1
|
Nofer JR, Brodde MF, Kehrel BE. High-density lipoproteins, platelets and the pathogenesis of atherosclerosis. Clin Exp Pharmacol Physiol 2010; 37:726-35. [PMID: 20337657 DOI: 10.1111/j.1440-1681.2010.05377.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
1. Prospective and interventional studies demonstrate an inverse relationship between plasma high-density lipoprotein (HDL)-cholesterol and the incidence of coronary artery disease. Although the atheroprotective effects of HDL are usually attributed to the reverse cholesterol transport, in which HDL shuttles cholesterol from cells in the arterial wall to the liver, other mechanisms are also under investigation. 2. Platelets are involved in both the initiation and progression of atherosclerotic lesions. In addition, the formation of thrombi over ruptured atherosclerotic plaques results in the narrowing or complete occlusion of coronary arteries. Current experimental evidence suggests that HDL may exert antiplatelet effects and thereby counteract the development of atherothrombotic vascular disease. 3. In vitro studies show that HDL inhibits agonist-stimulated platelet aggregation, fibrinogen binding, granule secretion and liberation of thromboxane A(2). Inhibitory effects of HDL are mediated, in part, by scavenger receptor type B1 and/or the apolipoprotein E receptor apoER2/LRP8 and are linked to the induction of intracellular signalling cascades encompassing stimulation of protein kinase C, cytoplasmatic alkalization and generation of nitric oxide. 4. Populational studies demonstrate that there is an inverse association between plasma HDL levels and recurrent venous thromboembolism. In addition, HDL-cholesterol has been identified as an independent predictor of acute platelet thrombus formation. The administration of reconstituted HDL particles in humans attenuates ex vivo platelet activation. 5. The present review summarizes recent advances in understanding HDL-platelet interactions and discusses the potential use of HDL-like particles in the therapy of thrombosis.
Collapse
Affiliation(s)
- Jerzy-Roch Nofer
- Center for Laboratory Medicine, University Hospital Münster, Münster, Germany.
| | | | | |
Collapse
|
2
|
Malle E, Sattler W. Platelets and the Lipoproteins: Native, Modified and Platelet Modified Lipoproteins. Platelets 2009; 5:70-83. [DOI: 10.3109/09537109409005516] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
3
|
Koller E, Volf I, Gurvitz A, Koller F. Modified Low-Density Lipoproteins and High-Density Lipoproteins. PATHOPHYSIOLOGY OF HAEMOSTASIS AND THROMBOSIS 2006; 35:322-45. [PMID: 16877881 DOI: 10.1159/000093225] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
It has long been known that the oxidative state of the various plasma lipoproteins modulates platelet aggregability, thereby contributing to atherogenesis. Low-density lipoprotein (LDL), occurring in vivo both in the native and oxidised forms, interacts directly with platelets, by binding to specific receptors. While the identity of the receptors for native LDL and some subfractions of high-density lipoproteins (HDL) remains disputed, apoE-containing HDL(2) binds to LRP8. The nature of these interactions as well as the distinction between candidate receptor proteins was elucidated using covalently modified apolipoproteins, which pointed to the participation of apolipoproteins in high affinity binding. However, the platelet effects initiated by binding of native lipoproteins remain controversial. Some of this ambiguity can be traced to the fact that native LDL inevitably undergoes substantial oxidisation upon modification, including by radiolabelling. The platelet-activating effects provoked by oxidised LDL are irrefutable, but many details remain unknown. The role of CD36 in platelet binding by oxidised LDL is well established, although additional receptors may exist. Much less is known about the interaction of oxidised HDL with platelets, since platelet activation was observed in some, but not all studies. Various frequently applied in vitro oxidation methods produce modified lipoprotein species that may not be relevant in vivo. Based on the reported modifications obtained by in vitro oxidation of LDL, early investigations focused mainly on the formation and the eventual effects of oxidised lipids. More recently, alterations to lipoproteins performed using hypochloric acid and myeloperoxidase redirected the attention to the role of modified apoproteins in triggering platelet responses.
Collapse
Affiliation(s)
- Elisabeth Koller
- Department of Physiology, Center of Physiology and Pathophysiology, Medical University of Vienna, Austria.
| | | | | | | |
Collapse
|
4
|
Nofer JR, Kehrel B, Fobker M, Levkau B, Assmann G, von Eckardstein A. HDL and arteriosclerosis: beyond reverse cholesterol transport. Atherosclerosis 2002; 161:1-16. [PMID: 11882312 DOI: 10.1016/s0021-9150(01)00651-7] [Citation(s) in RCA: 432] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The inverse correlation between serum levels of high density lipoprotein (HDL) cholesterol and the risk of coronary heart disease, the protection of susceptible animals from atherosclerosis by transgenic manipulation of HDL metabolism, and several potentially anti-atherogenic in vitro-properties have made HDL metabolism an interesting target for pharmacological intervention in atheroslcerosis. We have previously reviewed the concept of reverse cholesterol transport, which describes both the metabolism and the classic anti-atherogenic function of HDL (Arterioscler. Thromb. Vasc. Biol. 20 2001 13). We here summarize the current understanding of additional biological, potentially anti-atherogenic properties of HDL. HDL inhibits the chemotaxis of monocytes, the adhesion of leukocytes to the endothelium, endothelial dysfunction and apoptosis, LDL oxidation, complement activation, platelet activation and factor X activation but also stimulates the proliferation of endothelial cells and smooth muscle cells, the synthesis of prostacyclin and natriuretic peptide C in endothelial cells, and the activation of proteins C and S. These anti-inflammatory, anti-oxidative, anti-aggregatory, anti-coagulant, and pro-fibrinolytic activities are exerted by different components of HDL, namley apolipoproteins, enzymes, and even specific phospholipids. This complexity further emphasizes that changes in the functionality of HDL rather than changes of plasma HDL-cholesterol levels determine the anti-atherogenicity of therapeutic alterations of HDL metabolism.
Collapse
Affiliation(s)
- Jerzy-Roch Nofer
- Institut für Klinische Chemie und Laboratoriumsmedizin, Westfälische Wilhelms-Universität, Albert Schweitzer Str. 33, 48129 Münster, Germany.
| | | | | | | | | | | |
Collapse
|
5
|
Pedreño J, Hurt-Camejo E, Wiklund O, Badimón L, Masana L. Low-density lipoprotein (LDL) binds to a G-protein coupled receptor in human platelets. Evidence that the proaggregatory effect induced by LDL is modulated by down-regulation of binding sites and desensitization of its mediated signaling. Atherosclerosis 2001; 155:99-112. [PMID: 11223431 DOI: 10.1016/s0021-9150(00)00545-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We present evidence of a link between low-density lipoprotein (LDL) receptor binding and activation of a platelet G-coupled protein. LDL stimulation induced cytosolic [Ca2+]i mobilization, increase in inositol 1,4,5-triphosphate (IP3) formation and a rapid cytosol-to-membrane translocation of protein kinase C (PKC) enzymatic activity. Pertussis toxin inhibited all the stimulatory effects, whereas cholera toxin had no effect. Using ligand-binding assays, we demonstrated that exposing platelet LDL receptors to high concentrations of LDL (1.5 g/l) caused a rapid down-regulation and desensitization, as shown by the reduction in the Bmax, intracellular [Ca2+]i mobilization and IP3 formation to 65, 73 and 63%, respectively. The inhibitory effects were reversible and dose and time dependent. Furthermore, VLDL (0.2 g/l) and IDL (0.07 g/l) induced similar desensitization effects. However, HDL3 (up to 1.5 g/l), chylomicrons (up to 0.5 g/l) and cyclohexandione-modified LDL (which does not bind to platelets) had no significant effects. Protein kinase C inhibitors (150 nmol/l staurosporine, 100 micromol/l H-7, and 10 nmol/l bisindolylmaleimide) inhibited desensitization to 71%, on average. Sequestration blocking agents (0.30 g/l, concanavalin A) had no significant effect if phosphorylation was operative. However, there was a complete blockade with the concurrent inhibition of both pathways. In contrast, cAMP-dependent protein kinase inhibitors (PKI, 1 micromol/l) or beta2-adrenergic receptor kinase inhibitors (100 nmol/l, heparin), had no effect. Overall results indicate that LDL binds to a pertussis sensitive G-protein coupled receptor and that high levels of lipoproteins down-regulate the number of receptors and desensitize its mediated response by a mechanism that involves PKC-phosphorylation and sequestration of binding sites. This new regulatory mechanism may have implications for the thrombogenicity in hyperlipidemia and for effects of lipid lowering therapy.
Collapse
Affiliation(s)
- J Pedreño
- Unitat de Recerca en Lipids i Arteriosclerosi, Facultat de Medicina, Universitat Rovira i Virgili, Sant Llorenç 21 Reus, 43201, Tarragona, Spain.
| | | | | | | | | |
Collapse
|
6
|
Cockerill GW, Reed S. High-density lipoprotein: multipotent effects on cells of the vasculature. INTERNATIONAL REVIEW OF CYTOLOGY 1999; 188:257-97. [PMID: 10208014 DOI: 10.1016/s0074-7696(08)61569-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The epidemiological evidence showing a strong inverse correlation between the level of plasma high-density lipoprotein (HDL) and the incidence of heart disease suggests that HDL has a protective effect against cardiovascular disease. The mechanism of this protective effect has been the raison d'etre for much research. The ability of HDL to mediate cholesterol efflux from peripheral tissues has been used to explain the cardioprotective effect of HDL. However, there is little direct evidence to suggest that in subjects with low plasma levels of HDL the rate of cholesterol efflux from peripheral tissues is significantly reduced. This observation suggested that HDL may be mediating its protective effect through other mechanisms. This review provides an account of the burgeoning evidence that HDL has many effects on cellular processes, in addition to the effects on cholesterol efflux, and will illustrate the multipotency of this lipoprotein.
Collapse
Affiliation(s)
- G W Cockerill
- Department of Cardiovascular Medicine, National Heart and Lung Institute, Imperial College School of Medicine, London, United Kingdom
| | | |
Collapse
|
7
|
Pedreño J, Vila M, Masana L. Mechanisms for regulating platelet high density lipoprotein type3 binding sites: evidence that binding sites are downregulated by a protein kinase C-dependent mechanism. Thromb Res 1999; 94:33-44. [PMID: 10213179 DOI: 10.1016/s0049-3848(98)00196-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The mechanisms for regulating platelet HDL3 binding sites were investigated. HDL3 binding was rapid (T(1/2) association=4 minutes) and completely reversible (T(1/2) dissociation=14.5 minutes) at 4 degrees C, 22 degrees C, and 37 degrees C, and kinetic analysis yielded forward and reverse constants of 7.3x10(-4) x s(-1) and 7.13x10(3) x s(-1) x M(-1), respectively. Nevertheless, neither inhibitors of binding sites recycling or of pinocytosis, such as ammonium chloride, chloroquine, monensin, colchicine, and sodium azide, modified the binding characteristics. Moreover, when platelets were loaded with cholesterol, binding sites were not regulated (up or down). However, when exposed to high concentrations of HDL3 (1.5 g/L), apoE-free HDL (1.5 g/L), HDL2 (0.5 g/L), apoE-rich HDL (0.5 g/L), and VLDL (0.3 g/L) there was rapid downregulation of the number of binding sites in isolated permeabilized platelets, as shown by the reduction of Bmax to 66%, 58%, 45%, 53%, and 51%, respectively. Downregulation was rapid, reversible, and dose and time dependent. In contrast, LDL (up to 2.0 g/L), IDL (up to 0.1 g/L), and chylomicrons (up to 0.5 g/L) had no effect. Protein kinase C inhibitors (150 nmol/L staurosporine, 100 micromol/L H-7, and 10 nmol/L bisindolylmaleimide) inhibited downregulation up to 62% (as average value). The role of the PKC activation in regulating the activity of HDL3 binding sites also was analyzed by determining the cytosol-to-membrane translocation of enzymatic activity. Downregulation mediated by HDL3 rapidly translocated PKC activity (21% +/- 11 of total PKC activity was membrane-associated in control platelets vs. 55+/-8% in downregulated platelets, mean+/-SEM, n=3). However, agents that block sequestration (0.30 g/L, concanavalin A), and other protein kinase inhibitors, such a cAMP-dependent protein kinase inhibitors (1 micromol/L, PKI), and beta2-adrenergic receptor kinase inhibitors (100 nmol/L, heparin) had no effect. The results show that neither endocytotic response nor cholesterol-dependent mechanisms participate in the modulation of platelet HDL3 binding sites. However, a new regulatory mechanism that involves PKC-dependent downregulation of the number of binding sites may be an important pathway to regulate the thrombogenicity of lipoproteins and their effects on platelet reactivity.
Collapse
Affiliation(s)
- J Pedreño
- Unitat de Reçerca en Lipids i Arteriosclerosi, Universitat Rovira i Virgili, Facultat de Medicina, Reus, Spain.
| | | | | |
Collapse
|
8
|
Nofer JR, Walter M, Kehrel B, Wierwille S, Tepel M, Seedorf U, Assmann G. HDL3-mediated inhibition of thrombin-induced platelet aggregation and fibrinogen binding occurs via decreased production of phosphoinositide-derived second messengers 1,2-diacylglycerol and inositol 1,4,5-tris-phosphate. Arterioscler Thromb Vasc Biol 1998; 18:861-9. [PMID: 9633924 DOI: 10.1161/01.atv.18.6.861] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We demonstrate that physiological concentrations of HDL3 inhibit the thrombin-induced platelet fibrinogen binding and aggregation in a time- and concentration-dependent fashion. The underlying mechanism includes HDL3-mediated inhibition of phosphatidylinositol 4,5-bis-phosphate turnover, 1,2-diacylglycerol and inositol 1,4,5-tris-phosphate formation, and intracellular calcium mobilization. The inhibitory effects of HDL3 on inositol 1,4,5-tris-phosphate formation and intracellular calcium mobilization were abolished after covalent modification of HDL3 with dimethylsuberimidate. Furthermore, they could be blocked by calphostin C and bis-indolylmaleimide, 2 highly selective and structurally unrelated protein kinase C inhibitors. However, the inhibitory effects of HDL3 were not blocked by H89, a protein kinase A inhibitor. In addition, HDL3 failed to induce cAMP formation but stimulated the phosphorylation of the protein kinase C 40- to 47-kD major protein substrate. We observed a close temporal relationship between the HDL3-mediated inhibition of thrombin-induced inositol 1,4,5-tris-phosphate formation, intracellular calcium mobilization, and fibrinogen binding and the phosphorylation of the protein kinase C 40- to 47-kD major protein substrate. Taken together, these findings indicate that the HDL3-mediated inhibition of thrombin-induced fibrinogen binding and aggregation occurs via inhibition of phosphatidylinositol 4,5-bis-phosphate turnover and formation of 1,2-diacylglycerol and inositol 1,4,5-tris-phosphate. Protein kinase C may be involved in this process.
Collapse
Affiliation(s)
- J R Nofer
- Institut für Klinische Chemie und Laboratoriumsmedizin, Zentrallaboratorium, Westfälische Wilhelms-Universität, Münster, Germany
| | | | | | | | | | | | | |
Collapse
|
9
|
Lebuffe G, Boullier A, Tailleux A, Delfly B, Dupuis B, Fruchart JC, Duverger N, Emmanuel F, Denefle P, Vallet B, Duriez P. Endothelial derived vasorelaxation is impaired in human APO A-I transgenic rabbits. Biochem Biophys Res Commun 1997; 241:205-11. [PMID: 9405258 DOI: 10.1006/bbrc.1997.7790] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Endothelium-derived relaxing factor (nitric oxide: NO) may provide an endogenous defence against atherosclerosis which impairs endothelium-dependent vascular relaxation. Atherosclerosis development is inhibited in cholesterol fed human apo A-I transgenic rabbits (Duverger, N., Circulation, 1996, 94, 713-717). We investigated if endothelium-dependent vascular relaxation is modified in human apo A-I transgenic rabbits by testing in vitro endothelium-dependent receptor-dependent vascular relaxation to acetylcholine and endothelium-dependent receptor-independent vascular relaxation to A23187 of abdominal aorta, precontracted with phenylephrine, in human apo A-I transgenic rabbits (n=4) versus non transgenic littermates (n=4). Endothelium-independent vascular relaxation was investigated with sodium nitroprusside. Vascular precontraction to phenylephrine was significantly increased in human apo A-I transgenic rabbits (p<0.05) while endothelium-independent vascular relaxation to nitroprusside was similar between human apo A-I transgenic rabbits and control rabbits. Endothelium-dependent receptor-dependent and receptor-independent vascular relaxations were reduced in human apo A-I transgenic rabbits (p<0.05). Maximum endothelium-dependent receptor-dependent vascular relaxation was negatively correlated with HDL-cholesterol and total apo A-I (rabbit+ human) plasma levels (r=0.87 and 0.86, p=0.01, respectively) but not with atherogenic plasma lipid (VLDL-cholesterol, LDL-cholesterol, VLDL+LDL cholesterol, triglycerides, apolipoprotein B) levels. These results suggest that the transgenesis of human apo A-I in rabbits impairs signal transduction of endothelial NO synthesis.
Collapse
Affiliation(s)
- G Lebuffe
- Faculty of Medicine, University of Lille II, Lille, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Garver WS, Deeg MA, Bowen RF, Culala MM, Bierman EL, Oram JF. Phosphoproteins regulated by the interaction of high-density lipoprotein with human skin fibroblasts. Arterioscler Thromb Vasc Biol 1997; 17:2698-706. [PMID: 9409245 DOI: 10.1161/01.atv.17.11.2698] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Interaction of HDL with cells activates protein kinase C (PKC), a process that may be important in stimulating efflux of excess cellular cholesterol. Here we report that HDL treatment of cholesterol-loaded fibroblasts increases 32P labeling of three acidic phosphoproteins. These phosphoproteins, called pp80, pp27, and pp18 based on apparent M(r) in kD, were also phosphorylated by acute treatment of cells with phorbol myristate acetate, suggesting that they are regulated in response to PKC activation. The HDL-stimulated phosphorylation of pp80 and pp18 was significant after only 30 seconds and was sustained for at least 30 and 120 minutes, respectively, while increased phosphorylation of pp27 was transient, reaching a maximum at 10 minutes. Both pp27 and pp18 were phosphorylated on serine/threonine residues, whereas pp80 was phosphorylated on serine/threonine and tyrosine residues. Immunoprecipitation studies suggested that pp80 is the myristoylated alanine-rich C kinase substrate protein, but the identities of pp27 and pp18 are unknown. HDL and trypsin-digested HDL stimulated phosphorylation of pp80 and pp27, while purified apoA-I, apoA-II, or apoE had no stimulatory effects, indicating that the active component in HDL was trypsin resistant and unlikely to be an apolipoprotein. Conversely, HDL, apoA-I, apoA-II, and apoE all stimulated pp18 phosphorylation, while trypsin-digested HDL had less effect, consistent with pp18's being responsive to HDL apolipoproteins. Treatment of cholesterol-depleted cells with apoA-I also stimulated phosphorylation of pp18, but only transiently. These results suggest that HDL interaction with cells activates diverse PKC-mediated pathways that target different phosphoproteins. Of these three phosphoproteins, only pp18 has a phosphorylation response consistent with its being involved in apolipoprotein-mediated lipid transport.
Collapse
Affiliation(s)
- W S Garver
- Department of Medicine, University of Washington, Seattle 98195-6426, USA
| | | | | | | | | | | |
Collapse
|
11
|
Nazih-Sanderson F, Lestavel S, Nion S, Rouy D, Denefle P, Fruchart JC, Clavey V, Delbart C. HDL3 binds to glycosylphosphatidylinositol-anchored proteins to activate signalling pathways. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1358:103-12. [PMID: 9296527 DOI: 10.1016/s0167-4889(97)00055-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Previous studies have indicated that in HepG2 cells HDL3-signalling involves glycosylphosphatidylinositol (GPI) anchored proteins. HDL3-binding to HepG2 cells was found to be enhanced by cellular preincubation with PI-PLC inhibitors and sensitive to a cellular preincubation with exogenous PI-PLC, suggesting that HDL3 binds directly on GPI-anchored proteins to initiate signaling. Moreover HDL3-binding was found to be partly inhibited by antibodies against the HDL-binding protein (AbHBP). HDL3, when binding to HepG2 cells, promoted the release in the culture medium of a 110 kDa protein that binds AbHBP, while a cellular preincubation with antibodies against the inositol-phosphoglycan (IPG) moiety of GPI-anchor (AbIPG), used to block lipolytic cleavage of the GPI-anchor, inhibits HDL3-induced release of the 110 kDa protein in the culture medium. In [3H]-PC prelabeled HepG2 cells, AbHBP were found to stimulate PC-hydrolysis and DAG generation within 5 min as did HDL3 stimulation. Cellular preincubation with AbIPG was found to inhibit only the HDL3-signal and not the AbHBP-signal, while a prior cellular pretreatment with PI-PLC from Bacillus cereus was found to inhibit the HDL3-and AbHBP-signal. Moreover cellular preincubation with AbHBP for 1 h at 37 degrees C was found to inhibit HDL3-signalling pathways. Our results suggest that in HepG2 cells a 110 kDa protein, which could be HBP, can be anchored to the membrane via GPI, and can function in HDL3-signalling pathways as binding sites.
Collapse
|
12
|
Nazih-Sanderson F, Pinchon G, Nion S, Fruchart JC, Delbart C. HDL3-signalling in HepG2 cells involves glycosyl-phosphatidylinositol-anchored proteins. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1346:45-60. [PMID: 9187302 DOI: 10.1016/s0005-2760(97)00017-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In [3H]phosphatidylcholine (PC) prelabelled HepG2 cells, HDL3 stimulates a biphasic increase in 1.2-diacylglycerol (DAG). The early phase is mediated in part by a phospholipase C which is inhibited by 10 microM D 609, RHC-80267 or U-73122 and less by 100 microM propranolol. A phospholipase D is more likely involved in the late phase, as the DAG peak lags behind phosphatidic acid rise and is blocked by 100 microM propranolol. Cellular preincubation with 200 microg/ml antibodies against the inositolphosphoglycan (IPG) moiety of the GPI-anchor (Ab(IPG)), or depletion in GPI-anchored proteins by cellular pretreatment with 0.5 U/ml PI-PLC, 1 mM insulin and 2 HU/ml streptolysin-O, or depletion in membrane cholesterol content by filipin (5 microg/ml), digitonin (5 microg/ml) and cholesterol oxidase (0.5 U/ml) decreases the HDL3-signal, suggesting the involvement of a lipolytic cleavage of GPI-anchored proteins. Inhibition of proteases by 1 mM leupeptin/PMSF improves the response time to HDL3, with a DAG peak at 2-3 min. In the presence of protease-inhibitors, HDL3 releases in the culture medium several proteins with a residual IPG that binds Ab(IPG) after SDS-PAGE analysis and immunoblotting. HDL3-signalling pathways comprise tyrosine kinases, as preincubation with 100 microg/ml genistein or tyrphostin inhibits the HDL3-signal. HDL3 activates PC hydrolysis through a multistep pathway involving the cleavage of GPI-anchored proteins.
Collapse
|
13
|
Drobnik W, Möllers C, Resink T, Schmitz G. Activation of phosphatidylinositol-specific phospholipase C in response to HDL3 and LDL is markedly reduced in cultured fibroblasts from Tangier patients. Arterioscler Thromb Vasc Biol 1995; 15:1369-77. [PMID: 7670951 DOI: 10.1161/01.atv.15.9.1369] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We compared HDL3- and LDL-induced signal transduction in normal and Tangier fibroblasts to elucidate whether impaired signal transduction responses to lipoproteins might contribute to disturbed cellular lipid and lipoprotein metabolism in Tangier disease, a rare autosomal disorder of cellular lipid and lipoprotein metabolism. In several cell types HDL and LDL activate a currently unknown isoform of phosphatidylinositol-specific phospholipase C (PI-PLC) that results in the generation of 1,2-diacylglycerol and inositol 1,4,5-trisphosphate. Compared with normal fibroblasts, Tangier fibroblasts stimulated with HDL3 or LDL resulted in a significantly reduced accumulation of inositol phosphates and 1,2-diacylglycerol formation. Furthermore, in Tangier fibroblasts both lipoproteins failed to mobilize calcium from internal pools, and the cytosol-to-membrane redistribution of protein kinase C (in both the alpha and epsilon isoforms) was markedly reduced. Thus, the data indicate an impaired PI-PLC activation in response to lipoproteins in Tangier fibroblasts.
Collapse
Affiliation(s)
- W Drobnik
- Institute for Clinical Chemistry and Laboratory Medicine, University of Regensburg, Germany
| | | | | | | |
Collapse
|
14
|
Nazih H, Nazih-Sanderson F, Magret V, Caron B, Goudemand J, Fruchart JC, Delbart C. Protein kinase C-dependent desensitization of HDL3-activated phospholipase C in human platelets. ARTERIOSCLEROSIS AND THROMBOSIS : A JOURNAL OF VASCULAR BIOLOGY 1994; 14:1321-6. [PMID: 8049194 DOI: 10.1161/01.atv.14.8.1321] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In isolated human platelets, exposure of subfraction 3 high-density lipoprotein (HDL3) binding sites to high concentrations of HDL3 (1 mg/mL) causes rapid desensitization of HDL3 (50 micrograms/mL)-stimulated breakdown of phosphatidylcholine, as shown in approximately a 70% depression of the maximal 1,2-diacylglycerol release activity by phospholipase C. This desensitization is HDL3 dose dependent (IC50, 150 +/- 20 micrograms/mL, n = 6) and time dependent (t1/2, < 30 seconds). It requires the binding of HDL3, as pretreatment of HDL3 by tetranitromethane does not cause the desensitization of HDL3-induced phospholipase C activity. Permeabilization of human platelets with 10 micrograms/mL digitonin, used to permit access of charged inhibitors to the cytosol, does not interfere with the pattern of HDL3 (1 mg/mL)-induced desensitization of HDL3 (50 micrograms/mL)-stimulated phospholipase C. Inhibitors of protein kinase C (100 mumol/L H-7 and 10 mumol/L staurosporine) markedly inhibit desensitization of HDL3-induced phospholipase C activity, whereas cAMP-dependent protein kinase inhibitor (1 mumol/L), heparin (100 nmol/L), or concanavalin A (0.25 mg/mL) were ineffective. HDL3-induced desensitization is accompanied at least by the phosphorylation of the 94- and 110-kD proteins. Inhibition of HDL3-induced desensitization by 100 mumol/L H-7 or 10 mumol/L staurosporine is characterized by a marked reduction of the phosphorylation state of these proteins in permeabilized platelets. Whereas protein kinase C inhibitors fully inhibited the phosphorylation of the 94- and 110-kD proteins, inhibitors of protein kinase A were less effective. These data establish that phosphorylation by protein kinase C represent a step in the desensitization of HDL3 binding sites in human platelets.
Collapse
Affiliation(s)
- H Nazih
- Serlia, Institut Pasteur, Lille, France
| | | | | | | | | | | | | |
Collapse
|
15
|
Murugesan G, Sa G, Fox PL. High-density lipoprotein stimulates endothelial cell movement by a mechanism distinct from basic fibroblast growth factor. Circ Res 1994; 74:1149-56. [PMID: 8187281 DOI: 10.1161/01.res.74.6.1149] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Endothelial cell (EC) migration is a regulatory event in the formation and repair of blood vessels. Although serum contains substantial promigratory activity, the responsible components and especially the role of lipoproteins have not been determined. We examined the effect of plasma high-density lipoprotein (HDL) on the movement of ECs in vitro. Confluent cultures of bovine aortic ECs in serum-free medium were "wounded," and migration was measured after 24 hours. HDL stimulated migration in a concentration-dependent manner with a half-maximal response at 25 to 40 micrograms cholesterol per milliliter and a maximal twofold stimulation at approximately 150 micrograms cholesterol per milliliter. HDL-stimulated migration was not due to cell proliferation, since migration was increased in the presence of hydroxyurea at a concentration that blocked proliferation. At optimal concentrations, HDL was at least as stimulatory as basic fibroblast growth factor (FGF). However, the activity of HDL was not due to contamination by basic FGF, since antibodies to basic FGF did not block HDL-stimulated movement and since the maximum promigratory activities of basic FGF and HDL were additive. These results indicate that HDL and basic FGF may use distinct signaling pathways to initiate EC movement. This possibility was confirmed by results showing that pertussis toxin suppressed basic FGF-stimulated but not HDL-stimulated EC motility and that inhibitors of phospholipase A2, aristolochic acid and ONO-RS-082, also blocked the promigratory activity of basic FGF but had no effect on the activity of HDL.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- G Murugesan
- Department of Cell Biology, Cleveland Clinic Research Institute, OH 44195
| | | | | |
Collapse
|
16
|
Tensen CP, Van Kesteren ER, Planta RJ, Cox KJ, Burke JF, van Heerikhuizen H, Vreugdenhil E. A G protein-coupled receptor with low density lipoprotein-binding motifs suggests a role for lipoproteins in G-linked signal transduction. Proc Natl Acad Sci U S A 1994; 91:4816-20. [PMID: 8197140 PMCID: PMC43879 DOI: 10.1073/pnas.91.11.4816] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We have isolated and analyzed a cDNA from the central nervous system of the mollusc Lymnaea stagnalis encoding a putative receptor, which might be a natural hybrid between two different classes of receptor proteins. Preceded by a signal peptide, two types of repeated sequences are present in the N-terminal part of the protein. The first repeat displays a high sequence similarity to the extracellular binding domains of the low density lipoprotein receptor, which binds and internalizes cholesterol-containing apolipoproteins. The second repeat and the C-terminal part of the Lymnaea receptor are very similar to regions of a specific class of guanine nucleotide-binding protein-coupled receptors, the mammalian glycoprotein hormone receptors. The mRNA encoding the receptor is predominantly expressed in a small number of neurons within the central nervous system and to a lesser extent in the heart.
Collapse
Affiliation(s)
- C P Tensen
- Department of Zoology, Graduate School of Neurosciences Amsterdam, Vrije Universiteit, Faculty of Biology, The Netherlands
| | | | | | | | | | | | | |
Collapse
|