1
|
Bertolone L, Shin HKH, Baek JH, Gao Y, Spitalnik SL, Buehler PW, D'Alessandro A. ZOOMICS: Comparative Metabolomics of Red Blood Cells From Guinea Pigs, Humans, and Non-human Primates During Refrigerated Storage for Up to 42 Days. Front Physiol 2022; 13:845347. [PMID: 35388289 PMCID: PMC8977988 DOI: 10.3389/fphys.2022.845347] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/10/2022] [Indexed: 01/07/2023] Open
Abstract
Unlike other rodents, guinea pigs (Cavia porcellus) have evolutionarily lost their capacity to synthesize vitamin C (ascorbate) de novo and, like several non-human primates and humans, rely on dietary intake and glutathione-dependent recycling to cope with oxidant stress. This is particularly relevant in red blood cell physiology, and especially when modeling blood storage, which exacerbates erythrocyte oxidant stress. Herein we provide a comprehensive metabolomics analysis of fresh and stored guinea pig red blood cell concentrates (n = 20), with weekly sampling from storage day 0 through 42. Results were compared to previously published ZOOMICS studies on red blood cells from three additional species with genetic loss of L-gulonolactone oxidase function, including humans (n = 21), olive baboons (n = 20), and rhesus macaques (n = 20). While metabolic trends were comparable across all species, guinea pig red blood cells demonstrated accelerated alterations of the metabolic markers of the storage lesion that are consistent with oxidative stress. Compared to the other species, guinea pig red blood cells showed aberrant glycolysis, pentose phosphate pathway end product metabolites, purine breakdown products, methylation, glutaminolysis, and markers of membrane lipid remodeling. Consistently, guinea pig red blood cells demonstrated higher end storage hemolysis, and scanning electron microscopy confirmed a higher degree of morphological alterations of their red blood cells, as compared to the other species. Despite a genetic inability to produce ascorbate that is common to the species evaluated, guinea pig red blood cells demonstrate accelerated oxidant stress under standard storage conditions. These data may offer relevant insights into the basal and cold storage metabolism of red blood cells from species that cannot synthesize endogenous ascorbate.
Collapse
Affiliation(s)
- Lorenzo Bertolone
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, United States
| | - Hye Kyung H Shin
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Jin Hyen Baek
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Yamei Gao
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Steven L Spitalnik
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
| | - Paul W Buehler
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, United States.,Department of Medicine, Division of Hematology, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
2
|
Bonnefoy A, Vermylen J, Hoylaerts MF. Inhibition of von Willebrand factor-GPIb/IX/V interactions as a strategy to prevent arterial thrombosis. Expert Rev Cardiovasc Ther 2014; 1:257-69. [PMID: 15030285 DOI: 10.1586/14779072.1.2.257] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Although drugs exist for the primary and secondary prevention of thrombosis, more potent antiplatelet drugs with sufficiently wide therapeutic windows to avoid bleeding complications are needed. Both academic and pharmaceutical laboratories are working to develop such drugs. This chapter reviews the potential of inhibiting interactions between von Willebrand factor (vWF) and the second most abundant receptor on the platelet, the glycoprotein (GP) Ib/IX/V complex, interactions that are essential for the activation of circulating platelets, contacting a vessel wall injury. Although still at the level of preclinical testing, this area is expected to progress quickly during the next few years, also in view of the three-dimensional structural information that has recently become available and that allows a molecular understanding of vWF binding to the GPIbalpha chain of the GPIb complex.
Collapse
Affiliation(s)
- Arnaud Bonnefoy
- Center for Molecular and Vascular Biology, University of Leuven, Belgium
| | | | | |
Collapse
|
3
|
Napoli C, De Nigris F, Pignalosa O, Lerman A, Sica G, Fiorito C, Sica V, Chade A, Lerman LO. In vivo veritas: Thrombosis mechanisms in animal models. Scandinavian Journal of Clinical and Laboratory Investigation 2009; 66:407-27. [PMID: 16901851 DOI: 10.1080/00365510600763319] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Experimental models have enhanced our understanding of atherothrombosis pathophysiology and have played a major role in the search for adequate therapeutic interventions. Various animal models have been developed to simulate thrombosis and to study in vivo parameters related to hemodynamics and rheology that lead to thrombogenesis. Although no model completely mimics the human condition, much can be learned from existing models about specific biologic processes in disease causation and therapeutic intervention. In general, large animals such as pigs and monkeys have been better suited to study atherosclerosis and arterial and venous thrombosis than smaller species such as rats, rabbits, and dogs. On the other hand, mouse models of arterial and venous thrombosis have attracted increasing interest over the past two decades, owing to direct availability of a growing number of genetically modified mice, improved technical feasibility, standardization of new models of local thrombosis, and low maintenance costs. To simulate rupture of an atherosclerotic plaque, models of arterial thrombosis often involve vascular injury, which can be achieved by several means. There is no animal model that is sufficiently tall, that can mimic the ability of humans to walk upright, and that possesses the calf muscle pump that plays an important role in human venous hemodynamics. A number of spontaneous or genetically engineered animals with overexpression or deletion of various elements in the coagulation, platelet, and fibrinolysis pathways are now available. These animal models can replicate important aspects of thrombosis in humans, and provide a valuable resource in the development of novel concepts of disease mechanisms in human patients.
Collapse
Affiliation(s)
- C Napoli
- Department of General Pathology, Division of Clinical Pathology and Excellence Research Center on Cardiovascular Diseases, II University of Naples, Naples, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Abstract
Platelets play a central role in hemostasis, but also in atherothrombosis, as they rapidly adhere to tissue and to one another as a response to any vascular injury. This process involves a large number of surface receptors, signaling pathways, and enzymatic cascades as well as their complex interplay. Although in vitro experiments proved successful in both identifying new receptors and pathways and developing potent and selective antithrombotic drugs, in vitro research cannot mimic the myriad hemodynamic and spatiotemporal cellular and molecular interactions that occur during the generation and propagation of thrombi in vivo. Animal models, and, with the availability of genetically modified mouse strains and of modern intravital imaging techniques, mouse models in particular, have opened new ways to identify both individual roles and the interplay of platelet proteins in complex in vivo settings. In vivo models revealed the important role of, eg, Gas6 or blood coagulation factor XII in thrombus formation, and results obtained in in vivo models raised the interesting possibility that (physiologic) hemostasis and (pathologic) thrombosis might represent 2 mechanistically different processes. This review summarizes in vivo findings that contributed significantly to our understanding of hemostatic and thrombotic processes and which may help to guide future research.
Collapse
Affiliation(s)
- Ulrich J H Sachs
- Rudolf Virchow Center, Deutsche Forschungsgemeinschaft Research Center for Experimental Biomedicine, University of Würzburg, Germany
| | | |
Collapse
|