1
|
Kanie S, Wu C, Kihira K, Yasuno R, Mitani Y, Ohmiya Y. Bioluminescence of ( R)-Cypridina Luciferin with Cypridina Luciferase. Int J Mol Sci 2024; 25:2699. [PMID: 38473946 DOI: 10.3390/ijms25052699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/21/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
Cypridina luciferin (CypL) is a marine natural product that functions as the luminous substrate for the enzyme Cypridina luciferase (CypLase). CypL has two enantiomers, (R)- and (S)-CypL, due to its one chiral center at the sec-butyl moiety. Previous studies reported that (S)-CypL or racemic CypL with CypLase produced light, but the luminescence of (R)-CypL with CypLase has not been investigated. Here, we examined the luminescence of (R)-CypL, which had undergone chiral separation from the enantiomeric mixture, with a recombinant CypLase. Our luminescence measurements demonstrated that (R)-CypL with CypLase produced light, indicating that (R)-CypL must be considered as the luminous substrate for CypLase, as in the case of (S)-CypL, rather than a competitive inhibitor for CypLase. Additionally, we found that the maximum luminescence intensity from the reaction of (R)-CypL with CypLase was approximately 10 fold lower than that of (S)-CypL with CypLase, but our kinetic analysis of CypLase showed that the Km value of CypLase for (R)-CypL was approximately 3 fold lower than that for (S)-CypL. Furthermore, the chiral high-performance liquid chromatography (HPLC) analysis of the reaction mixture of racemic CypL with CypLase showed that (R)-CypL was consumed more slowly than (S)-CypL. These results indicate that the turnover rate of CypLase for (R)-CypL was lower than that for (S)-CypL, which caused the less efficient luminescence of (R)-CypL with CypLase.
Collapse
Affiliation(s)
- Shusei Kanie
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Hokkaido Center, 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo 062-8517, Japan
| | - Chun Wu
- Biomedical Research Institute, AIST, Kansai Center, 1-8-31 Midorigaoka, Ikeda 563-8577, Japan
| | - Kiyohito Kihira
- Japan Aerospace Exploration Agency (JAXA), Tsukuba Space Center, 2-1-1 Sengen, Tsukuba 305-8505, Japan
| | - Rie Yasuno
- Cellular and Molecular Biotechnology Research Institute, AIST, Tsukuba Center, 1-1-1 Higashi, Tsukuba 305-8566, Japan
| | - Yasuo Mitani
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Hokkaido Center, 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo 062-8517, Japan
| | - Yoshihiro Ohmiya
- Biomedical Research Institute, AIST, Kansai Center, 1-8-31 Midorigaoka, Ikeda 563-8577, Japan
- Department of Biomedical Engineering, Osaka Institute of Technology (OIT), 5-16-1 Ohmiya, Asahi-ku, Osaka 535-8585, Japan
| |
Collapse
|
2
|
Gudem M, Kowalewski M. Cavity-Modified Chemiluminescent Reaction of Dioxetane. J Phys Chem A 2023; 127:9483-9494. [PMID: 37845803 PMCID: PMC10658626 DOI: 10.1021/acs.jpca.3c05664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/21/2023] [Indexed: 10/18/2023]
Abstract
Chemiluminescence is a thermally activated chemical process that emits a photon of light by forming a fraction of products in the electronic excited state. A well-known example of this spectacular phenomenon is the emission of light in the firefly beetle, where the formation of a four-membered cyclic peroxide compound and subsequent dissociation produce a light-emitting product. The smallest cyclic peroxide, dioxetane, also exhibits chemiluminescence but with a low quantum yield as compared to that of firefly dioxetane. Employing the strong light-matter coupling has recently been found to be an alternative strategy to modify the chemical reactivity. In the presence of an optical cavity, the molecular degrees of freedom greatly mix with the cavity mode to form hybrid cavity-matter states called polaritons. These newly generated hybrid light-matter states manipulate the potential energy surfaces and significantly change the reaction dynamics. Here, we theoretically investigate the effects of a strong light-matter interaction on the chemiluminescent reaction of dioxetane using the extended Jaynes-Cummings model. The cavity couplings corresponding to the electronic and vibrational degrees of freedom have been included in the interaction Hamiltonian. We explore how the cavity alters the ground- and excited-state path energy barriers and reaction rates. Our results demonstrate that the formation of excited-state products in the dioxetane decomposition process can be either accelerated or suppressed, depending on the molecular orientation with respect to the cavity polarization.
Collapse
Affiliation(s)
- Mahesh Gudem
- Department of Physics, Stockholm University, Albanova University Centre, SE-106
91 Stockholm, Sweden
| | - Markus Kowalewski
- Department of Physics, Stockholm University, Albanova University Centre, SE-106
91 Stockholm, Sweden
| |
Collapse
|
3
|
Tzani MA, Gioftsidou DK, Kallitsakis MG, Pliatsios NV, Kalogiouri NP, Angaridis PA, Lykakis IN, Terzidis MA. Direct and Indirect Chemiluminescence: Reactions, Mechanisms and Challenges. Molecules 2021; 26:7664. [PMID: 34946744 PMCID: PMC8705051 DOI: 10.3390/molecules26247664] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 11/29/2022] Open
Abstract
Emission of light by matter can occur through a variety of mechanisms. When it results from an electronically excited state of a species produced by a chemical reaction, it is called chemiluminescence (CL). The phenomenon can take place both in natural and artificial chemical systems and it has been utilized in a variety of applications. In this review, we aim to revisit some of the latest CL applications based on direct and indirect production modes. The characteristics of the chemical reactions and the underpinning CL mechanisms are thoroughly discussed in view of studies from the very recent bibliography. Different methodologies aiming at higher CL efficiencies are summarized and presented in detail, including CL type and scaffolds used in each study. The CL role in the development of efficient therapeutic platforms is also discussed in relation to the Reactive Oxygen Species (ROS) and singlet oxygen (1O2) produced, as final products. Moreover, recent research results from our team are included regarding the behavior of commonly used photosensitizers upon chemical activation under CL conditions. The CL prospects in imaging, biomimetic organic and radical chemistry, and therapeutics are critically presented in respect to the persisting challenges and limitations of the existing strategies to date.
Collapse
Affiliation(s)
- Marina A. Tzani
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (M.A.Tz.); (D.K.G.); (M.G.K.); (N.V.P.); (N.P.K.); (P.A.A.)
| | - Dimitra K. Gioftsidou
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (M.A.Tz.); (D.K.G.); (M.G.K.); (N.V.P.); (N.P.K.); (P.A.A.)
| | - Michael G. Kallitsakis
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (M.A.Tz.); (D.K.G.); (M.G.K.); (N.V.P.); (N.P.K.); (P.A.A.)
| | - Nikolaos V. Pliatsios
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (M.A.Tz.); (D.K.G.); (M.G.K.); (N.V.P.); (N.P.K.); (P.A.A.)
| | - Natasa P. Kalogiouri
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (M.A.Tz.); (D.K.G.); (M.G.K.); (N.V.P.); (N.P.K.); (P.A.A.)
| | - Panagiotis A. Angaridis
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (M.A.Tz.); (D.K.G.); (M.G.K.); (N.V.P.); (N.P.K.); (P.A.A.)
| | - Ioannis N. Lykakis
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (M.A.Tz.); (D.K.G.); (M.G.K.); (N.V.P.); (N.P.K.); (P.A.A.)
| | - Michael A. Terzidis
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Sindos Campus, 57400 Thessaloniki, Greece
| |
Collapse
|
4
|
Inouye S. Multiple Cypridina Luciferase Genes in the Genome of Individual Ostracods, Vargula hilgendorfii (Cypridina hilgendorfii). Photochem Photobiol 2021; 98:1293-1302. [PMID: 34181758 DOI: 10.1111/php.13479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/24/2021] [Indexed: 11/28/2022]
Abstract
The genomic structure of the Cypridina luciferase gene in Vargula hilgendorfii (formerly Cypridina hilgendorfii) was determined with three λ phage clones (λ34, λ45, and λ61). The luciferase genes in clones λ34 and λ61 consisted of 13 exons and 12 introns, and clone λ45 only contained exons 1-5. The splicing sites of the luciferase genes in λ34 and λ61 were conserved completely with the consensus sequence. The translated luciferases had 555 amino acid residues, which were over 98.6% identical to those of cDNA clones as previously reported. In contrast, each intron in clones λ34, λ45, and λ61 varied significantly in length. To explain the variation of intron length among the three V. hilgendorfii luciferase genes, genomic DNA was isolated from a single V. hilgendorfii specimen and the regions from exon 1-3 of the luciferase gene were amplified by polymerase chain reaction (PCR). PCR products with various lengths were detected and were confirmed as the luciferase gene fragments by Southern blot analysis. Furthermore, DNA sequence analysis indicated that at least seven luciferase gene groups might be present in the genome of a single specimen. Thus, multiple Cypridina luciferase genes exist in the genome of a single V. hilgendorfii specimen.
Collapse
Affiliation(s)
- Satoshi Inouye
- Yokohama Research Center, JNC Co, 5-1 Okawa, Kanazawa-ku, Yokohama, 236-8605, Japan
| |
Collapse
|
5
|
Kanie S, Komatsu M, Mitani Y. Luminescence of Cypridina Luciferin in the Presence of Human Plasma Alpha 1-Acid Glycoprotein. Int J Mol Sci 2020; 21:ijms21207516. [PMID: 33053850 PMCID: PMC7588914 DOI: 10.3390/ijms21207516] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/25/2020] [Accepted: 10/10/2020] [Indexed: 11/16/2022] Open
Abstract
The enzyme Cypridina luciferase (CLase) enables Cypridina luciferin to emit light efficiently through an oxidation reaction. The catalytic mechanism on the substrate of CLase has been studied, but the details remain to be clarified. Here, we examined the luminescence of Cypridina luciferin in the presence of several proteins with drug-binding ability. Luminescence measurements showed that the mixture of human plasma alpha 1-acid glycoprotein (hAGP) and Cypridina luciferin produced light. The total value of the luminescence intensity over 60 s was over 12.6-fold higher than those in the presence of ovalbumin, human serum albumin, or bovine serum albumin. In the presence of heat-treated hAGP, the luminescence intensity of Cypridina luciferin was lower than in the presence of intact hAGP. Chlorpromazine, which binds to hAGP, showed an inhibitory effect on the luminescence of Cypridina luciferin, both in the presence of hAGP and a recombinant CLase. Furthermore, BlastP analysis showed that hAGP had partial amino acid sequence similarity to known CLases in the region including amino acid residues involved in the drug-binding ability of hAGP. These findings indicate enzymological similarity between hAGP and CLase and provide insights into both the enzymological understanding of CLase and development of a luminescence detection method for hAGP.
Collapse
Affiliation(s)
- Shusei Kanie
- Correspondence: (S.K.); (Y.M.); Tel.: +81-11-857-8410 (S.K.)
| | | | - Yasuo Mitani
- Correspondence: (S.K.); (Y.M.); Tel.: +81-11-857-8410 (S.K.)
| |
Collapse
|
6
|
Schramm S, Al‐Handawi MB, Karothu DP, Kurlevskaya A, Commins P, Mitani Y, Wu C, Ohmiya Y, Naumov P. Mechanically Assisted Bioluminescence with Natural Luciferase. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Stefan Schramm
- New York University Abu Dhabi POB 129188 Abu Dhabi United Arab Emirates
| | | | | | | | - Patrick Commins
- New York University Abu Dhabi POB 129188 Abu Dhabi United Arab Emirates
| | - Yasuo Mitani
- Bioproduction Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST) 2-17-2-1 Tsukisamu-higashi, Toyohira-ku Sapporo 062-8517 Japan
| | - Chun Wu
- Biomedical Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST) 1-8-31 Midorigaoka Ikeda 563-8577 Japan
| | - Yoshihiro Ohmiya
- DAILAB, Biomedical Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST) 1-8-31 Midorigaoka Ikeda 563-8577 Japan
| | - Panče Naumov
- New York University Abu Dhabi POB 129188 Abu Dhabi United Arab Emirates
- Radcliffe Institute for Advanced StudyHarvard University 10 Garden St Cambridge MA 02138 USA
| |
Collapse
|
7
|
Schramm S, Al‐Handawi MB, Karothu DP, Kurlevskaya A, Commins P, Mitani Y, Wu C, Ohmiya Y, Naumov P. Mechanically Assisted Bioluminescence with Natural Luciferase. Angew Chem Int Ed Engl 2020; 59:16485-16489. [DOI: 10.1002/anie.202007440] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Indexed: 01/02/2023]
Affiliation(s)
- Stefan Schramm
- New York University Abu Dhabi POB 129188 Abu Dhabi United Arab Emirates
| | | | | | | | - Patrick Commins
- New York University Abu Dhabi POB 129188 Abu Dhabi United Arab Emirates
| | - Yasuo Mitani
- Bioproduction Research Institute National Institute of Advanced Industrial Science and Technology (AIST) 2-17-2-1 Tsukisamu-higashi, Toyohira-ku Sapporo 062-8517 Japan
| | - Chun Wu
- Biomedical Research Institute National Institute of Advanced Industrial Science and Technology (AIST) 1-8-31 Midorigaoka Ikeda 563-8577 Japan
| | - Yoshihiro Ohmiya
- DAILAB, Biomedical Research Institute National Institute of Advanced Industrial Science and Technology (AIST) 1-8-31 Midorigaoka Ikeda 563-8577 Japan
| | - Panče Naumov
- New York University Abu Dhabi POB 129188 Abu Dhabi United Arab Emirates
- Radcliffe Institute for Advanced Study Harvard University 10 Garden St Cambridge MA 02138 USA
| |
Collapse
|
8
|
Nakamura M, Matsuda K, Nakamura M, Yamashita K, Suzuki T, Inouye S. Enzymatic Conversion of Cypridina Luciferyl Sulfate to Cypridina Luciferin with Coenzyme A as a Sulfate Acceptor in Cypridina (Vargula) hilgendorfii. Photochem Photobiol 2019; 95:1376-1386. [PMID: 31230356 DOI: 10.1111/php.13137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/07/2019] [Accepted: 06/13/2019] [Indexed: 01/09/2023]
Abstract
In the luminous ostracod Cypridina (presently Vargula) hilgendorfii, Cypridina luciferyl sulfate (3-enol sulfate of Cypridina luciferin) is converted to Cypridina luciferin by a sulfotransferase with 3'-phosphoadenosine-5'-phosphate (PAP) as a sulfate acceptor. The resultant Cypridina luciferin is used for the luciferase-luciferin reaction of Cypridina to emit blue light. The luminescence stimulation with major organic cofactors was examined using the crude extracts of Cypridina specimens, and we found that the addition of coenzyme A (CoA) to the crude extracts significantly stimulated luminescence intensity. Further, the light-emitting source in the crude extracts stimulated with CoA was identified as Cypridina luciferyl sulfate, and we demonstrated that CoA could act as a sulfate acceptor from Cypridina luciferyl sulfate. In addition, the sulfate group of Cypridina luciferyl sulfate was also transferred to adenosine 5'-monophosphate (5'-AMP) and adenosine 3'-monophosphate (3'-AMP) by a sulfotransferase. The sulfated products corresponding to CoA, 5'-AMP and 3'-AMP were identified using mass spectrometry. This is the first report that CoA can act as a sulfate acceptor in a sulfotransferase reaction.
Collapse
Affiliation(s)
- Mitsuhiro Nakamura
- Graduate School of Science and Technology, Tokushima University, Tokushima, Japan.,Graduate School of Integrated Arts and Sciences, Tokushima University, Tokushima, Japan
| | - Kazuo Matsuda
- Graduate School of Integrated Arts and Sciences, Tokushima University, Tokushima, Japan
| | - Misaki Nakamura
- Graduate School of Integrated Arts and Sciences, Tokushima University, Tokushima, Japan
| | - Kyohei Yamashita
- Graduate School of Integrated Arts and Sciences, Tokushima University, Tokushima, Japan
| | - Tomoko Suzuki
- Graduate School of Integrated Arts and Sciences, Tokushima University, Tokushima, Japan
| | - Satoshi Inouye
- Yokohama Research Center, JNC Corporation, Yokohama, Japan
| |
Collapse
|
9
|
Vacher M, Fdez Galván I, Ding BW, Schramm S, Berraud-Pache R, Naumov P, Ferré N, Liu YJ, Navizet I, Roca-Sanjuán D, Baader WJ, Lindh R. Chemi- and Bioluminescence of Cyclic Peroxides. Chem Rev 2018; 118:6927-6974. [PMID: 29493234 DOI: 10.1021/acs.chemrev.7b00649] [Citation(s) in RCA: 228] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Bioluminescence is a phenomenon that has fascinated mankind for centuries. Today the phenomenon and its sibling, chemiluminescence, have impacted society with a number of useful applications in fields like analytical chemistry and medicine, just to mention two. In this review, a molecular-orbital perspective is adopted to explain the chemistry behind chemiexcitation in both chemi- and bioluminescence. First, the uncatalyzed thermal dissociation of 1,2-dioxetane is presented and analyzed to explain, for example, the preference for triplet excited product states and increased yield with larger nonreactive substituents. The catalyzed fragmentation reaction and related details are then exemplified with substituted 1,2-dioxetanone species. In particular, the preference for singlet excited product states in that case is explained. The review also examines the diversity of specific solutions both in Nature and in artificial systems and the difficulties in identifying the emitting species and unraveling the color modulation process. The related subject of excited-state chemistry without light absorption is finally discussed. The content of this review should be an inspiration to human design of new molecular systems expressing unique light-emitting properties. An appendix describing the state-of-the-art experimental and theoretical methods used to study the phenomena serves as a complement.
Collapse
Affiliation(s)
- Morgane Vacher
- Department of Chemistry-Ångström , Uppsala University , P.O. Box 538, SE-751 21 Uppsala , Sweden
| | - Ignacio Fdez Galván
- Department of Chemistry-Ångström , Uppsala University , P.O. Box 538, SE-751 21 Uppsala , Sweden
| | - Bo-Wen Ding
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry , Beijing Normal University , Beijing 100875 , China
| | - Stefan Schramm
- New York University Abu Dhabi , P.O. Box 129188, Abu Dhabi , United Arab Emirates
| | - Romain Berraud-Pache
- Université Paris-Est , Laboratoire Modélisation et Simulation Multi Échelle, MSME, UMR 8208 CNRS, UPEM , 5 bd Descartes , 77454 Marne-la-Vallée , France
| | - Panče Naumov
- New York University Abu Dhabi , P.O. Box 129188, Abu Dhabi , United Arab Emirates
| | | | - Ya-Jun Liu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry , Beijing Normal University , Beijing 100875 , China
| | - Isabelle Navizet
- Université Paris-Est , Laboratoire Modélisation et Simulation Multi Échelle, MSME, UMR 8208 CNRS, UPEM , 5 bd Descartes , 77454 Marne-la-Vallée , France
| | - Daniel Roca-Sanjuán
- Institut de Ciència Molecular , Universitat de València , P.O. Box 22085 , Valencia , Spain
| | - Wilhelm J Baader
- Departamento de Química Fundamental, Instituto de Química , Universidade de São Paulo , Av. Prof. Lineu Prestes, 748 , 05508-000 São Paulo , SP , Brazil
| | - Roland Lindh
- Department of Chemistry-Ångström , Uppsala University , P.O. Box 538, SE-751 21 Uppsala , Sweden.,Department of Chemistry and Chemical Biology , Harvard University , 12 Oxford Street , Cambridge , Massachusetts 02138 , United States
| |
Collapse
|
10
|
Ishii Y, Hayashi C, Suzuki Y, Hirano T. Chemiluminescent 2,6-diphenylimidazo[1,2-a]pyrazin-3(7H)-ones: a new entry to Cypridina luciferin analogues. Photochem Photobiol Sci 2014; 13:182-9. [DOI: 10.1039/c3pp50197c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
5-[4-(Dimethylamino)phenyl]-2-benzamidopyrazines: fluorescent dyes based on Cypridina oxyluciferin. RESEARCH ON CHEMICAL INTERMEDIATES 2012. [DOI: 10.1007/s11164-012-0645-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Naumov P, Wu C, Liu YJ, Ohmiya Y. Spectrochemistry and artificial color modulation of Cypridina luminescence: indirect evidence for chemiexcitation of a neutral dioxetanone and emission from a neutral amide. Photochem Photobiol Sci 2012; 11:1151-5. [DOI: 10.1039/c2pp25020a] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Hirano T, Takahashi Y, Kondo H, Maki S, Kojima S, Ikeda H, Niwa H. The reaction mechanism for the high quantum yield of Cypridina (Vargula) bioluminescence supported by the chemiluminescence of 6-aryl-2-methylimidazo[1,2-a]pyrazin-3(7H)-ones (Cypridinaluciferin analogues). Photochem Photobiol Sci 2008; 7:197-207. [DOI: 10.1039/b713374j] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Campbell AK, Hallett MB, Weeks I. Chemiluminescence as an analytical tool in cell biology and medicine. METHODS OF BIOCHEMICAL ANALYSIS 2006; 31:317-416. [PMID: 3894883 DOI: 10.1002/9780470110522.ch7] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
15
|
Takahashi Y, Kondo H, Maki S, Niwa H, Ikeda H, Hirano T. Chemiluminescence of 6-aryl-2-methylimidazo[1,2-a]pyrazin-3(7H)-ones in DMSO/TMG and in diglyme/acetate buffer: support for the chemiexcitation process to generate the singlet-excited state of neutral oxyluciferin in a high quantum yield in the Cypridina (Vargula) bioluminescence mechanism. Tetrahedron Lett 2006. [DOI: 10.1016/j.tetlet.2006.06.101] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Yamagishi K, Enomoto T, Ohmiya Y. Perfusion-culture-based secreted bioluminescence reporter assay in living cells. Anal Biochem 2006; 354:15-21. [PMID: 16713985 DOI: 10.1016/j.ab.2006.03.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2005] [Revised: 03/08/2006] [Accepted: 03/20/2006] [Indexed: 11/20/2022]
Abstract
Bioluminescence reporter proteins have been widely used in the development of tools for monitoring biological events in living cells. In this study, we describe the development of a reporter system with secreted Cypridina noctiluca luciferase (CLuc) for a pharmacological assay that is based on targeted promoter activity. A model cell line was established with Rat-1 fibroblasts expressing CLuc driven by the promoter of a circadian clock gene, Bmal1. To accurately assay for temporally secreted CLuc activity, a perfusion culture in which the promoter activity was sequentially monitored by the reporter activity in the perfusate was adopted. By pulsing with dexamethasone (DEX), a glucocorticoid (GC) analog, the profile of the reporter activity successfully showed diurnal fluctuation, which is a canonical expression pattern of the Bmal1 gene. Trial studies illustrated that the DEX-pulsed circadian oscillation was reasonably attenuated by RU486, a GC receptor antagonist. Moreover, SP600125, a c-Jun N-terminal kinase inhibitor, caused phase shifting of the rhythmicity. We conclude that the CLuc reporter assay in combination with perfusion culture is a suitable pharmacological tool for drug discovery.
Collapse
Affiliation(s)
- Kazutoshi Yamagishi
- Cell Dynamics Research Group, Research Institute for Cell Engineering, National Institute of Advanced Industrial Science and Technology, Midorigaoka, Ikeda, Osaka 563-8577, Japan.
| | | | | |
Collapse
|
17
|
Takamuki Y, Maki S, Niwa H, Ikeda H, Hirano T. Substituent effects on the spectroscopic properties of solvatochromic 2-phenylimidazo[1,2-a]pyrazin-3(7H)-ones: an effective control for the colorimetric sensor properties. Tetrahedron 2005. [DOI: 10.1016/j.tet.2005.08.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
18
|
Abstract
A chemiluminescent serotonin assay is described, which is based on a reaction given by some indolic compounds in alkaline dimethyl sulfoxide (DMS). When coupled to a rapid serotonin extraction procedure the assay may be used for measuring the serotonin content of different brain areas, and the release of this transmitter.
Collapse
Affiliation(s)
- M Israël
- Laboratoire de Neurobiologie Cellulaire et Moléculaire, CNRS, 1 Avenue de la Terrasse, 91190 Gif-sur-Yvette Cedex, France
| |
Collapse
|
19
|
Affiliation(s)
- S Inouye
- Yokohama Research Center, Chisso Corporation, Japan
| |
Collapse
|
20
|
Ura S, Ueda H, Kazami J, Kawano G, Nagamune T. Single cell reporter assay using cell surface displayed Vargula luciferase. J Biosci Bioeng 2001. [DOI: 10.1016/s1389-1723(01)80319-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
21
|
Inouye S, Watanabe K, Nakamura H, Shimomura O. Secretional luciferase of the luminous shrimp Oplophorus gracilirostris: cDNA cloning of a novel imidazopyrazinone luciferase(1). FEBS Lett 2000; 481:19-25. [PMID: 10984608 DOI: 10.1016/s0014-5793(00)01963-3] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The deep-sea shrimp Oplophorus gracilirostris secretes a luciferase that catalyzes the oxidation of coelenterazine to emit blue light. The luciferase (M(r) approx. 106000) was found to be a complex composed of 35 kDa and 19 kDa proteins, and the cDNAs encoding these two proteins were cloned. The expression of the cDNAs in bacterial and mammalian cells indicated that the 19 kDa protein, not the 35 kDa protein, is capable of catalyzing the luminescent oxidation of coelenterazine. The primary sequence of the 35 kDa protein revealed a typical leucine-rich repeat sequence, whereas the catalytic 19 kDa protein shared no homology with any known luciferases including various imidazopyrazinone luciferases.
Collapse
Affiliation(s)
- S Inouye
- Yokohama Research Center, Chisso Corporation, Japan.
| | | | | | | |
Collapse
|
22
|
Inouye S, Shimomura O. The use of Renilla luciferase, Oplophorus luciferase, and apoaequorin as bioluminescent reporter protein in the presence of coelenterazine analogues as substrate. Biochem Biophys Res Commun 1997; 233:349-53. [PMID: 9144537 DOI: 10.1006/bbrc.1997.6452] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
To investigate the use of various luciferases as reporter protein, the substrate specificity of recombinant Renilla luciferase, Oplophorus luciferase and recombinant apoaequorin was examined using 23 kinds of coelenterazine analogues as the substrate. The intensity of luminescence was generally highest with Oplophorus luciferase and lowest with apoaequorin, but varied widely by the substrate used. A very high level of light intensity was obtained when the luminescence reactions of e-coelenterazine and v-coelenterazine were catalyzed by Renilla luciferase, strongly suggesting the usefulness of recombinant Renilla luciferase as a highly sensitive reporter protein. Oplophorus luciferase can be an equally sensitive reporter protein when its gene is obtained.
Collapse
Affiliation(s)
- S Inouye
- Yokohama Research Center, Chisso Corporation, Kanazawa-ku, Japan
| | | |
Collapse
|
23
|
Miesenböck G, Rothman JE. Patterns of synaptic activity in neural networks recorded by light emission from synaptolucins. Proc Natl Acad Sci U S A 1997; 94:3402-7. [PMID: 9096406 PMCID: PMC20382 DOI: 10.1073/pnas.94.7.3402] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The emission of light, coupled to exocytosis, can in principle be utilized to monitor the activity of a large number of individual synapses simultaneously. To illustrate this concept, fusion proteins of Cypridina luciferase and synaptotagmin-I or VAMP-2/synaptobrevin (which we term "synaptolucins") were expressed in cultured hippocampal neurons with the help of viral vectors. Synaptolucins were targeted to synaptic vesicles and, upon exocytosis, formed light-emitting complexes with their cognate luciferin, which was added to the extracellular medium. Photon emissions required a depolarizing stimulus, occurred from regions with high synaptic density as ascertained by vital staining of recycling synaptic vesicles, and were sensitive to Ca2+ depletion and clostridial neurotoxins. The method can currently detect exocytosis of the readily releasable pool of synaptic vesicles at a hippocampal synapse, corresponding to about two dozen quanta, but has the potential for greater sensitivity.
Collapse
Affiliation(s)
- G Miesenböck
- Cellular Biochemistry and Biophysics Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | |
Collapse
|
24
|
Mallefet J, Baguet F. OXYGEN CONSUMPTION AND LUMINESCENCE OF ISOLATED Porichthys PHOTOPHORES IN RESPONSE TO ADRENERGIC STIMULATIONS. Photochem Photobiol 1989. [DOI: 10.1111/j.1751-1097.1989.tb04155.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|