1
|
Hedayati M, Reynolds MM, Krapf D, Kipper MJ. Nanostructured Surfaces That Mimic the Vascular Endothelial Glycocalyx Reduce Blood Protein Adsorption and Prevent Fibrin Network Formation. ACS APPLIED MATERIALS & INTERFACES 2018; 10:31892-31902. [PMID: 30156830 DOI: 10.1021/acsami.8b09435] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Blood-contacting materials are critical in many applications where long-term performance is desired. However, there are currently no engineered materials used in cardiovascular implants and devices that completely prevent clotting when in long-term contact with whole blood. The most common approach to developing next-generation blood-compatible materials is to design surface chemistries and structures that reduce or eliminate protein adsorption to prevent blood clotting. This work proposes a new paradigm for controlling protein-surface interactions by strategically mimicking key features of the glycocalyx lining the interior surfaces of blood vessels: negatively charged glycosaminoglycans organized into a polymer brush with nanoscale domains. The interactions of two important proteins from blood (albumin and fibrinogen) with these new glycocalyx mimics are revealed in detail using surface plasmon resonance and single-molecule microscopy. Surface plasmon resonance shows that these blood proteins interact reversibly with the glycocalyx mimics, but have no irreversible adsorption above the limit of detection. Single-molecule microscopy is used to compare albumin and fibrinogen interactions on surfaces with and without glycocalyx-mimetic nanostructures. Microscopy videos reveal a new mechanism whereby the glycocalyx-mimetic nanostructures eliminate the formation of fibrin networks on the surfaces. This approach shows for the first time that the nanoscale structure and organization of glycosaminoglycans in the glycocalyx are essential to (i) reduce protein adsorption, (ii) reversibly bind fibrin(ogen), and (iii) inhibit fibrin network formation on surfaces. The insights gained from this work suggest new design principles for blood-compatible surfaces. New surfaces developed using these design principles could reduce risk of catastrophic failures of blood-contacting medical devices.
Collapse
|
2
|
Simon-Walker R, Romero R, Staver JM, Zang Y, Reynolds MM, Popat KC, Kipper MJ. Glycocalyx-Inspired Nitric Oxide-Releasing Surfaces Reduce Platelet Adhesion and Activation on Titanium. ACS Biomater Sci Eng 2016; 3:68-77. [PMID: 33429688 DOI: 10.1021/acsbiomaterials.6b00572] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The endothelial glycocalyx lining the inside surfaces of blood vessels has multiple features that prevent inflammation, blood clot formation, and infection. This surface represents the highest standard in blood compatibility for long-term contact with blood under physiological flow rates. Engineering materials used in blood-contacting biomedical devices, including metals and polymers, have undesirable interactions with blood that lead to failure modes associated with inflammation, blood clotting, and infection. Platelet adhesion and activation are key events governing these undesirable interactions. In this work, we propose a new surface modification to titanium with three features inspired by the endothelial glcyocalyx: First, titanium surfaces are anodized to produce titania nanotubes with high surface area. Second, the nanostructured surfaces are coated with heparin-chitosan polyelectrolyte multilayers to provide glycosaminoglycan functionalization. Third, chitosan is modified with a nitric oxide-donor chemistry to provide an important antithrombotic small-molecule signal. We show that these surfaces are nontoxic with respect to platelets and leukocytes. The combination of glycocalyx-inspired features results in a dramatic reduction of platelet and leukocyte adhesion and platelet activation.
Collapse
Affiliation(s)
- Rachael Simon-Walker
- School of Biomedical Engineering, Colorado State University, 1376 Campus Delivery, Fort Collins, Colorado 80523-1376, United States
| | - Raimundo Romero
- School of Biomedical Engineering, Colorado State University, 1376 Campus Delivery, Fort Collins, Colorado 80523-1376, United States
| | - Joseph M Staver
- Department of Chemical and Biological Engineering, Colorado State University, 1370 Campus Delivery, Fort Collins, Colorado 80523-1370, United States
| | - Yanyi Zang
- School of Biomedical Engineering, Colorado State University, 1376 Campus Delivery, Fort Collins, Colorado 80523-1376, United States
| | - Melissa M Reynolds
- School of Biomedical Engineering, Colorado State University, 1376 Campus Delivery, Fort Collins, Colorado 80523-1376, United States.,Department of Chemical and Biological Engineering, Colorado State University, 1370 Campus Delivery, Fort Collins, Colorado 80523-1370, United States.,Department of Chemistry, Colorado State University, 1872 Campus Delivery, Fort Collins, Colorado 80523-1872, United States
| | - Ketul C Popat
- School of Biomedical Engineering, Colorado State University, 1376 Campus Delivery, Fort Collins, Colorado 80523-1376, United States.,Department of Mechanical Engineering, Colorado State University, 1374 Campus Delivery, Fort Collins, Colorado 80523-1374, United States
| | - Matt J Kipper
- School of Biomedical Engineering, Colorado State University, 1376 Campus Delivery, Fort Collins, Colorado 80523-1376, United States.,Department of Chemical and Biological Engineering, Colorado State University, 1370 Campus Delivery, Fort Collins, Colorado 80523-1370, United States
| |
Collapse
|
3
|
Prawel DA, Dean H, Forleo M, Lewis N, Gangwish J, Popat KC, DASI LP, James SP. Hemocompatibility and Hemodynamics of Novel Hyaluronan-Polyethylene Materials for Flexible Heart Valve Leaflets. Cardiovasc Eng Technol 2014; 5:70-81. [PMID: 24729797 PMCID: PMC3979580 DOI: 10.1007/s13239-013-0171-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Polymeric heart valves (PHVs) hold the promise to be more durable than bioprosthetic heart valves and less thrombogenic than mechanical heart valves. We introduce a new framework to manufacture hemocompatible polymeric leaflets for HV (PHV) applications using a novel material comprised of interpenetrating networks (IPNs) of hyaluronan (HA) and linear low density polyethylene (LLDPE). We establish and characterize the feasibility of the material as a substitute leaflet material through basic hemodynamic measurements in a trileaflet configuration, in addition to demonstrating superior platelet response and clotting characteristics. Plain LLDPE sheets were swollen in a solution of silylated-HA, the silylated-HA was then crosslinked to itself before it was reverted back to native HA via hydrolysis. Leaflets were characterized with respect to (1) bending stiffness, (2) hydrophilicity, (3) whole blood clotting, and (4) cell (platelet and leukocyte) adhesion under static conditions using fresh human blood. In vitro hemodynamic testing of prototype HA/LLDPE IPN PHVs was used to assess feasibility as functional HVs. Bending stiffness was not significantly different from natural fresh leaflets. HA/LLDPE IPNs were more hydrophilic than LLDPE controls. HA/LLDPE IPNs caused less whole blood clotting and reduced cell adhesion compared to the plain LLDPE control. Prototype PHVs made with HA/LLDPE IPNs demonstrated an acceptable regurgitation fraction of 4.77 ± 0.42%, and effective orifice area in the range 2.34 ± 0.5 cm2. These results demonstrate strong potential for IPNs between HA and polymers as future hemocompatible HV leaflets. Further studies are necessary to assess durability and calcification resistance.
Collapse
Affiliation(s)
- David A. Prawel
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Harold Dean
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Marcio Forleo
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Nicole Lewis
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Justin Gangwish
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO, USA
| | - Ketul C. Popat
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Lakshmi Prasad DASI
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Susan P. James
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
4
|
Boddohi S, Kipper MJ. Engineering nanoassemblies of polysaccharides. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2010; 22:2998-3016. [PMID: 20593437 DOI: 10.1002/adma.200903790] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Polysaccharides offer a wealth of biochemical and biomechanical functionality that can be used to develop new biomaterials. In mammalian tissues, polysaccharides often exhibit a hierarchy of structure, which includes assembly at the nanometer length scale. Furthermore, their biochemical function is determined by their nanoscale organization. These biological nanostructures provide the inspiration for developing techniques to tune the assembly of polysaccharides at the nanoscale. These new polysaccharide nanostructures are being used for the stabilization and delivery of drugs, proteins, and genes, the engineering of cells and tissues, and as new platforms on which to study biochemistry. In biological systems polysaccharide nanostructures are assembled via bottom-up processes. Many biologically derived polysaccharides behave as polyelectrolytes, and their polyelectrolyte nature can be used to tune their bottom-up assembly. New techniques designed to tune the structure and composition of polysaccharides at the nanoscale are enabling researchers to study in detail the emergent biological properties that arise from the nanoassembly of these important biological macromolecules.
Collapse
Affiliation(s)
- Soheil Boddohi
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO, USA
| | | |
Collapse
|
5
|
Arnander C, Olsson P, Larm O. Influence of blood flow and the effect of protamine on the thromboresistant properties of a covalently bonded heparin surface. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH 1988; 22:859-68. [PMID: 3220839 DOI: 10.1002/jbm.820221003] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Polyethylene tubings, 2-mm inner diameter and the length of 1 m, untreated or furnished with a covalently bonded heparin surface layer, were inserted as arteriovenous shunts bilaterally in dogs. By compressing the middle part, the initial blood flow was adjusted to 10 or 40 mL/min. The thrombogenicity of the tubings was assessed by the patency of the shunts and by assaying the generation of fibrinopeptide A (FPA) in arterial blood and in blood after its passage through the shunts. In untreated shunts clotting rapidly occurred preceded by high FPA generation in blood passing through the shunts. The blood flow in heparinized shunts remained unchanged throughout the test period. At the low flow rate a certain degree of FPA generation in the shunts occurred. At the high flow rate no changes in FPA levels occurred. The function of the heparin surface is thus flow rate dependent. Systematic heparinization and subsequent neutralization with protamine or administration of protamine alone did not interfere with the function of the heparin surface.
Collapse
Affiliation(s)
- C Arnander
- Department of Experimental Surgery, Karolinska Institute, Stockholm, Sweden
| | | | | |
Collapse
|
6
|
Wakefield TW, Hantler CB, Lindblad B, Whitehouse WM, Stanley JC. Protamine pretreatment attenuation of hemodynamic and hematologic effects of heparin-protamine interaction. J Vasc Surg 1986. [DOI: 10.1016/0741-5214(86)90155-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|