1
|
O' Loughlin J, Napolitano S, Rubini M. Protein Design with Fluoroprolines: 4,4-Difluoroproline Does Not Eliminate the Rate-Limiting Step of Thioredoxin Folding. Chembiochem 2021; 22:3326-3332. [PMID: 34545985 PMCID: PMC9292674 DOI: 10.1002/cbic.202100418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/20/2021] [Indexed: 01/08/2023]
Abstract
C4‐substituted fluoroprolines (4R)‐fluoroproline ((4R)‐Flp) and (4S)‐fluoroproline ((4S)‐Flp) have been used in protein engineering to enhance the thermodynamic stability of peptides and proteins. The electron‐withdrawing effect of fluorine can bias the pucker of the pyrrolidine ring, influence the conformational preference of the preceding peptide bond, and can accelerate the cis/trans prolyl peptide bond isomerisation by diminishing its double bond character. The role of 4,4‐difluoroproline (Dfp) in the acceleration of the refolding rate of globular proteins bearing a proline (Pro) residue in the cis conformation in the native state remains elusive. Moreover, the impact of Dfp on the thermodynamic stability and bioactivity of globular proteins has been seldom described. In this study, we show that the incorporation of Dfp caused a redox state dependent and position dependent destabilisation of the thioredoxin (Trx) fold, while the catalytic activities of the modified proteins remained unchanged. The Pro to Dfp substitution at the conserved cisPro76 in the thioredoxin variant Trx1P did not elicited acceleration of the rate‐limiting trans‐to‐cis isomerization of the Ile75‐Pro76 peptide bond. Our results show that pucker preferences in the context of a tertiary structure could play a major role in protein folding, thus overtaking the rules determined for cis/trans isomerisation barriers determined in model peptides.
Collapse
Affiliation(s)
- Jennie O' Loughlin
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Silvia Napolitano
- Department of Molecular Biology and Biophysics, ETH Zürich, Otto-Stern-Weg 5, 8093, Zürich, Switzerland
| | - Marina Rubini
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
2
|
Baliga C, Varadarajan R, Aghera N. Homodimeric Escherichia coli Toxin CcdB (Controller of Cell Division or Death B Protein) Folds via Parallel Pathways. Biochemistry 2016; 55:6019-6031. [PMID: 27696818 DOI: 10.1021/acs.biochem.6b00726] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The existence of parallel pathways in the folding of proteins seems intuitive, yet remains controversial. We explore the folding kinetics of the homodimeric Escherichia coli toxin CcdB (Controller of Cell Division or Death B protein) using multiple optical probes and approaches. Kinetic studies performed as a function of protein and denaturant concentrations demonstrate that the folding of CcdB is a four-state process. The two intermediates populated during folding are present on parallel pathways. Both form by rapid association of the monomers in a diffusion limited manner and appear to be largely unstructured, as they are silent to the optical probes employed in the current study. The existence of parallel pathways is supported by the insensitivity of the amplitudes of the refolding kinetic phases to the different probes used in the study. More importantly, interrupted refolding studies and ligand binding studies clearly demonstrate that the native state forms in a biexponential manner, implying the presence of at least two pathways. Our studies indicate that the CcdA antitoxin binds only to the folded CcdB dimer and not to any earlier folding intermediates. Thus, despite being part of the same operon, the antitoxin does not appear to modulate the folding pathway of the toxin encoded by the downstream cistron. This study highlights the utility of ligand binding in distinguishing between sequential and parallel pathways in protein folding studies, while also providing insights into molecular interactions during folding in Type II toxin-antitoxin systems.
Collapse
Affiliation(s)
- Chetana Baliga
- Molecular Biophysics Unit, Indian Institute of Science , Bangalore 560 012, India
| | - Raghavan Varadarajan
- Molecular Biophysics Unit, Indian Institute of Science , Bangalore 560 012, India.,Jawaharlal Nehru Centre for Advanced Scientific Research , Jakkur P.O., Bangalore 560 004, India
| | - Nilesh Aghera
- Molecular Biophysics Unit, Indian Institute of Science , Bangalore 560 012, India
| |
Collapse
|
3
|
Roderer D, Glockshuber R, Rubini M. Acceleration of the Rate-Limiting Step of Thioredoxin Folding by Replacement of its Conserved cis-Proline with (4 S)-Fluoroproline. Chembiochem 2015; 16:2162-6. [PMID: 26382254 DOI: 10.1002/cbic.201500342] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Indexed: 11/09/2022]
Abstract
The incorporation of the non-natural amino acids (4R)- and (4S)-fluoroproline (Flp) has been successfully used to improve protein stability, but little is known about their effect on protein folding kinetics. Here we analyzed the influence of (4R)- and (4S)-Flp on the rate-limiting trans-to-cis isomerization of the Ile75-Pro76 peptide bond in the folding of Escherichia coli thioredoxin (Trx). While (4R)-Flp at position 76 had essentially no effect on the isomerization rate in the context of the intact tertiary structure, (4S)-Flp accelerated the folding reaction ninefold. Similarly, tenfold faster trans-to-cis isomerization of Ile75-(4S)-Flp76 relative to Ile75-Pro76 was observed in the unfolded state of Trx. Our results show that the replacement of cis prolines by non-natural proline analogues can be used for modulating the folding rates of proteins with cis prolyl-peptide bonds in the native state.
Collapse
Affiliation(s)
- Daniel Roderer
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zürich, Otto-Stern-Weg 5, 8093, Zürich, Switzerland.,Max-Planck-Institute of Molecular Physiology, Department of Structural Biochemistry, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
| | - Rudi Glockshuber
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zürich, Otto-Stern-Weg 5, 8093, Zürich, Switzerland
| | - Marina Rubini
- Department of Organic Chemistry, University of Konstanz, Universitätsstrasse 10, 78464, Konstanz, Germany.
| |
Collapse
|
4
|
Gruber T, Balbach J. Protein Folding Mechanism of the Dimeric AmphiphysinII/Bin1 N-BAR Domain. PLoS One 2015; 10:e0136922. [PMID: 26368922 PMCID: PMC4569573 DOI: 10.1371/journal.pone.0136922] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 08/10/2015] [Indexed: 11/23/2022] Open
Abstract
The human AmphyphisinII/Bin1 N-BAR domain belongs to the BAR domain superfamily, whose members sense and generate membrane curvatures. The N-BAR domain is a 57 kDa homodimeric protein comprising a six helix bundle. Here we report the protein folding mechanism of this protein as a representative of this protein superfamily. The concentration dependent thermodynamic stability was studied by urea equilibrium transition curves followed by fluorescence and far-UV CD spectroscopy. Kinetic unfolding and refolding experiments, including rapid double and triple mixing techniques, allowed to unravel the complex folding behavior of N-BAR. The equilibrium unfolding transition curve can be described by a two-state process, while the folding kinetics show four refolding phases, an additional burst reaction and two unfolding phases. All fast refolding phases show a rollover in the chevron plot but only one of these phases depends on the protein concentration reporting the dimerization step. Secondary structure formation occurs during the three fast refolding phases. The slowest phase can be assigned to a proline isomerization. All kinetic experiments were also followed by fluorescence anisotropy detection to verify the assignment of the dimerization step to the respective folding phase. Based on these experiments we propose for N-BAR two parallel folding pathways towards the homodimeric native state depending on the proline conformation in the unfolded state.
Collapse
Affiliation(s)
- Tobias Gruber
- Martin-Luther University Halle-Wittenberg, Institute of Physics, Betty-Heimann Str. 7, 06120, Halle, Germany
| | - Jochen Balbach
- Martin-Luther University Halle-Wittenberg, Institute of Physics, Betty-Heimann Str. 7, 06120, Halle, Germany
- * E-mail:
| |
Collapse
|
5
|
Acceleration of protein folding by four orders of magnitude through a single amino acid substitution. Sci Rep 2015; 5:11840. [PMID: 26121966 PMCID: PMC4485320 DOI: 10.1038/srep11840] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 06/04/2015] [Indexed: 11/23/2022] Open
Abstract
Cis prolyl peptide bonds are conserved structural elements in numerous protein
families, although their formation is energetically unfavorable, intrinsically slow
and often rate-limiting for folding. Here we investigate the reasons underlying the
conservation of the cis proline that is diagnostic for the fold of
thioredoxin-like thiol-disulfide oxidoreductases. We show that replacement of the
conserved cis proline in thioredoxin by alanine can accelerate spontaneous
folding to the native, thermodynamically most stable state by more than four orders
of magnitude. However, the resulting trans alanine bond leads to small
structural rearrangements around the active site that impair the function of
thioredoxin as catalyst of electron transfer reactions by more than 100-fold. Our
data provide evidence for the absence of a strong evolutionary pressure to achieve
intrinsically fast folding rates, which is most likely a consequence of proline
isomerases and molecular chaperones that guarantee high in vivo folding rates
and yields.
Collapse
|
6
|
Abstract
This is a tour of a physical chemist through 65 years of protein chemistry from the time when emphasis was placed on the determination of the size and shape of the protein molecule as a colloidal particle, with an early breakthrough by James Sumner, followed by Linus Pauling and Fred Sanger, that a protein was a real molecule, albeit a macromolecule. It deals with the recognition of the nature and importance of hydrogen bonds and hydrophobic interactions in determining the structure, properties, and biological function of proteins until the present acquisition of an understanding of the structure, thermodynamics, and folding pathways from a linear array of amino acids to a biological entity. Along the way, with a combination of experiment and theoretical interpretation, a mechanism was elucidated for the thrombin-induced conversion of fibrinogen to a fibrin blood clot and for the oxidative-folding pathways of ribonuclease A. Before the atomic structure of a protein molecule was determined by x-ray diffraction or nuclear magnetic resonance spectroscopy, experimental studies of the fundamental interactions underlying protein structure led to several distance constraints which motivated the theoretical approach to determine protein structure, and culminated in the Empirical Conformational Energy Program for Peptides (ECEPP), an all-atom force field, with which the structures of fibrous collagen-like proteins and the 46-residue globular staphylococcal protein A were determined. To undertake the study of larger globular proteins, a physics-based coarse-grained UNited-RESidue (UNRES) force field was developed, and applied to the protein-folding problem in terms of structure, thermodynamics, dynamics, and folding pathways. Initially, single-chain and, ultimately, multiple-chain proteins were examined, and the methodology was extended to protein-protein interactions and to nucleic acids and to protein-nucleic acid interactions. The ultimate results led to an understanding of a variety of biological processes underlying natural and disease phenomena.
Collapse
|
7
|
GroEL/ES chaperonin modulates the mechanism and accelerates the rate of TIM-barrel domain folding. Cell 2014; 157:922-934. [PMID: 24813614 DOI: 10.1016/j.cell.2014.03.038] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 02/04/2014] [Accepted: 03/14/2014] [Indexed: 11/23/2022]
Abstract
The GroEL/ES chaperonin system functions as a protein folding cage. Many obligate substrates of GroEL share the (βα)8 TIM-barrel fold, but how the chaperonin promotes folding of these proteins is not known. Here, we analyzed the folding of DapA at peptide resolution using hydrogen/deuterium exchange and mass spectrometry. During spontaneous folding, all elements of the DapA TIM barrel acquire structure simultaneously in a process associated with a long search time. In contrast, GroEL/ES accelerates folding more than 30-fold by catalyzing segmental structure formation in the TIM barrel. Segmental structure formation is also observed during the fast spontaneous folding of a structural homolog of DapA from a bacterium that lacks GroEL/ES. Thus, chaperonin independence correlates with folding properties otherwise enforced by protein confinement in the GroEL/ES cage. We suggest that folding catalysis by GroEL/ES is required by a set of proteins to reach native state at a biologically relevant timescale, avoiding aggregation or degradation.
Collapse
|
8
|
Beitlich T, Lorenz T, Reinstein J. Folding properties of cytosine monophosphate kinase from E. coli indicate stabilization through an additional insert in the NMP binding domain. PLoS One 2013; 8:e78384. [PMID: 24205218 PMCID: PMC3813627 DOI: 10.1371/journal.pone.0078384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 09/19/2013] [Indexed: 11/19/2022] Open
Abstract
The globular 25 kDa protein cytosine monophosphate kinase (CMPK, EC ID: 2.7.4.14) from E. coli belongs to the family of nucleoside monophosphate (NMP) kinases (NMPK). Many proteins of this family share medium to high sequence and high structure similarity including the frequently found α/β topology. A unique feature of CMPK in the family of NMPKs is the positioning of a single cis-proline residue in the CORE-domain (cis-Pro124) in conjunction with a large insert in the NMP binding domain. This insert is not found in other well studied NMPKs such as AMPK or UMP/CMPK. We have analyzed the folding pathway of CMPK using time resolved tryptophan and FRET fluorescence as well as CD. Our results indicate that unfolding at high urea concentrations is governed by a single process, whereas refolding in low urea concentrations follows at least a three step process which we interpret as follows: Pro124 in the CORE-domain is in cis in the native state (N(c)) and equilibrates with its trans-isomer in the unfolded state (U(c) - U(t)). Under refolding conditions, at least the U(t) species and possibly also the U(c) species undergo a fast initial collapse to form intermediates with significant amount of secondary structure, from which the trans-Pro124 fraction folds to the native state with a 100-fold lower rate constant than the cis-Pro124 species. CMPK thus differs from homologous NMP kinases like UMP/CMP kinase or AMP kinase, where folding intermediates show much lower content of secondary structure. Importantly also unfolding is up to 100-fold faster compared to CMPK. We therefore propose that the stabilizing effect of the long NMP-domain insert in conjunction with a subtle twist in the positioning of a single cis-Pro residue allows for substantial stabilization compared to other NMP kinases with α/β topology.
Collapse
Affiliation(s)
- Thorsten Beitlich
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Thorsten Lorenz
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Jochen Reinstein
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
9
|
Debelouchina GT, Platt GW, Bayro MJ, Radford SE, Griffin RG. Magic angle spinning NMR analysis of beta2-microglobulin amyloid fibrils in two distinct morphologies. J Am Chem Soc 2010; 132:10414-23. [PMID: 20662519 PMCID: PMC2919207 DOI: 10.1021/ja102775u] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Beta(2)-microglobulin (beta(2)m) is the major structural component of amyloid fibrils deposited in a condition known as dialysis-related amyloidosis. Despite numerous studies that have elucidated important aspects of the fibril formation process in vitro, and a magic angle spinning (MAS) NMR study of the fibrils formed by a small peptide fragment, structural details of beta(2)m fibrils formed by the full-length 99-residue protein are largely unknown. Here, we present a site-specific MAS NMR analysis of fibrils formed by the full-length beta(2)m protein and compare spectra of fibrils prepared under two different conditions. Specifically, long straight (LS) fibrils are formed at pH 2.5, while a very different morphology denoted as worm-like (WL) fibrils is observed in preparations at pH 3.6. High-resolution MAS NMR spectra have allowed us to obtain (13)C and (15)N resonance assignments for 64 residues of beta(2)m in LS fibrils, including part of the highly mobile N-terminus. Approximately 25 residues did not yield observable signals. Chemical shift analysis of the sequentially assigned residues indicates that these fibrils contain an extensive beta-sheet core organized in a non-native manner, with a trans-P32 conformation. In contrast, WL fibrils exhibit more extensive dynamics and appear to have a smaller beta-sheet core than LS fibrils, although both cores seem to share some common elements. Our results suggest that the distinct macroscopic morphological features observed for the two types of fibrils result from variations in structure and dynamics at the molecular level.
Collapse
Affiliation(s)
- Galia T. Debelouchina
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Geoffrey W. Platt
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
- Institute of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Marvin J. Bayro
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sheena E. Radford
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
- Institute of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Robert G. Griffin
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
10
|
|
11
|
Junker M, Clark PL. Slow formation of aggregation-resistant beta-sheet folding intermediates. Proteins 2010; 78:812-24. [PMID: 19847915 DOI: 10.1002/prot.22609] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Protein folding has been studied extensively for decades, yet our ability to predict how proteins reach their native state from a mechanistic perspective is still rudimentary at best, limiting our understanding of folding-related processes in vivo and our ability to manipulate proteins in vitro. Here, we investigate the in vitro refolding mechanism of a large beta-helix protein, pertactin, which has an extended, elongated shape. At 55 kDa, this single domain, all-beta-sheet protein allows detailed analysis of the formation of beta-sheet structure in larger proteins. Using a combination of fluorescence and far-UV circular dichroism spectroscopy, we show that the pertactin beta-helix refolds remarkably slowly, with multiexponential kinetics. Surprisingly, despite the slow refolding rates, large size, and beta-sheet-rich topology, pertactin refolding is reversible and not complicated by off-pathway aggregation. The slow pertactin refolding rate is not limited by proline isomerization, and 30% of secondary structure formation occurs within the rate-limiting step. Furthermore, site-specific labeling experiments indicate that the beta-helix refolds in a multistep but concerted process involving the entire protein, rather than via initial formation of the stable core substructure observed in equilibrium titrations. Hence pertactin provides a valuable system for studying the refolding properties of larger, beta-sheet-rich proteins, and raises intriguing questions regarding the prevention of aggregation during the prolonged population of partially folded, beta-sheet-rich refolding intermediates. Proteins 2010. (c) 2009 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Mirco Junker
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556-5670, USA
| | | |
Collapse
|
12
|
Platt GW, Radford SE. Glimpses of the molecular mechanisms of beta2-microglobulin fibril formation in vitro: aggregation on a complex energy landscape. FEBS Lett 2009; 583:2623-9. [PMID: 19433089 PMCID: PMC2734061 DOI: 10.1016/j.febslet.2009.05.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 05/01/2009] [Accepted: 05/05/2009] [Indexed: 12/29/2022]
Abstract
Beta(2)-microglobulin (beta(2)m) is a 99-residue protein that aggregates to form amyloid fibrils in dialysis-related amyloidosis. The protein provides a powerful model for exploration of the structural molecular mechanisms of fibril formation from a full-length protein in vitro. Fibrils have been assembled from beta(2)m under both low pH conditions, where the precursor is disordered, and at neutral pH where the protein is initially natively folded. Here we discuss the roles of sequence and structure in amyloid formation, the current understanding of the structural mechanisms of the early stages of aggregation of beta(2)m at both low and neutral pH, and the common and distinct features of these assembly pathways.
Collapse
Affiliation(s)
- Geoffrey W Platt
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | | |
Collapse
|
13
|
Walters J, Milam SL, Clark AC. Practical approaches to protein folding and assembly: spectroscopic strategies in thermodynamics and kinetics. Methods Enzymol 2009; 455:1-39. [PMID: 19289201 DOI: 10.1016/s0076-6879(08)04201-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We describe here the use of several spectroscopies, such as fluorescence emission, circular dichroism, and differential quenching by acrylamide, in examining the equilibrium and kinetic folding of proteins. The first section regarding equilibrium techniques provides practical information for determining the conformational stability of a protein. In addition, several equilibrium-folding models are discussed, from two-state monomer to four-state homodimer, providing a comprehensive protocol for interpretation of folding curves. The second section focuses on the experimental design and interpretation of kinetic data, such as burst-phase analysis and exponential fits, used in elucidating kinetic folding pathways. In addition, simulation programs are used routinely to support folding models generated by kinetic experiments, and the fundamentals of simulations are covered.
Collapse
Affiliation(s)
- Jad Walters
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina, USA
| | | | | |
Collapse
|
14
|
Zoldák G, Carstensen L, Scholz C, Schmid FX. Consequences of domain insertion on the stability and folding mechanism of a protein. J Mol Biol 2008; 386:1138-52. [PMID: 19136015 DOI: 10.1016/j.jmb.2008.12.052] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 12/17/2008] [Accepted: 12/18/2008] [Indexed: 11/30/2022]
Abstract
SlyD, the sensitive-to-lysis protein from Escherichia coli, consists of two domains. They are not arranged successively along the protein chain, but one domain, the "insert-in-flap" (IF) domain, is inserted internally as a guest into a surface loop of the host domain, which is a prolyl isomerase of the FK506 binding protein (FKBP) type. We used SlyD as a model to elucidate how such a domain insertion affects the stability and folding mechanism of the host and the guest domain. For these studies, the two-domain protein was compared with a single-domain variant SlyDDeltaIF, SlyD* without the chaperone domain (residues 1-69 and 130-165) in which the IF domain was removed and replaced by a short loop, as present in human FKBP12. Equilibrium unfolding and folding kinetics followed an apparent two-state mechanism in the absence and in the presence of the IF domain. The inserted domain decreased, however, the stability of the host domain in the transition region and decelerated its refolding reaction by about 10-fold. This originates from the interruption of the chain connectivity by the IF domain and its inherent instability. To monitor folding processes in this domain selectively, a Trp residue was introduced as fluorescent probe. Kinetic double-mixing experiments revealed that, in intact SlyD, the IF domain folds and unfolds about 1000-fold more rapidly than the FKBP domain, and that it is strongly stabilized when linked with the folded FKBP domain. The unfolding limbs of the kinetic chevrons of SlyD show a strong downward curvature. This deviation from linearity is not caused by a transition-state movement, as often assumed, but by the accumulation of a silent unfolding intermediate at high denaturant concentrations. In this kinetic intermediate, the FKBP domain is still folded, whereas the IF domain is already unfolded.
Collapse
Affiliation(s)
- Gabriel Zoldák
- Laboratorium für Biochemie und Bayreuther Zentrum für Molekulare Biowissenschaften, Universität Bayreuth, D-95440 Bayreuth, Germany
| | | | | | | |
Collapse
|
15
|
Kloss E, Barrick D. Thermodynamics, kinetics, and salt dependence of folding of YopM, a large leucine-rich repeat protein. J Mol Biol 2008; 383:1195-209. [PMID: 18793647 DOI: 10.1016/j.jmb.2008.08.069] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Revised: 08/19/2008] [Accepted: 08/22/2008] [Indexed: 12/30/2022]
Abstract
Small globular proteins have many contacts between residues that are distant in primary sequence. These contacts create a complex network between sequence-distant segments of secondary structure, which may be expected to promote the cooperative folding of globular proteins. Although repeat proteins, which are composed of tandem modular units, lack sequence-distant contacts, several of considerable length have been shown to undergo cooperative two-state folding. To explore the limits of cooperativity in repeat proteins, we have studied the unfolding of YopM, a leucine-rich repeat (LRR) protein of over 400 residues. Despite its large size and modular architecture (15 repeats), YopM equilibrium unfolding is highly cooperative, and shows a very strong dependence on the concentration of urea. In contrast, kinetic studies of YopM folding indicate a mechanism that includes one or more transient intermediates. The urea dependence of the folding and unfolding rates suggests a relatively small transition state ensemble. As with the urea dependence, we have found an extreme dependence of the free energy of unfolding on the concentration of salt. This salt dependence likely results from general screening of a large number of unfavorable columbic interactions in the folded state, rather than from specific cation binding.
Collapse
Affiliation(s)
- Ellen Kloss
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | | |
Collapse
|
16
|
Lorenz T, Reinstein J. The influence of proline isomerization and off-pathway intermediates on the folding mechanism of eukaryotic UMP/CMP Kinase. J Mol Biol 2008; 381:443-55. [PMID: 18602116 DOI: 10.1016/j.jmb.2008.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 05/30/2008] [Accepted: 06/02/2008] [Indexed: 10/22/2022]
Abstract
The globular 22-kDa protein UMP/CMP from Dictyostelium discoideum (UmpK) belongs to the family of nucleoside monophosphate (NMP) kinases. These enzymes not only show high sequence and structure similarities but also share the alpha/beta-fold, a very common protein topology. We investigated the protein folding mechanism of UmpK as a representative for this ubiquitous enzyme class. Equilibrium stability towards urea and the unfolding and refolding kinetics were studied by means of fluorescence and far-UV CD spectroscopy. Although the unfolding can be described by a two-state process, folding kinetics are rather complex with four refolding phases that can be resolved and an additional burst phase. Moreover, two of these phases exhibit a pronounced rollover in the refolding limb that cannot be explained by aggregation. Whilst secondary structure formation is not observed in the burst phase reaction, folding to the native structure is strongly influenced by the slowest phase, since 30% of the alpha-helical CD signal is restored therein. This process can be assigned to proline isomerization and is strongly accelerated by the Escherichia coli peptidyl-prolyl isomerase trigger factor. The analysis of our single-mixing and double-mixing experiments suggests the occurrence of an off-pathway intermediate and an unproductive collapsed structure, which appear to be rate limiting for the folding of UmpK.
Collapse
Affiliation(s)
- Thorsten Lorenz
- Department of Biomolecular Mechanisms, Max-Planck-Institute for Medical Research, Jahnstrasse 29, D-69120 Heidelberg, Germany
| | | |
Collapse
|
17
|
Chen YR, Clark AC. Substitutions of prolines examine their role in kinetic trap formation of the caspase recruitment domain (CARD) of RICK. Protein Sci 2006; 15:395-409. [PMID: 16501221 PMCID: PMC2249761 DOI: 10.1110/ps.051943006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Caspase recruitment domains (CARDs) are small helical protein domains that adopt the Greek key fold. For the two CARDs studied to date, RICK-CARD and caspase-1-CARD (CP1-CARD), the proteins unfold by an apparent two-state process at equilibrium. However, the folding kinetics are complex for both proteins and may contain kinetically trapped species on the folding pathway. In the case of RICK-CARD, the time constants of the slow refolding phases are consistent with proline isomerism. RICK-CARD contains three prolines, P47 in turn 3, and P85 and P87. The latter two prolines constitute a nonconserved PxP motif in helix 6. To examine the role of the prolines in the complex folding kinetics of RICK-CARD, we generated seven proline-to-alanine mutants, including three single mutants, three double mutants, and one triple mutant. We examined the spectroscopic properties, equilibrium folding, binding to CP1-CARD, and folding kinetics. The results show that P85 is critical for maintaining the function of the protein and that all mutations decrease the stability. Results from single mixing and sequential mixing stopped-flow studies strongly suggest the presence of parallel folding pathways consisting of at least two unfolded populations. The mutations affect the distribution of the two unfolded species, thereby affecting the population that folds through each channel. The two conformations also are present in the triple mutant, demonstrating that interconversion between them is not due to prolyl isomerism. Overall, the data show that the complex folding pathway, especially formation of kinetically trapped species, is not due to prolyl isomerism.
Collapse
Affiliation(s)
- Yun-Ru Chen
- Department of Molecular and Structural Biochemistry, 128 Polk Hall, North Carolina State University, Raleigh, NC 27695-7622, USA
| | | |
Collapse
|
18
|
Mello CC, Bradley CM, Tripp KW, Barrick D. Experimental characterization of the folding kinetics of the notch ankyrin domain. J Mol Biol 2005; 352:266-81. [PMID: 16095609 DOI: 10.1016/j.jmb.2005.07.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2004] [Revised: 06/01/2005] [Accepted: 07/11/2005] [Indexed: 10/25/2022]
Abstract
Proteins constructed from linear arrays of tandem repeats provide a simplified architecture for understanding protein folding. Here, we examine the folding kinetics of the ankyrin repeat domain from the Drosophila Notch receptor, which consists of six folded ankyrin modules and a seventh partly disordered N-terminal ankyrin repeat sequence. Both the refolding and unfolding kinetics are best described as a sum of two exponential phases. The slow, minor refolding phase is limited by prolyl isomerization in the denatured state (D). The minor unfolding phase, which appears as a lag during fluorescence-detected unfolding, is consistent with an on-pathway intermediate (I). This intermediate, although not directly detected during refolding, is shown to be populated by interrupted refolding experiments. When plotted against urea, the rate constants for the major unfolding and refolding phases define a single non-linear v-shaped chevron, as does the minor unfolding phase. These two chevrons, along with unfolding amplitudes, are well-fitted by a sequential three-state model, which yields rate constants for the individual steps in folding and unfolding. Based on these fitted parameters, the D to I step is rate-limiting, and closely matches the major observed refolding phase at low denaturant concentrations. I appears to be midway between N and D in folding free energy and denaturant sensitivity, but has Trp fluorescence properties close to N. Although the Notch ankyrin domain has a simple architecture, folding is slow, with the limiting refolding rate constant as much as seven orders of magnitude smaller than expected from topological predictions.
Collapse
Affiliation(s)
- Cecilia C Mello
- Department of Biology, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | | | | | | |
Collapse
|
19
|
Zhang L, Lookene A, Wu G, Olivecrona G. Calcium triggers folding of lipoprotein lipase into active dimers. J Biol Chem 2005; 280:42580-91. [PMID: 16179346 DOI: 10.1074/jbc.m507252200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The active form of lipoprotein lipase (LPL) is a noncovalent homodimer of 55-kDa subunits. The dimer is unstable and tends to undergo irreversible dissociation into inactive monomers. We noted that a preparation of such monomers slowly regained traces of activity under assay conditions with substrate, heparin, and serum or in cell culture medium containing serum. We therefore studied the refolding pathway of LPL after full denaturation in 6 M guanidinium chloride or after dissociation into monomers in 1 M guanidinium chloride. In crude systems, we identified serum as the factor promoting reactivation. Further investigations demonstrated that Ca2+ was the crucial component in serum for reactivation of LPL and that refolding involved at least two steps. Studies of far-UV circular dichroism, fluorescence, and proteolytic cleavage patterns showed that LPL started to refold from the C-terminal domain, independent of calcium. The first step was rapid and resulted in formation of an inactive monomer with a completely folded C-terminal domain, whereas the N-terminal domain was in the molten globule state. The second step was promoted by Ca2+ and converted LPL monomers from the molten globule state to dimerization-competent and more tightly folded monomers that rapidly formed active LPL dimers. The second step was slow, and it appears that proline isomerization (rather than dimerization as such) is rate-limiting. Inactive monomers isolated from human tissue recovered activity under the influence of Ca2+. We speculate that Ca2+-dependent control of LPL dimerization might be involved in the normal post-translational regulation of LPL activity.
Collapse
Affiliation(s)
- Liyan Zhang
- Department of Medical Biosciences, Physiological Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | | | | | | |
Collapse
|
20
|
Bradley CM, Barrick D. Effect of Multiple Prolyl Isomerization Reactions on the Stability and Folding Kinetics of the Notch Ankyrin Domain: Experiment and Theory. J Mol Biol 2005; 352:253-65. [PMID: 16054647 DOI: 10.1016/j.jmb.2005.06.041] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2004] [Revised: 06/01/2005] [Accepted: 06/17/2005] [Indexed: 11/23/2022]
Abstract
Studies on the folding kinetics of the Notch ankyrin domain have demonstrated that the major refolding phase is slow, the minor refolding phase is limited by the isomerization of prolyl peptide bonds, and that unfolding is multiexponential. Here, we explore the relationship between prolyl isomerization and folding heterogeneity using a combination of experiment and simulation. Proline residues were replaced with alanine, both singly and in various combinations. These destabilizing substitutions combine to eliminate the minor refolding phase, although unfolding heterogeneity persists even when all seven proline residues are replaced. To test whether prolyl isomerization influences the major refolding phase, we modeled folding and prolyl isomerization as a system of sequential reactions. Simulations that use rate constants of the major folding phase of the Notch ankyrin domain to represent intrinsic folding indicate that even with seven prolyl isomerization reactions, only two significant phases should be observed, and that the fast observed phase provides a good approximation of the intrinsic folding in the absence of prolyl isomerization. These results indicate that the major refolding phase of the Notch ankyrin domain reflects an intrinsically slow folding transition, rather than coupling of fast folding events with slow prolyl isomerization steps. This is consistent with the observation that the single observed refolding phase of a construct in which all proline residues are replaced remains slow. Finally, the simulation fails to produce a second unfolding phase at high urea concentrations, indicating that prolyl isomerization does not play a role in the three-state mechanism that leads to this heterogeneity.
Collapse
Affiliation(s)
- Christina Marchetti Bradley
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | | |
Collapse
|
21
|
Kameda A, Hoshino M, Higurashi T, Takahashi S, Naiki H, Goto Y. Nuclear Magnetic Resonance Characterization of the Refolding Intermediate of β2-Microglobulin Trapped by Non-native Prolyl Peptide Bond. J Mol Biol 2005; 348:383-97. [PMID: 15811375 DOI: 10.1016/j.jmb.2005.02.050] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2005] [Revised: 02/21/2005] [Accepted: 02/23/2005] [Indexed: 11/24/2022]
Abstract
beta(2)-Microglobulin (beta2-m), a light chain of the major histocompatibility complex type I, is also found as a major component of amyloid fibrils formed in dialysis-related amyloidosis. Denaturation of beta2-m is considered to initiate the formation of fibrils. To clarify the mechanism of fibril formation, it is important to characterize the intermediate conformational states at the atomic level. Here, we investigated the refolding of beta2-m from the acid-unfolded state by heteronuclear magnetic resonance and circular dichroism spectroscopies. At low temperature, beta2-m refolded slowly, accumulating a rate-limiting intermediate with non-native chemical shift dispersions for several residues, but with compactness and secondary structures similar to those of the native protein. beta2-m has a cis proline residue at Pro32, located on the turn connecting the betaB and betaC strands. The slow refolding phase disappeared upon mutation of Pro32 to Val, indicating that Pro32 is responsible for the accumulation of the intermediate. The distribution of the perturbed residues in the intermediate suggests that the non-native prolyl peptide bond of Pro32 affects large areas of the molecule. A cis proline residue is common to various immunoglobulin domains involved in amyloidosis, implying that a non-native prolyl peptide bond that might occur under physiological conditions is related to the amyloidogenicity of these immunoglobulin domains.
Collapse
Affiliation(s)
- Atsushi Kameda
- Institute for Protein Research, Osaka University and CREST, Japan Science and Technology Agency, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Feige MJ, Walter S, Buchner J. Folding Mechanism of the CH2 Antibody Domain. J Mol Biol 2004; 344:107-18. [PMID: 15504405 DOI: 10.1016/j.jmb.2004.09.033] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2004] [Revised: 09/13/2004] [Accepted: 09/15/2004] [Indexed: 11/22/2022]
Abstract
The immunoglobulin C(H)2 domain is a simple model system suitable for the study of the folding of all-beta-proteins. Its structure consists of two beta-sheets forming a greek-key beta-barrel, which is stabilized by an internal disulfide bridge located in the hydrophobic core. Crystal structures of various antibodies suggest that the C(H)2 domains of the two heavy chains interact with their sugar moieties and form a homodimer. Here, we show that the isolated, unglycosylated C(H)2 domain is a monomeric protein. Equilibrium unfolding was a two-state process, and the conformational stability is remarkably low compared to other antibody domains. Folding kinetics of C(H)2 were found to consist of several phases. The reactions could be mapped to three parallel pathways, two of which are generated by prolyl isomerizations in the unfolded state. The slowest folding reaction, which was observed only after long-term denaturation, could be catalyzed by a prolyl isomerase. The majority of the unfolded molecules, however, folded more rapidly, on a time-scale of minutes. Presumably, these molecules also have to undergo prolyl isomerization before reaching the native state. In addition, we detected a small number of fast-folding molecules in which all proline residues appear to be in the correct conformation. On both prolyl isomerization limited pathways, the formation of partly structured intermediates could be observed.
Collapse
Affiliation(s)
- Matthias J Feige
- Institut für Organische Chemie und Biochemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | | | | |
Collapse
|
23
|
Chen YR, Clark AC. Kinetic traps in the folding/unfolding of procaspase-1 CARD domain. Protein Sci 2004; 13:2196-206. [PMID: 15273313 PMCID: PMC2279836 DOI: 10.1110/ps.03521504] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2003] [Revised: 04/23/2004] [Accepted: 05/16/2004] [Indexed: 10/26/2022]
Abstract
We have examined the folding and unfolding of the caspase recruitment domain of procaspase-1 (CP1-CARD), a member of the alpha-helical Greek key protein family. The equilibrium folding/unfolding of CP1-CARD is described by a two-state mechanism, and the results show CP1-CARD is marginally stable with a DeltaG(H2O) of 1.1 +/- 0.2 kcal/mole and an m-value of 0.65 +/- 0.06 kcal/mole/M (10 mM Tris-HCl at pH 8.0, 1 mM DTT, 25 degrees C). Consistent with the equilibrium folding data, CP1-CARD is a monomer in solution when examined by size exclusion chromatography. Single-mixing stopped-flow refolding and unfolding studies show that CP1-CARD folds and unfolds rapidly, with no detectable slow phases, and the reactions appear to reach equilibrium within 10 msec. However, double jump kinetic experiments demonstrate the presence of an unfolded-like intermediate during unfolding. The intermediate converts to the fully unfolded conformation with a half-time of 10 sec. Interrupted refolding studies demonstrate the presence of one or more nativelike intermediates during refolding, which convert to the native conformation with a half-time of about 60 sec. Overall, the data show that both unfolding and refolding processes are slow, and the pathways contain kinetically trapped species.
Collapse
Affiliation(s)
- Yun-Ru Chen
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, USA
| | | |
Collapse
|
24
|
Fischer G, Aumüller T. Regulation of peptide bond cis/trans isomerization by enzyme catalysis and its implication in physiological processes. Rev Physiol Biochem Pharmacol 2004; 148:105-50. [PMID: 12698322 DOI: 10.1007/s10254-003-0011-3] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In some cases, the slow rotational movement underlying peptide bond cis/trans isomerizations is found to control the biological activity of proteins. Peptide bond cis/trans isomerases as cyclophilins, Fk506-binding proteins, parvulins, and bacterial hsp70 generally assist in the interconversion of the polypeptide substrate cis/trans isomers, and rate acceleration is the dominating mechanism of action in cells. We present evidence disputing the hypothesis that some of the molecular properties of these proteins play an auxiliary role in enzyme function.
Collapse
Affiliation(s)
- G Fischer
- Max Planck Research Unit for Enzymology of Protein Folding, Weinbergweg 22, 06120 Halle, Germany.
| | | |
Collapse
|
25
|
Wallace LA, Matthews CR. Sequential vs. parallel protein-folding mechanisms: experimental tests for complex folding reactions. Biophys Chem 2002; 101-102:113-31. [PMID: 12487994 DOI: 10.1016/s0301-4622(02)00155-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The recent emphasis on rough energy landscapes for protein folding reactions by theoreticians, and the many observations of complex folding kinetics by experimentalists provide a rationale for a brief literature survey of various empirical approaches for validating the underlying mechanisms. The determination of the folding mechanism is a key step in defining the energy surface on which the folding reactions occurs and in interpreting the effects of amino acid replacements on this reaction. Case studies that illustrate methods for differentiating between sequential and parallel channel folding mechanisms are presented. The ultimate goal of such efforts is to understand how the one-dimensional information contained in the amino acid sequence is rapidly and efficiently translated into three-dimensional structure.
Collapse
Affiliation(s)
- Louise A Wallace
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | | |
Collapse
|
26
|
Hollien J, Marqusee S. Comparison of the folding processes of T. thermophilus and E. coli ribonucleases H. J Mol Biol 2002; 316:327-40. [PMID: 11851342 DOI: 10.1006/jmbi.2001.5346] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In order to examine how the stabilization of thermophilic proteins affects their folding, we have characterized the folding process of Thermus thermophilus ribonuclease H using circular dichroism, fluorescence, and pulse-labeling hydrogen exchange. Like its homolog from Escherichia coli, this thermophilic protein populates a partially folded kinetic intermediate within the first few milliseconds of folding. The structure of this intermediate is similar to that of E.coli RNase H and corresponds remarkably well to a partially folded form that is populated at low levels in the native state of the protein. Proline isomerization appears to partly limit the folding of the thermophilic but not the mesophilic protein. Lastly, unlike other thermophilic proteins, which unfold much more slowly than their mesophilic counterparts, T.thermophilus RNase H folds and unfolds with overall rates similar to those of E.coli RNase H.
Collapse
Affiliation(s)
- Julie Hollien
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3206, USA
| | | |
Collapse
|
27
|
Tieman BC, Johnston MF, Fisher MT. A comparison of the GroE chaperonin requirements for sequentially and structurally homologous malate dehydrogenases: the importance of folding kinetics and solution environment. J Biol Chem 2001; 276:44541-50. [PMID: 11551947 DOI: 10.1074/jbc.m106693200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Escherichia coli malate dehydrogenase (EcMDH) and its eukaryotic counterpart, porcine mitochondrial malate dehydrogenase (PmMDH), are highly homologous proteins with significant sequence identity (60%) and virtually identical native structural folds. Despite this homology, EcMDH folds rapidly and efficiently in vitro and does not seem to interact with GroE chaperonins at physiological temperatures (37 degrees C), whereas PmMDH folds much slower than EcMDH and requires these chaperonins to fold to the native state at 37 degrees C. Double jump experiments indicate that the slow folding behavior of PmMDH is not limited by proline isomerization. Although the folding enhancer glycerol (<5 m) does not alter the renaturation kinetics of EcMDH, it dramatically accelerates the spontaneous renaturation of PmMDH at all temperatures tested. Kinetic analysis of PmMDH renaturation with increasing glycerol concentrations suggests that this osmolyte increases the on-pathway kinetics of the monomer folding to assembly-competent forms. Other osmolytes such as trimethylamine N-oxide, sucrose, and betaine also reactivate PmMDH at nonpermissive temperatures (37 degrees C). Glycerol jump experiments with preformed GroEL.PmMDH complexes indicate that the shift between stringent (requires ATP and GroES) and relaxed (only requires ATP) complex conformations is rapid (<3-5 s). The similarity in irreversible misfolding kinetics of PmMDH measured with glycerol or the activated chaperonin complex (GroEL.GroES.ATP) suggests that these folding aids may influence the same step in the PmMDH folding reaction. Moreover, the interactions between glycerol-induced PmMDH folding intermediates and GroEL.GroES.ATP are diminished. Our results support the notion that the protein folding kinetics of sequentially and structurally homologous proteins, rather than the structural fold, dictates the GroE chaperonin requirement.
Collapse
Affiliation(s)
- B C Tieman
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas 66160-7421, USA
| | | | | |
Collapse
|
28
|
Barat B, Bhattacharyya D. UDP-galactose 4-epimerase from Escherichia coli: formation of catalytic site during reversible folding. Arch Biochem Biophys 2001; 391:188-96. [PMID: 11437350 DOI: 10.1006/abbi.2001.2380] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
UDP-galactose 4-epimerase from Escherichia coli is a homodimer of molecular weight 39 kDa/subunit having noncovalently bound NAD acting as cofactor. Denaturation by 8 M urea at pH 7.0 causes 85% loss of its secondary structure and dissociation of its constituent molecules. Dilution of the denaturant by buffer at pH 8.5 leads to functional reconstitution of the dimeric holoenzyme. The refolding process is biphasic: after 2 min an equilibrium conformer is formed having 72% of its native secondary structure and by 60 min reactivation becomes complete. The early intermediate has lower energy of activation against thermal denaturation than the reactivated state. Patterns of trypsin digestion suggests a native like structure of this intermediate. Variation of solvent viscosity and ionic strength and inclusion of proline cis-trans isomerase in the refolding process do not alter kinetics of reactivation. Moreover, unaltered kinetics of reactivation against variation of temperature, pH, and duration of denaturation strongly suggests absence of proline cis/trans isomerization. Measurement of kinetics of (i) recovery of tertiary structure by protein fluorescence; (ii) incorporation of NAD from quantitation of bound cofactor; (iii) formation of substrate binding site by specific interaction with extrinsic fluorophore 1-anilino-8-naphthalene sulfonic acid and quenching by 5'-UMP, a competitive inhibitor; and (iv) recovery of activity indicate that they are all comparable. It appears that internal rearrangement of the protein during refolding, shielded from solvent, is the rate-limiting step of generation of cofactor binding site which ultimately leads to maturation of the holoenzyme structure.
Collapse
Affiliation(s)
- B Barat
- Indian Institute of Chemical Biology, 4, Raja, S.C. Mullick Road, Jadavpure, Calcutta, 700032, India
| | | |
Collapse
|
29
|
Maleknia SD, Ralston CY, Brenowitz MD, Downard KM, Chance MR. Determination of macromolecular folding and structure by synchrotron x-ray radiolysis techniques. Anal Biochem 2001; 289:103-15. [PMID: 11161303 DOI: 10.1006/abio.2000.4910] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Radiolysis of water by synchrotron X-rays generates oxygen-containing radicals that undergo reactions with solvent accessible sites of macromolecules inducing stable covalent modifications or cleavage on millisecond time scales. The extent and site of these reactions are determined by gel electrophoresis and mass spectrometry analysis. These data are used to construct a high-resolution map of solvent accessibility at individual reactive sites. The experiments can be performed in a time-resolved manner to provide kinetic rate constants for dynamic events occurring at individual sites within macromolecules or can provide equilibrium parameters of binding and thermodynamics of folding processes. The application of this synchrotron radiolysis technique to the study of lysozyme protein structure and the equilibrium urea induced unfolding of apomyoglobin are described. The Mg2+-induced folding of Tetrahymena thermophila group I ribozyme shows the capability of the method to study kinetics of folding.
Collapse
Affiliation(s)
- S D Maleknia
- Center for Synchrotron BioSciences, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | | | |
Collapse
|
30
|
Lago H, Parrott AM, Moss T, Stonehouse NJ, Stockley PG. Probing the kinetics of formation of the bacteriophage MS2 translational operator complex: identification of a protein conformer unable to bind RNA. J Mol Biol 2001; 305:1131-44. [PMID: 11162119 DOI: 10.1006/jmbi.2000.4355] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have investigated the kinetics of complex formation between bacteriophage MS2 coat protein subunits and synthetic RNA fragments encompassing the natural translational operator site, or the consensus sequences of three distinct RNA aptamer families, which are known to bind to the same site on the protein. Reactions were assayed using stopped-flow fluorescence spectroscopy and either the intrinsic tryptophan fluorescence of the protein or the signals from RNA fragments site-specifically substituted with the fluorescent adenosine analogue 2'-deoxy, 2-aminopurine. The kinetics observed were independent of the fluorophore being monitored or its position within the complex, indicating that the data report global events occurring during complex formation. Competition assays show that the complex being formed consists of a single coat protein dimer and one RNA molecule. The binding reaction is at least biphasic. The faster phase, constituting 80-85 % of the amplitude, is a largely diffusion driven RNA-protein interaction (k1 approximately 2x10(9) M(-1) s(-1)). The salt dependence of the forward reaction and the similarities of the on-rates of lower-affinity RNA fragments are consistent with a diffusion-controlled step dominated by electrostatic steering. The slower phase is independent of reactant concentration, and appears to correspond to isomerisation of the coat protein subunit(s) prior to RNA binding (k(iso) approximately 0.23 s(-1)). Measurements with a coat protein mutant (Pro78Asn) show that this phase is not due to cis-trans isomerisation at this residue. The conformational changes in the protein ligand during formation of an RNA-protein complex might play a role in the triggering of capsid self-assembly and a model for this is discussed.
Collapse
Affiliation(s)
- H Lago
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | | | | | | | | |
Collapse
|
31
|
Jäger M, Gehrig P, Plückthun A. The scFv fragment of the antibody hu4D5-8: evidence for early premature domain interaction in refolding. J Mol Biol 2001; 305:1111-29. [PMID: 11162118 DOI: 10.1006/jmbi.2000.4342] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fluorescence spectroscopy and 1H/2H-exchange techniques have been applied to characterize the folding of an scFv fragment, derived from the humanized anti-HER2 antibody hu4D5-8. A stable intermediate, consisting of a native VL domain and an unfolded VH domain, is populated under equilibrium unfolding conditions. A partially structured intermediate, with 1H/2H-exchange protection significantly less than that of the two isolated domains together, is detectable upon refolding the equilibrium-denatured scFv fragment. This means that the domains in the heterodimer do not fold independently. Rather, they associate prematurely before full 1H/2H-exchange protection can be gained. The formation of the native heterodimer from the non-native intermediate is a slow, cooperative process, which is rate-limited by proline cis/trans-isomerization. Unproductive domain association is also detectable after short-term denaturation, i.e. with the proline residues in native conformation. Only a fraction of the short-term denatured protein folds into the native protein in a fast, proline-independent reaction, because of spontaneous proline cis/trans-reisomerization in the early non-native intermediate. The comparison with the previously studied antibody McPC603 has now allowed us to delineate similarities in the refolding pathway of scFv fragments.
Collapse
Affiliation(s)
- M Jäger
- Biochemisches Institut, Universität Zürich, Winterthurerstr. 190, CH-8057, Zürich, Switzerland
| | | | | |
Collapse
|
32
|
Estapé D, Rinas U. Folding kinetics of the all-beta-sheet protein human basic fibroblast growth factor, a structural homolog of interleukin-1beta. J Biol Chem 1999; 274:34083-8. [PMID: 10567376 DOI: 10.1074/jbc.274.48.34083] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The refolding and unfolding kinetics of the all-beta-sheet protein human basic fibroblast growth factor (hFGF-2) were studied by fluorescence spectroscopy. The kinetics of the unfolding transition are monophasic. The refolding reaction at high and low guanidinium chloride (GdmCl) concentrations is best described by mono- and biphasic folding, respectively. Refolding and unfolding of hFGF-2 (155 amino acids) is very slow compared with other non-disulfide-bonded monomeric proteins of similar size. For example, the rate constant for unfolding at 4.5 mol.liter(-1) GdmCl is 0.006 s(-1), and the refolding rate constants at 0.4 mol.liter(-1) GdmCl are 0.01 s(-1) and 0.0009 s(-1) (15 degrees C, pH 7.0). A characterization of the thermodynamic nature of the folding process using transition state theory revealed that the slow refolding is almost exclusively controlled by entropic factors, namely the strong loss of conformational freedom during refolding. The rate of the slow unfolding kinetics is mainly (and at low denaturant concentrations exclusively) controlled by the large positive change in enthalpy. hFGF-2 shows similar slow folding kinetics to that of its structural homolog interleukin-1beta. Since both proteins show very little sequence identity, it is suggested that their slow folding kinetics are determined by the complex beta-sheet arrangement of the native molecules.
Collapse
Affiliation(s)
- D Estapé
- GBF National Research Center for Biotechnology, Biochemical Engineering Division, Mascheroder Weg 1, 38124 Braunschweig, Germany
| | | |
Collapse
|
33
|
Thies MJ, Mayer J, Augustine JG, Frederick CA, Lilie H, Buchner J. Folding and association of the antibody domain CH3: prolyl isomerization preceeds dimerization. J Mol Biol 1999; 293:67-79. [PMID: 10512716 DOI: 10.1006/jmbi.1999.3128] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The simplest naturally occurring model system for studying immunoglobulin folding and assembly is the non-covalent homodimer formed by the C-terminal domains (CH3) of the heavy chains of IgG. Here, we describe the structure of recombinant CH3 dimer as determined by X-ray crystallography and an analysis of the folding pathway of this protein. Under conditions where prolyl isomerization does not contribute to the folding kinetics, formation of the beta-sandwich structure is the rate-limiting step. beta-Sheet formation of CH3 is a slow process, even compared to other antibody domains, while the subsequent association of the folded monomers is fast. After long-time denaturation, the majority of the unfolded CH3 molecules reaches the native state in two serial reactions, involving the re-isomerization of the Pro35-peptide bond to the cis configuration. The species with the wrong isomer accumulate as a monomeric intermediate. Importantly, the isomerization to the correct cis configuration is the prerequisite for dimerization of the CH3 domain. In contrast, in the Fab fragment of the same antibody, prolyl isomerization occurs after dimerization demonstrating that within one protein, comprised of highly homologous domains, both the kinetics of beta-sandwich formation and the stage at which prolyl isomerization occurs during the folding process can be completely different.
Collapse
Affiliation(s)
- M J Thies
- Institut für Organische Chemie und Biochemie, Technische Universität München, Lichtenbergstrasse 4, Garching, 85747, Germany
| | | | | | | | | | | |
Collapse
|
34
|
Manyusa S, Whitford D. Defining folding and unfolding reactions of apocytochrome b5 using equilibrium and kinetic fluorescence measurements. Biochemistry 1999; 38:9533-40. [PMID: 10413531 DOI: 10.1021/bi990550d] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The refolding and unfolding kinetics of a soluble domain of apocytochrome b5 extending from residue 1 to 104 have been characterized using stopped flow and equilibrium-based fluorescence methods. The isolated apoprotein unfolds reversibly in the presence of GuHCl. From cooperative unfolding curves, the conformational stability (Delta G(uw)), in the absence of denaturant, is estimated to be 11.6 +/- 1.5 kJ mol-1 at 10 degrees C. The stability of apocytochrome b5 is lower than that of the corresponding form of the holoprotein (Delta G approximately 25 kJ mol-1) and exhibits a transition midpoint at 1.6 M GuHCl. Kinetic studies support the concept of a two-state model with both unfolding and refolding rates showing an exponential dependence on denaturant concentration with no evidence of the formation of transient intermediates in either limb of the chevron plot. Apocytochrome b5 is therefore an example of a protein in which both kinetics and equilibria associated with folding are described by a two-state model. The values of mku and mkf obtained from kinetic analysis are an indication of a transition state (mku/meq of 0.29) that resembles the native form by retaining similar solvent accessibility and many of the noncovalent interactions found in the apoprotein. The changes in heat capacity support a transition state that resembles the apoprotein with a value for Delta Cpf of -3.6 kJ mol-1 K-1 estimated for the refolding reaction. From these measurements, a model of refolding that involves the rapid nucleation of hydrophobic residues around Trp26 is suggested as a major event in the formation of the native apoprotein.
Collapse
Affiliation(s)
- S Manyusa
- Structural Biochemistry, Molecular & Cellular Biology, Division of Biomedical Sciences, Queen Mary & Westfield College, London, U.K
| | | |
Collapse
|
35
|
Bhuyan AK, Udgaonkar JB. Observation of multistate kinetics during the slow folding and unfolding of barstar. Biochemistry 1999; 38:9158-68. [PMID: 10413490 DOI: 10.1021/bi990285w] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The kinetics of the slow folding and unfolding reactions of barstar, a bacterial ribonuclease inhibitor protein, have been studied at 23(+/-1) degrees C, pH 8, by the use of tryptophan fluorescence, far-UV circular dichroism (CD), near-UV CD, and transient mixing (1)H nuclear magnetic resonance (NMR) spectroscopic measurements in the 0-4 M range of guanidine hydrochloride (GdnHCl) concentration. The denaturant dependences of the rates of folding and unfolding processes, and of the initial and final values of optical signals associated with these kinetic processes, have been determined for each of the four probes of measurement. Values determined for rates as well as amplitudes are shown to be very much probe dependent. Significant differences in the intensities and rates of appearance and disappearance of several resolved resonances in the real-time one-dimensional NMR spectra have been noted. The NMR spectra also show increasing dispersion of chemical shifts during the slow phase of refolding. The denaturant dependences of rates display characteristic folding chevrons with distinct rollovers under strongly native as well as strongly unfolding conditions. Analyses of the data and comparison of the results obtained with different probes of measurement appear to indicate the accumulation of a myriad of intermediates on parallel folding and unfolding pathways, and suggest the existence of an ensemble of transition states. The energetic stabilities of the intermediates estimated from kinetic data suggest that they are approximately half as stable as the fully folded protein. The slowness of the folding and unfolding processes (tau = 10-333 s) and values of 20.5 (+/-1.4) and 18 (+/-0.5) kcal mol(-)(1) for the activation energies of the slow refolding and unfolding reactions suggest that proline isomerization is involved in these reactions, and that the intermediates accumulate and are therefore detectable because the slow proline isomerization reaction serves as a kinetic trap during folding.
Collapse
Affiliation(s)
- A K Bhuyan
- National Centre for Biological Sciences, UAS-GKVK Campus, Bangalore, India
| | | |
Collapse
|
36
|
Ganesh C, Banerjee A, Shah A, Varadarajan R. Disordered N-terminal residues affect the folding thermodynamics and kinetics of maltose binding protein. FEBS Lett 1999; 454:307-11. [PMID: 10431828 DOI: 10.1016/s0014-5793(99)00826-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Maltose binding protein (MBP) exhibits a slow phase of folding at pH 7.4, 298 K. The kinetics of this phase has been characterized as a function of denaturant concentration and temperature. Denaturant double-jump experiments and the activation energy for folding indicate that the slow phase involves processes other than proline isomerization. Although the first five N-terminal residues are disordered in the MBP crystal structure, mutations in this region slow down folding and destabilize the native structure. This is the first report showing that disordered N-terminal residues can affect folding kinetics and stability.
Collapse
Affiliation(s)
- C Ganesh
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore
| | | | | | | |
Collapse
|
37
|
Segel DJ, Bachmann A, Hofrichter J, Hodgson KO, Doniach S, Kiefhaber T. Characterization of transient intermediates in lysozyme folding with time-resolved small-angle X-ray scattering. J Mol Biol 1999; 288:489-99. [PMID: 10329156 DOI: 10.1006/jmbi.1999.2703] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have used synchrotron radiation, together with stopped-flow and continuous-flow mixing techniques to monitor refolding of lysozyme at pH 5.2. From data measured at times which range from 14 ms to two seconds, we can monitor changes in the size, the shape and the pair distribution function of the polypeptide chain during the folding process. Comparison of the results with the properties of native and GdmCl-unfolded lysozyme shows that a major chain collapse occurs in the dead-time of mixing. During this process about 50 % of the change in radius of gyration between the unfolded protein and the native state occurs and the polypeptide chain adopts a globular shape. Time-resolved fluorescence spectra of this collapsed state suggest that the hydrophobic side-chains are still highly solvent accessible. A subsequently formed intermediate with helical structure in the alpha-domain is nearly identical in size and shape with native lysozyme and has a solvent-inaccessible hydrophobic core. Despite its native-like properties, this intermediate is only slightly more stable (DeltaG0=-4 kJ/mol) than the collapsed state and still much less stable than native lysozyme (DeltaDeltaG0=36 kJ/mol) at 20 degrees C.
Collapse
Affiliation(s)
- D J Segel
- Department of Physics, Stanford University, Stanford, CA, 94305, USA
| | | | | | | | | | | |
Collapse
|
38
|
Dirnbach E, Steel DG, Gafni A. Proline isomerization is unlikely to be the cause of slow annealing and reactivation during the folding of alkaline phosphatase. J Biol Chem 1999; 274:4532-6. [PMID: 9988686 DOI: 10.1074/jbc.274.8.4532] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The in vitro folding of Escherichia coli alkaline phosphatase (AP) from the guanidine hydrochloride (GdnHCl) denatured state is characterized by a significant slow phase in the post activational recovery of native protein lability (probed by the susceptibility to GdnHCl denaturation and occurring on the time scale of days) as well as a slow phase in the recovery of activity (on the time scale of minutes). Slow folding events have often been attributed to cis-trans isomerizations of X-Pro peptide bonds, a plausible explanation for AP, which contains 21 prolines per subunit. To investigate the role of proline isomerization in the two measures of refolding mentioned above, we have performed "double-jump" GdnHCl denaturation/renaturation experiments, with a third jump, where the rate of unfolding of refolded protein upon exposure to denaturant was added to assess the rate of change of lability. Our measurements of the time evolution of both the lability and the reactivation of refolded AP as a function of denaturation time show that proline isomerization is unlikely to be the cause of either of these slow events in the refolding of AP. The conclusions are further confirmed by the absence of proline isomerization effects when AP is refolded in the presence of human and periplasmic E. coli peptidyl-prolyl isomerase.
Collapse
Affiliation(s)
- E Dirnbach
- Biophysics Research Division, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
39
|
Tang KS, Guralnick BJ, Wang WK, Fersht AR, Itzhaki LS. Stability and folding of the tumour suppressor protein p16. J Mol Biol 1999; 285:1869-86. [PMID: 9917418 DOI: 10.1006/jmbi.1998.2420] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The tumour suppressor p16 is a member of the INK4 family of inhibi tors of the cyclin D-dependent kinases, CDK4 and CDK6, that are involved in the key growth control pathway of the eukaryotic cell cycle. The 156 amino acid residue protein is composed of four ankyrin repeats (a helix-turn-helix motif) that stack linearly as two four-helix bundles resulting in a non-globular, elongated molecule. The thermodynamic and kinetic properties of the folding of p16 are unusual. The protein has a very low free energy of unfolding, Delta GH-2O/D-N, of 3.1 kcal mol-1 at 25 degreesC. The rate-determining transition state of folding/unfolding is very compact (89% as compact as the native state). The other unusual feature is the very rapid rate of unfolding in the absence of denaturant of 0.8 s-1 at 25 degreesC. Thus, p16 has both thermodynamic and kinetic instability. These features may be essential for the regulatory function of the INK4 proteins and of other ankyrin-repeat-containing proteins that mediate a wide range of protein-protein interactions. The mechanisms of inactivation of p16 by eight cancer-associated mutations were dissected using a systematic method designed to probe the integrity of the secondary structure and the global fold. The structure and folding of p16 appear to be highly vulnerable to single point mutations, probably as a result of the protein's low stability. This vulnerability provides one explanation for the striking frequency of p16 mutations in tumours and in immortalised cell lines.
Collapse
Affiliation(s)
- K S Tang
- Centre for Protein Engineering, Medical Research Council, Hills Road, Cambridge, CB2 2QH, UK
| | | | | | | | | |
Collapse
|
40
|
Rousseau F, Schymkowitz JW, Sánchez del Pino M, Itzhaki LS. Stability and folding of the cell cycle regulatory protein, p13(suc1). J Mol Biol 1998; 284:503-19. [PMID: 9813133 DOI: 10.1006/jmbi.1998.2173] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
p13(suc1) (suc1) is a member of the CDC28 kinase specific family of cell cycle regulatory proteins that bind to the cyclin-dependent kinase CDK2 and regulate its activity. suc1 has two distinct conformational and assembly states, a compact globular monomer and a beta strand-exchanged dimer. The dimerisation is an example of domain-swapping, and is mediated by a molecular hinge mechanism that is conserved across the entire CKS family. It has been proposed that the function of suc1 may be modulated by the dimerisation process with monomer-dimer switching occurring in response to a change in the cell environment. We have investigated the stability and folding of suc1 as a first step in determining the mechanism and functional role of the strand exchange. Suc1 unfolds reversibly at equilibrium in a two-state manner with a free energy of unfolding of 7.2 kcal mol-1. The kinetics of folding and unfolding are complex, and double-jump stopped-flow methods revealed that there are at least three parallel folding pathways arising from distinct unfolded and partly folded, intermediate states. The major population of unfolded species fold rapidly according to a three-state mechanism, D1->I1->N, with a rate constant for the formation of native species, N, from the intermediate, I1, of 65 s-1 in water. Two minor populations of unfolded molecules fold more slowly. Folding of one population is limited by proline isomerisation in a partly folded state, and some expansion of the protein is required for isomerisation to occur. The other population could be assigned to rate-limiting isomerisation of the peptidyl-proline bond of residue 90, which is located in the molecular hinge. A minor, fast phase was detected in the unfolding kinetics that corresponds to unfolding of a small population of a distinct native-like form. Heterogeneity was removed upon mutation of Pro90 to Ala. The unfolding kinetics of the strand-exchanged dimer were also investigated and showed that the dimer unfolds at the same rate as the monomer.
Collapse
Affiliation(s)
- F Rousseau
- MRC Centre, Hills Road, Cambridge, CB2 2QH
| | | | | | | |
Collapse
|
41
|
Gianazza E, Eberini I, Santi O, Vignati M. Denaturant-gradient gel electrophoresis: technical aspects and practical applications. Anal Chim Acta 1998. [DOI: 10.1016/s0003-2670(98)00333-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
42
|
Dutta S, Maity NR, Bhattacharyya D. Multiple unfolded states of UDP-galactose 4-epimerase from yeast Kluyveromyces fragilis. Involvement of proline cis-trans isomerization in reactivation. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1343:251-62. [PMID: 9434116 DOI: 10.1016/s0167-4838(97)00124-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
UDP-galactose 4-epimerase from yeast Kluyveromyces fragilis is a dimeric molecule of 75 kDa per subunit with one molecule of cofactor NAD per dimer. It undergoes unfolding and complete dissociation in presence of 8 M urea at pH 7.0 by 10 min. It can be functionally reconstituted almost quantitatively in 2 h by dilution with 20 mM sodium phosphate buffer, pH 7 containing 1 mM extraneous NAD under a second order kinetics [Bhattacharyya, D. (1993) Biochemistry 32, 9726-9734]. Denaturation between 10-60 min inversely affects both the rate and maximum recovery of activity upon refolding. Aggregation of this protein has not been observed under these conditions. The time dependent reaction at the unfolded state is independent of pH between 5.4-10.4 but strongly dependent on temperature of denaturation between 0-20 degrees C. Unfolding at 0 degrees C divides the protein largely into two populations-34% of fast folding species following an apparent first order kinetics and 59% of slow folding species following a second order kinetics of reactivation. A very fast folding species of low abundance 3.5-7.5% depending on temperature of denaturation has been identified, which gets active status within the dead time of mixing. Interaction with the active site directed fluorescence probe 1-anilino 8-naphthalene sulfonic acid (1-ANS) and estimation of bound NAD suggest that the catalytic region of this enzyme is not formed in the long term denatured samples. The whole process of reactivation is catalysed by peptidyl prolyl cis-trans isomerase and thus suggests that one or more proline residues stereochemically control the rate limiting step of reactivation.
Collapse
Affiliation(s)
- S Dutta
- Indian Institute of Chemical Biology, Jadavpore, Calcutta
| | | | | |
Collapse
|
43
|
Wildegger G, Kiefhaber T. Three-state model for lysozyme folding: triangular folding mechanism with an energetically trapped intermediate. J Mol Biol 1997; 270:294-304. [PMID: 9236130 DOI: 10.1006/jmbi.1997.1030] [Citation(s) in RCA: 149] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We investigated the role of a partially folded intermediate that transiently accumulates during lysozyme folding. Previous studies had shown that the partially folded intermediate is located on a slow-folding pathway and that an additional fast direct pathway from the unfolded state to the native state exists. Kinetic double-jump experiments showed that the two folding pathways are not caused by slow equilibration reactions in the unfolded state. Rather, kinetic partitioning occurs very early in lysozyme refolding, giving the molecules the chance to enter the direct pathway or a slow-folding channel. Fitting the guanidinium chloride dependencies of the refolding and unfolding reactions to analytical solutions for different folding scenarios enables us to propose a triangular mechanism as the minimal model for lysozyme folding explaining all observed kinetic reactions: [diagram in text]. All microscopic rate constants and their guanidinium chloride dependencies could be obtained from the experimental data. The results suggest that population of the intermediate during refolding increases the free energy of activation of the folding process. This effect is due to the increased stability of the intermediate state compared to the unfolded state leading to an increase in the free energy of activation (deltaG0) compared to folding in the absence of populated intermediate states. The absolute energy of the transition state is identical on both pathways. The results imply that pre-formed secondary structure in the folding intermediate obstructs formation of the transition state of folding but does not change the nature of the rate-limiting step in the folding process.
Collapse
Affiliation(s)
- G Wildegger
- Department of Biophysical Chemistry, Biozentrum der Universität Basel,Switzerland
| | | |
Collapse
|
44
|
Schönbrunner N, Koller KP, Kiefhaber T. Folding of the disulfide-bonded beta-sheet protein tendamistat: rapid two-state folding without hydrophobic collapse. J Mol Biol 1997; 268:526-38. [PMID: 9159488 DOI: 10.1006/jmbi.1997.0960] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We investigated the reversible folding and unfolding reactions of the small 74 amino acid residue protein tendamistat. The secondary structure of tendamistat contains only beta-sheets and loop regions and the protein contains two disulfide bonds. Fluorescence-detected refolding kinetics of tendamistat (disulfide bonds intact) comprise of a major rapid fast reaction (tau = 10 ms in water) and two minor slow reactions. In the fast reaction 80% of the unfolded molecules are converted to native protein. The two slow reactions are part of a parallel slow folding pathway. On this pathway the rate-limiting step in the formation of native molecules is cis to trans isomerization of at least one of the three trans Xaa-Pro peptide bonds. This reaction is catalyzed efficiently by the enzyme peptidyl-prolyl cis-trans isomerase. Comparison of kinetic data with equilibrium unfolding transitions shows that the fast folding pathway follows a two-state process without populated intermediate states. Additionally, various sensitive tests did not detect any rapid chain collapse during tendamistat folding prior to the acquisition of the native three-dimensional structure. These results show that pre-formed disulfide bonds do not prevent efficient and rapid protein folding.
Collapse
Affiliation(s)
- N Schönbrunner
- Department of Biophysical Chemistry, Biozentrum der Universität Basel,Switzerland
| | | | | |
Collapse
|
45
|
Herbst R, Schäfer U, Seckler R. Equilibrium intermediates in the reversible unfolding of firefly (Photinus pyralis) luciferase. J Biol Chem 1997; 272:7099-105. [PMID: 9054403 DOI: 10.1074/jbc.272.11.7099] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Firefly luciferase has been used as a model protein to study cotranslational and chaperone-assisted protein folding. We found conditions for reversible unfolding of luciferase in the absence of cellular factors, and we characterized denaturant-induced equilibrium unfolding transitions and refolding kinetics of the enzyme. Luciferase unfolding induced by guanidinium chloride at 10 degrees C can be described as a four-state equilibrium with two inactive intermediates highly populated around 1 and 3 M denaturant. The transitions occur around 0.3, 1.7, and 3.8 M denaturant. The free energy of denaturation to the first inactive intermediate (DeltaG0N <==> I1 = 15 +/- 3 kJ.mol-1) is small for a protein of 60 kDa. Fluorescence and circular dichroism spectra of the intermediates indicate that I1 has a compact conformation, whereas aromatic side chains are highly exposed in the second intermediate, I2, despite its high content of secondary structure. In the presence of a hydrophilic detergent, significant reactivation of luciferase is observed up to temperatures at which the native protein is unstable. Reactivation kinetics of luciferase are exceedingly slow and probably not limited by proline isomerization, as suggested by their independence from the time spent in the unfolded state.
Collapse
Affiliation(s)
- R Herbst
- Universität Regensburg, Institut für Biophysik und Physikalische Biochemie, D-93040 Regensburg, Germany
| | | | | |
Collapse
|
46
|
Eftink MR, Shastry MC. Fluorescence methods for studying kinetics of protein-folding reactions. Methods Enzymol 1997; 278:258-86. [PMID: 9170317 DOI: 10.1016/s0076-6879(97)78014-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- M R Eftink
- Department of Chemistry, University of Mississippi, University 38677, USA
| | | |
Collapse
|
47
|
Stoller G, Tradler T, Rücknagel KP, Fischer G. An 11.8 kDa proteolytic fragment of the E. coli trigger factor represents the domain carrying the peptidyl-prolyl cis/trans isomerase activity. FEBS Lett 1996; 384:117-22. [PMID: 8612805 DOI: 10.1016/0014-5793(96)00282-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The 48 kDa trigger factor (TF) of E. coli was shown to be a peptidyl-prolyl cis/trans isomerase (PPIase). Its location on a ribosomal particle is unique among the PPIases described so far, and suggests a role in de novo protein folding. The trigger factor was investigated with regard to a domain carrying the catalytic activity. An enzymatically active fragment could be isolated after proteolysis by subtilisin. The resulting polypeptide was analysed by N-terminal sequencing and MALDI-TOF mass spectrometry revealing an 11.8 kDa fragment of TF encompassing the amino acid residues Arg-145 to Glu-251. The nucleotide sequence encoding the amino acid residues Met-140 to Ala-250 of the TF was cloned into vector pQE32. After expression in E. coli the resulting His-tagged polypeptide was isolated on an Ni2+-NTA column. Subsequent digestion with subtilisin and anion-exchange chromatography yielded a TF fragment encompassing amino acids Gln-148 to Thr-249. This fragment may represent the catalytic core of TF since PPIase activity with a specificity constant kcat/Km of 1.3 microM(-1) s(-1) could be demonstrated when using Suc-Ala-Phe-Pro-Phe-NH-Np as a substrate. Moreover, as was observed for the complete, authentic TF the PPIase activity of the fragment was not inhibited by the peptidomacrolide FK506.
Collapse
Affiliation(s)
- G Stoller
- Max-Planck-Gesellschaft, Arbeitsgruppe Enzymologie der Peptidbindung, Halle/S., Germany
| | | | | | | |
Collapse
|
48
|
Abstract
Folding of lysozyme from hen egg white was investigated by using interrupted refolding experiments. This method makes use of a high energy barrier between the native state and transient folding intermediates, and, in contrast to conventional optical techniques, it enables one to specifically monitor the amount of native molecules during protein folding. The results show that under strongly native conditions lysozyme can refold on parallel pathways. The major part of the lysozyme molecules (86%) refold on a slow kinetic pathway with well-populated partially folded states. Additionally, 14% of the molecules fold faster. The rate constant of formation of native molecules on the fast pathway corresponds well to the rate constant expected for folding to occur by a two-state process without any detectable intermediates. The results suggest that formation of the native state for the major fraction of lysozyme molecules is retarded compared with the direct folding process. Partially structured intermediates that transiently populate seem to be kinetically trapped in a conformation that can only slowly reach the native structure.
Collapse
Affiliation(s)
- T Kiefhaber
- Abteilung Biophysikalische Chemie, Universität Basel, Switzerland
| |
Collapse
|
49
|
Houry WA, Rothwarf DM, Scheraga HA. The nature of the initial step in the conformational folding of disulphide-intact ribonuclease A. NATURE STRUCTURAL BIOLOGY 1995; 2:495-503. [PMID: 7664113 DOI: 10.1038/nsb0695-495] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Here we investigate conformational folding reaction of disulphide-intact ribonuclease A in the absence of the complicating effects due to non-native interactions (such as cis/trans proline isomerization) in the unfolded state. The conformational folding process is found to be intrinsically very fast occurring on the milliseconds time scale. The kinetic data indicate that the conformational folding of ribonuclease A proceeds through the formation of a hydrophobically collapsed intermediate with properties similar to those of equilibrium molten-globules. Furthermore, the data suggest that the rate-limiting transition states on the unfolding and refolding pathways are substantially different with the refolding transition state having non-native-like properties.
Collapse
Affiliation(s)
- W A Houry
- Baker Laboratory of Chemistry, Cornell University, Ithaca, New York 14853-1301, USA
| | | | | |
Collapse
|
50
|
Mücke M, Schmid FX. Folding mechanism of ribonuclease T1 in the absence of the disulfide bonds. Biochemistry 1994; 33:14608-19. [PMID: 7981223 DOI: 10.1021/bi00252a029] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In the absence of its two disulfide bonds, ribonuclease T1 can exist in a native-like folded conformation when > or = 2 M NaCl is present. We measured the kinetics of unfolding and refolding of two reduced and carboxymethylated variants of ribonuclease T1 with one cis proline (the Ser54Gly/Pro55Asn variant) and with two cis prolines (the wild-type protein) as a function of the NaCl concentration. Single and double mixing techniques were used. Analysis of the kinetic results demonstrates that the two cis prolyl bonds at Pro39 and Pro55 remain cis in the folded state after the reduction and carboxymethylation of the disulfide bonds. Folded molecules with trans isomers could not be found. The substitution of cis-Pro55 influences the proline-limited folding reaction, and the analysis of the changes in the folding kinetics shows that the trans-->cis isomerizations of both prolines are slow and are rate-determining steps for the refolding of ribonuclease T1 in the presence as well as in the absence of the disulfide bonds. The direct folding reaction of protein chains with correct prolyl isomers is also affected by the Ser54Gly/Pro55Asn mutation. The rate of refolding is decreased, whereas the rate of unfolding is almost unaffected. The kinetic analysis points to two main consequences of the Ser54Gly/Pro55Asn mutation for the stability and the folding mechanism of RNase T1. It is moderately destabilizing, because the deletion of a conformationally restricted residue (Pro55-->Asn) and the insertion of a flexible residue (Ser54-->Gly) both tend to increase the entropy of the unfolded state. The cis<-->trans isomerization of Pro55 is abolished, however, leading to a decrease in the entropy of the unfolded protein. These two entropic contributions seem to partially compensate each other, and the net change in free energy as a consequence of the Ser54Gly/Pro55Asn double mutation is very small.
Collapse
Affiliation(s)
- M Mücke
- Laboratorium für Biochemie, Universität Bayreuth, Germany
| | | |
Collapse
|