapse
|
24
|
Reynolds TH, Krajewski KM, Larkin LM, Reid P, Halter JB, Supiano MA, Dengel DR. Effect of age on skeletal muscle proteolysis in extensor digitorum longus muscles of B6C3F1 mice. J Gerontol A Biol Sci Med Sci 2002; 57:B198-201. [PMID: 11983717 PMCID: PMC2714737 DOI: 10.1093/gerona/57.5.b198] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The purpose of this study was to determine if age-related muscle atrophy is associated with an increased rate of protein degradation in extensor digitorum longus (EDL) muscles from young (YG; 2-4 months), middle-aged (MA; 12-17 months), and aged (AG; 22-24 months) B6C3F1 mice. EDL muscles from AG mice weighed less than EDL muscles from MA mice (p =.01). EDL muscles from MA mice weighed more than EDL muscles from YG mice (p =.02). The rate of protein degradation, as assessed by tyrosine release during in vitro incubations, was higher in EDL muscles from AG mice than it was in those from MA mice (p =.03). The rate of protein degradation was higher in EDL muscles from YG mice than it was in those from MA mice (p =.04). An inverse relationship existed between muscle mass and protein degradation (r = -.67; p =.0001). We conclude that skeletal muscle protein degradation rates decrease with maturation and increase with advancing age.
Collapse
Affiliation(s)
- Thomas H Reynolds
- Division of Geriatric Medicine, University of Michigan, and Veteran Affairs Ann Arbor Health Care System, Ann Arbor, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Arnal MA, Mosoni L, Dardevet D, Ribeyre MC, Bayle G, Prugnaud J, Patureau Mirand P. Pulse protein feeding pattern restores stimulation of muscle protein synthesis during the feeding period in old rats. J Nutr 2002; 132:1002-8. [PMID: 11983828 DOI: 10.1093/jn/132.5.1002] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Muscle loss during aging could be related to a lower sensitivity of muscle protein synthesis to feeding. To overcome this decrease without increasing protein intake, we proposed to modulate the daily protein feeding pattern. We showed that consuming 80% of dietary proteins at noon (pulse pattern) improved nitrogen balance in elderly women. The present study was undertaken in rats to determine which tissues are the targets of the pulse pattern and what mechanisms are involved. Male Sprague-Dawley 11- and 23-mo-old rats (n = 32 per age) were fed 4 isoproteic (18% protein) meals/d for 10 d. Then half of the rats at each age were switched to a 11/66/11/11% repartition of daily proteins (pulse pattern) for 21 d. On d 21, rats were injected with a flooding dose of L-(13)C-valine (50 atom% excess, 150 micromol/100 g body) and protein synthesis rates were measured in liver, small intestine and gastrocnemius muscle in either the postabsorptive or the fed state. Epitrochlearis muscle degradation rates and plasma amino acid concentrations were measured at the same times. The pulse pattern had the following effects: 1) it significantly increased liver protein synthesis response to feeding and postprandial plasma amino acid concentrations at both ages; 2) it restored a significant response to feeding of gastrocnemius muscle protein synthesis in old rats; and 3) it had no effect in small intestine or on muscle breakdown. Thus, using a pulse pattern could be useful in preventing the age-related loss of muscle by increasing feeding-induced stimulation of muscle protein synthesis.
Collapse
Affiliation(s)
- Marie-Agnès Arnal
- Unité de Nutrition et Métabolisme Protéique, Centre INRA de Clermont-Ferrand-Theix, 63122 Theix, France
| | | | | | | | | | | | | |
Collapse
|
26
|
Verdier L, Boirie Y, Van Drieesche S, Mignon M, Begue RJ, Meynial-Denis D. Do sex steroids regulate glutamine synthesis with age? Am J Physiol Endocrinol Metab 2002; 282:E215-21. [PMID: 11739103 DOI: 10.1152/ajpendo.00117.2001] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glutamine synthetase, a key enzyme in the production of glutamine, is known to be induced by glucocorticoids and preserved in skeletal muscle during aging, but the effect of other steroids, such as sex steroids (progesterone, estradiol), is unknown in vivo. The aim of this study was to determine whether progesterone or estradiol plays a role in the regulation of glutamine synthetase (GS) with aging. The effects of glucocorticoids and sex steroids on muscle GS activity and mRNA expression were measured in adult (6-8 mo; n = 7 in each group) and aged (26 mo; n = 10 in each group) female Wistar rats after adrenalectomy (ADX), ovariectomy (OV), or both (ADXOV) and were compared with those in sham-operated (Sham) control rats. In tibialis anterior muscle, ADX noticeably decreased both GS activity and expression irrespective of age (50-60%; P < 0.05), whereas OV had no effect at either age. Progesterone and estradiol replacement had no effect on the recovery of muscle GS response in either ADX or OV rats, regardless of age. In contrast, heart GS activity was decreased by ADX in aged animals only. These results suggest that the reproductive endocrine status of female rats does not affect muscle GS activity either in muscle or in heart, in young or aged animals, and that the heart GS response to steroids may be differently regulated in aged rats.
Collapse
Affiliation(s)
- Lionel Verdier
- Unité de Nutrition et Métabolisme Protéique, Centre de Recherche en Nutrition Humaine de Clermont-Ferrand, and Institut National de la Recherche Agronomique, 63122 Ceyrat, France
| | | | | | | | | | | |
Collapse
|
27
|
Kostyak JC, Kimball SR, Jefferson LS, Farrell PA. Severe diabetes inhibits resistance exercise-induced increase in eukaryotic initiation factor 2B activity. J Appl Physiol (1985) 2001; 91:79-84. [PMID: 11408416 DOI: 10.1152/jappl.2001.91.1.79] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Rates of protein synthesis are reduced in severely diabetic rats. A potential mechanism through which insulin can stimulate protein synthesis is modulation of the activity of eukaryotic initiation factor 2B (eIF2B). The activity of this factor is elevated after exercise in nondiabetic rats but is markedly lower in skeletal muscle from nonexercised severely diabetic rats. We tested the hypothesis that a failure to increase eIF2B activity after exercise is one potential reason for a failure of severely diabetic rats to increase rates of protein synthesis after resistance exercise. Diabetic (partial pancreatectomy, plasma glucose >475 mg/dl) and nondiabetic male Sprague-Dawley rats (approximately 300 g) performed acute moderate-intensity resistance exercise or remained sedentary. Rates of protein synthesis were higher in nondiabetic rats and increased significantly with exercise, while no elevation was found in severely diabetic rats. The activity of eIF2B was higher (P < 0.05) in exercised nondiabetic than in sedentary nondiabetic rats (0.096 +/- 0.016 and 0.064 +/- 0.02 pmol GDP exchanged/min, respectively), but no difference was observed between sedentary and exercised diabetic rats (0.037 +/- 0.001 and 0.044 +/- 0.008 pmol GDP exchanged/min, respectively), and these activities were lower (P < 0.05) than in nondiabetic animals. These data suggest that severe hypoinsulinemia is associated with an inability to increase eIF2B activity in response to exercise.
Collapse
Affiliation(s)
- J C Kostyak
- Noll Physiological Research Center and Department of Kinesiology, Pennsylvania State University, University Park 16802, USA
| | | | | | | |
Collapse
|
28
|
Lesourd B, Raynaud-Simon A, Mathey MF. Comment favoriser la prise alimentaire des sujets âgés. NUTR CLIN METAB 2001. [DOI: 10.1016/s0985-0562(01)00075-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
29
|
Cynober L, Alix E, Arnaud-Battandier F, Bonnefoy M, Brocker P, Cals MJ, Cherbut C, Coplo C, Ferry M, Ghisolfi-Marque A, Kravtchenko T, Lesourd B, Mignot C, Patureau Mirand P. Apports nutritionnels conseillés chez la personne âgée. NUTR CLIN METAB 2000. [DOI: 10.1016/s0985-0562(00)80002-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
30
|
Morais JA, Ross R, Gougeon R, Pencharz PB, Jones PJ, Marliss EB. Distribution of protein turnover changes with age in humans as assessed by whole-body magnetic resonance image analysis to quantify tissue volumes. J Nutr 2000; 130:784-91. [PMID: 10736330 DOI: 10.1093/jn/130.4.784] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We tested the hypothesis that nonmuscle lean tissue mass and its rate of protein catabolism remain constant with aging despite changes in the proportional contribution of these tissues to whole-body protein metabolism. Whole-body protein kinetics, using the 60-h oral [(15) N]glycine method, and muscle and nonmuscle protein catabolism, based on protein kinetic data, urinary N(tau)-methylhistine excretion and lean tissue volumes defined by whole-body magnetic resonance imaging, from eight healthy elderly subjects (5 females and 3 males, mean age 71.5 y) were compared with those of seven young persons (3 females and 4 males, mean age 28 y). There were no significant age or gender effects on rates of protein kinetics per L total lean tissue. There was a lower (P < 0.004) rate of muscle protein catabolism in the elderly (1.8 +/- 0.2 vs. 2.6 +/- 0.1 g. L(-1). d(-1)) and a trend (P = 0.08) for lower muscle volume (19.7 +/- 1.5 vs. 25.0 +/- 2.4 L). This contrasted with intraabdominal lean tissue, where the rate of protein catabolism (13. 8 +/- 0.6 vs. 13.2 +/- 0.9 g. L(-1 ). d(-1)) and volume (7.5 +/- 0.3 vs 8.0 +/- 0.5 L) did not differ between age groups. Thus, the decrease in the contribution by muscle to whole-body protein metabolism with age is associated with an increase from 62 to 74% (P < 0.001) in the contribution by nonmuscle lean tissues. These findings have potential implications for the nutrition of both normal and sick elderly persons.
Collapse
Affiliation(s)
- J A Morais
- McGill Nutrition and Food Science Centre and. Division of Geriatric Medicine, Royal Victoria Hospital, Montreal, Canada
| | | | | | | | | | | |
Collapse
|
31
|
Mosoni L, Malmezat T, Valluy MC, Houlier ML, Attaix D, Mirand PP. Lower recovery of muscle protein lost during starvation in old rats despite a stimulation of protein synthesis. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:E608-16. [PMID: 10516119 DOI: 10.1152/ajpendo.1999.277.4.e608] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sarcopenia could result from the inability of an older individual to recover muscle lost during catabolic periods. To test this hypothesis, we compared the capacity of 5-day-refed 12- and 24-mo-old rats to recover muscle mass lost after 10 days without food. We measured gastrocnemius and liver protein synthesis with the flooding-dose method and also measured nitrogen balance, 3-methylhistidine excretion, and the gene expression of components of proteolytic pathways in muscle comparing fed, starved, and refed rats at each age. We show that 24-mo-old rats had an altered capacity to recover muscle proteins. Muscle protein synthesis, inhibited during starvation, returned to control values during refeeding in both age groups. The lower recovery in 24-mo-old rats was related to a lack of inhibition of muscle proteolysis during refeeding. The level of gene expression of components of the proteolytic pathways did not account for the variations in muscle proteolysis at both ages. In conclusion, this study highlights the role of muscle proteolysis in the lower recovery of muscle protein mass lost during catabolic periods.
Collapse
Affiliation(s)
- L Mosoni
- Laboratoire d'Etude du Métabolisme Azoté, Institut National de la Recherche Agronomique, Centre de Clermont-Ferrand-Theix, 63122 Saint Genès Champanelle, France.
| | | | | | | | | | | |
Collapse
|
32
|
Savary I, Debras E, Dardevet D, Sornet C, Capitan P, Prugnaud J, Mirand PP, Grizard J. Effect of glucocorticoid excess on skeletal muscle and heart protein synthesis in adult and old rats. Br J Nutr 1998; 79:297-304. [PMID: 9577308 DOI: 10.1079/bjn19980047] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This study was carried out to analyse glucocorticoid-induced muscle wasting and subsequent recovery in adult (6-8 months) and old (18-24 months) rats because the increased incidence of various disease states results in hypersecretion of glucocorticoids in ageing. Adult and old rats received dexamethasone in their drinking water for 5 or 6 d and were then allowed to recover for 3 or 7 d. As dexamethasone decreased food intake, all groups were pair-fed to dexamethasone-treated old rats (i.e. the group that had the lowest food intake). At the end of the treatment, adult and old rats showed significant increases in blood glucose and plasma insulin concentrations. This increase disappeared during the recovery period. Protein synthesis of different muscles was assessed in vivo by a flooding dose of [13C]valine injected subcutaneously 50 min before slaughter. Dexamethasone induced a significant decrease in protein synthesis in fast-twitch glycolytic and oxidative glycolytic muscles (gastrocnemius, tibialis anterior, extensor digitorum longus). The treatment affected mostly ribosomal efficiency. Adult dexamethasone-treated rats showed an increase in protein synthesis compared with their pair-fed controls during the recovery period whereas old rats did not. Dexamethasone also significantly decreased protein synthesis in the predominantly oxidative soleus muscle but only in old rats, and increased protein synthesis in the heart of adult but not of old rats. Thus, in skeletal muscle, the catabolic effect of dexamethasone is maintained or amplified during ageing whereas the anabolic effect in heart is depressed. These results are consistent with muscle atrophy occurring with ageing.
Collapse
Affiliation(s)
- I Savary
- Unité d'Etude du Métabolisme Azoté, Institut National de la Recherche Agronomique, Centre de Recherches de Clermont-Ferrand Theix, France.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Welle S, Bhatt K, Thornton C. Polyadenylated RNA, actin mRNA, and myosin heavy chain mRNA in young and old human skeletal muscle. THE AMERICAN JOURNAL OF PHYSIOLOGY 1996; 270:E224-9. [PMID: 8779942 DOI: 10.1152/ajpendo.1996.270.2.e224] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The myofibrillar protein synthesis rate in old human skeletal muscle is slower than that in young adult muscle. To examine whether this difference in protein synthesis rate is explained by reduced availability of the mRNAs that encode the most abundant myofibrillar proteins, we determined relative hybridization signals from probes for actin mRNA, myosin heavy chain mRNA, and total polyadenylated RNA in vastus lateralis muscle biopsies taken from young (22- to 31-yr-old) and old (61- to 74-yr-old) human subjects. The mean fractional rate of myofibrillar synthesis was 38% slower in the older muscles, as determined by incorporation of a stable isotope tracer. Total actin and myosin heavy chain mRNAs, and polyadenylated RNA, were determined using slot-blot assays. Isoform-specific determinations of alpha-actin mRNA, type I myosin heavy chain mRNA, and type IIa myosin heavy chain mRNA were done with ribonuclease protection assays. Hybridization signals were expressed relative to tissue DNA content. There was no difference between age groups in total polyadenylated RNA or in any of the specific mRNAs. We conclude that the slower myofibrillar synthesis rate in older muscle is not caused by reduced mRNA availability.
Collapse
Affiliation(s)
- S Welle
- Department of Medicine, University of Rochester, New York 14620, USA
| | | | | |
Collapse
|