1
|
Behavior of B- and Z-DNA Crystals under High Hydrostatic Pressure. CRYSTALS 2022. [DOI: 10.3390/cryst12060871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Single crystals of B-DNA and Z-DNA oligomers were analyzed under high hydrostatic pressure and their behavior was compared to the A-DNA crystals already known. The amplitude of the base compression, when compared to the A-form of DNA (0.13 Å/GPa), was higher for the Z-DNA (0.32 Å/GPa) and was the highest for the B-DNA (0.42 Å/GPa). The B-DNA crystal degraded rapidly around 400–500 MPa, while the Z-structure was more resistant, up to 1.2 GPa.
Collapse
|
2
|
DNA self-assembly: from chirality to evolution. Int J Mol Sci 2013; 14:8252-70. [PMID: 23591841 PMCID: PMC3645741 DOI: 10.3390/ijms14048252] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 03/03/2013] [Accepted: 03/21/2013] [Indexed: 01/12/2023] Open
Abstract
Transient or long-term DNA self-assembly participates in essential genetic functions. The present review focuses on tight DNA-DNA interactions that have recently been found to play important roles in both controlling DNA higher-order structures and their topology. Due to their chirality, double helices are tightly packed into stable right-handed crossovers. Simple packing rules that are imposed by DNA geometry and sequence dictate the overall architecture of higher order DNA structures. Close DNA-DNA interactions also provide the missing link between local interactions and DNA topology, thus explaining how type II DNA topoisomerases may sense locally the global topology. Finally this paper proposes that through its influence on DNA self-assembled structures, DNA chirality played a critical role during the early steps of evolution.
Collapse
|
3
|
Timsit Y. DNA-directed base pair opening. Molecules 2012; 17:11947-64. [PMID: 23060287 PMCID: PMC6268293 DOI: 10.3390/molecules171011947] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 09/28/2012] [Accepted: 10/09/2012] [Indexed: 11/16/2022] Open
Abstract
Strand separation is a fundamental molecular process essential for the reading of the genetic information during DNA replication, transcription and recombination. However, DNA melting in physiological conditions in which the double helix is expected to be stable represents a challenging problem. Current models propose that negative supercoiling destabilizes the double helix and promotes the spontaneous, sequence-dependent DNA melting. The present review examines an alternative view and reveals how DNA compaction may trigger the sequence dependent opening of the base pairs. This analysis shows that in DNA crystals, tight DNA-DNA interactions destabilize the double helices at various degrees, from the alteration of the base-stacking to the opening of the base-pairs. The electrostatic repulsion generated by the DNA close approach of the negatively charged sugar phosphate backbones may therefore provide a potential source of the energy required for DNA melting. These observations suggest a new molecular mechanism for the initial steps of strand separation in which the coupling of the DNA tertiary and secondary interactions both actively triggers the base pair opening and stabilizes the intermediate states during the melting pathway.
Collapse
Affiliation(s)
- Youri Timsit
- CNRS, Aix-Marseille Université, IGS UMR7256, FR-13288 Marseille, France.
| |
Collapse
|
4
|
Timsit Y. Local sensing of global DNA topology: from crossover geometry to type II topoisomerase processivity. Nucleic Acids Res 2011; 39:8665-76. [PMID: 21764774 PMCID: PMC3203592 DOI: 10.1093/nar/gkr556] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Type II topoisomerases are ubiquitous enzymes that control the topology and higher order structures of DNA. Type IIA enzymes have the remarkable property to sense locally the global DNA topology. Although many theoretical models have been proposed, the molecular mechanism of chiral discrimination is still unclear. While experimental studies have established that topoisomerases IIA discriminate topology on the basis of crossover geometry, a recent single-molecule experiment has shown that the enzyme has a different processivity on supercoiled DNA of opposite sign. Understanding how cross-over geometry influences enzyme processivity is, therefore, the key to elucidate the mechanism of chiral discrimination. Analysing this question from the DNA side reveals first, that the different stability of chiral DNA cross-overs provides a way to locally sense the global DNA topology. Second, it shows that these enzymes have evolved to recognize the G- and T-segments stably assembled into a right-handed cross-over. Third, it demonstrates how binding right-handed cross-overs across their large angle imposes a different topological link between the topoIIA rings and the plectonemes of opposite sign thus directly affecting the enzyme freedom of motion and processivity. In bridging geometry and kinetic data, this study brings a simple solution for type IIA topoisomerase chiral discrimination.
Collapse
Affiliation(s)
- Youri Timsit
- Information Génomique et Structurale, CNRS - UPR2589, Institut de Microbiologie de la Méditerranée, Aix-Marseille University, Parc Scientifique de Luminy, Marseille, France
| |
Collapse
|
5
|
Abstract
DNA self-assembly has crucial implications in reading out the genetic information in the cell and in nanotechnological applications. In a recent paper, self-assembled DNA crystals displaying spectacular triangular motifs have been described (Zheng et al., 2009). The authors claimed that their data demonstrate the possibility to rationally design well-ordered macromolecular 3D DNA lattice with precise spatial control using sticky ends. However, the authors did not recognize the fundamental features that control DNA self-assembly in the lateral direction. By analysing available crystallographic data and simulating a DNA triangle, we show that the double helix geometry, sequence-specific cytosine–phosphate interactions and divalent cations are in fact responsible for the precise spatial assembly of DNA.
Collapse
Affiliation(s)
- Youri Timsit
- Information Génomique et Structurale, CNRS-UPR2589, Institut de Microbiologie de la Méditerranée, Parc Scientifique de Luminy, Marseille, 13288, France.
| | | |
Collapse
|
6
|
Várnai P, Timsit Y. Differential stability of DNA crossovers in solution mediated by divalent cations. Nucleic Acids Res 2010; 38:4163-72. [PMID: 20215439 PMCID: PMC2896531 DOI: 10.1093/nar/gkq150] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The assembly of DNA duplexes into higher-order structures plays a major role in many vital cellular functions such as recombination, chromatin packaging and gene regulation. However, little is currently known about the molecular structure and stability of direct DNA–DNA interactions that are required for such functions. In nature, DNA helices minimize electrostatic repulsion between double helices in several ways. Within crystals, B-DNA forms either right-handed crossovers by groove–backbone interaction or left-handed crossovers by groove–groove juxtaposition. We evaluated the stability of such crossovers at various ionic concentrations using large-scale atomistic molecular dynamics simulations. Our results show that right-handed DNA crossovers are thermodynamically stable in solution in the presence of divalent cations. Attractive forces at short-range stabilize such crossover structures with inter-axial separation of helices less than 20 Å. Right-handed crossovers, however, dissociate swiftly in the presence of monovalent ions only. Surprisingly, left-handed crossovers, assembled by sequence-independent juxtaposition of the helices, appear unstable even at the highest concentration of Mg2+studied here. Our study provides new molecular insights into chiral association of DNA duplexes and highlights the unique role divalent cations play in differential stabilization of crossover structures. These results may serve as a rational basis to understand the role DNA crossovers play in biological processes.
Collapse
Affiliation(s)
- Péter Várnai
- Department of Chemistry and Biochemistry, University of Sussex, Brighton, BN1 9QJ, UK.
| | | |
Collapse
|
7
|
Pavan GM, Danani A, Pricl S, Smith DK. Modeling the Multivalent Recognition between Dendritic Molecules and DNA: Understanding How Ligand “Sacrifice” and Screening Can Enhance Binding. J Am Chem Soc 2009; 131:9686-94. [DOI: 10.1021/ja901174k] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Giovanni M. Pavan
- Molecular Simulations Engineering (MOSE) Laboratory, Department of Chemical Engineering (DICAMP), University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy, Institute of Computer Integrated Manufacturing for Sustainable Innovation (ICIMSI), University for Applied Sciences of Southern Switzerland (SUPSI), Centro Galleria 2, Manno, CH-6928, Switzerland, and Department of Chemistry, University of York, Heslington, York, YO10 5DD, U.K
| | - Andrea Danani
- Molecular Simulations Engineering (MOSE) Laboratory, Department of Chemical Engineering (DICAMP), University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy, Institute of Computer Integrated Manufacturing for Sustainable Innovation (ICIMSI), University for Applied Sciences of Southern Switzerland (SUPSI), Centro Galleria 2, Manno, CH-6928, Switzerland, and Department of Chemistry, University of York, Heslington, York, YO10 5DD, U.K
| | - Sabrina Pricl
- Molecular Simulations Engineering (MOSE) Laboratory, Department of Chemical Engineering (DICAMP), University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy, Institute of Computer Integrated Manufacturing for Sustainable Innovation (ICIMSI), University for Applied Sciences of Southern Switzerland (SUPSI), Centro Galleria 2, Manno, CH-6928, Switzerland, and Department of Chemistry, University of York, Heslington, York, YO10 5DD, U.K
| | - David K. Smith
- Molecular Simulations Engineering (MOSE) Laboratory, Department of Chemical Engineering (DICAMP), University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy, Institute of Computer Integrated Manufacturing for Sustainable Innovation (ICIMSI), University for Applied Sciences of Southern Switzerland (SUPSI), Centro Galleria 2, Manno, CH-6928, Switzerland, and Department of Chemistry, University of York, Heslington, York, YO10 5DD, U.K
| |
Collapse
|
8
|
Korolev N, Nordenskiöld L. H4 histone tail mediated DNA-DNA interaction and effects on DNA structure, flexibility, and counterion binding. A molecular dynamics study. Biopolymers 2007; 86:409-23. [PMID: 17471473 DOI: 10.1002/bip.20749] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
All-atom molecular dynamics (MD) simulations were performed during 30-45 ns for a system of three identical DNA 22-mers, 14 short fragments of the charged H4 histone tail peptide fragment (amino acids 5-12, KGGKGLGK) with K(+) counterions, and explicit water. The simulation setup mimics the crowded conditions of DNA in eukaryotic chromatin. To assess the influence of tail fragments on DNA structure and dynamics, a "control" 20 ns MD simulation was carried for a system with the same DNA and water content but in the absence of oligopeptides. Results of DNA interaction with the histone tail fragments, K(+), and water is presented. DNA structure and dynamics and its interplay with the histone tail fragments binding are described. The charged side chains of the lysines play a major role in mediating DNA-DNA attraction by forming bridges and coordinating to phosphate groups and electronegative sites in the minor groove. Binding of all species to DNA is dynamic. Some of the tail fragments while being flexible and mobile in each of its functional groups remain associated near certain locations of the DNA oligomer. The present work allows capturing typical features of the histone tail-counterion-DNA structure, interaction, and dynamics.
Collapse
Affiliation(s)
- Nikolay Korolev
- Division of Structural and Computational Biology, School of Biological Sciences, Nanyang Technological University, Singapore
| | | |
Collapse
|
9
|
Turano P. Insights into Partially Folded or Unfolded States of Metalloproteins from Nuclear Magnetic Resonance. Inorg Chem 2004; 43:7945-52. [PMID: 15578828 DOI: 10.1021/ic048962k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nuclear magnetic resonance (NMR) provides detailed insights into the conformational features of unfolded and partially folded proteins. In the case of metalloproteins, special attention should be devoted to the characterization of the properties of the metal binding sites, and specific approaches need to be developed depending on the nature of the metal ion and its coordination environment. At the same time, metal-based NMR parameters may help in getting a better picture of the average structural properties of the metalloprotein. A critical evaluation of the limits of applicability of paramagnetic effects for solution structure determination in partially folded or unfolded proteins is presented. The coupling between NMR characterization of structure and dynamic of the polypeptide chain and of the metal environment provides insights into the stabilizing role of metal ions in metalloproteins. The overall approach is illustrated for some case examples of increasing flexibility obtained far from native conditions for cytochrome c and superoxide dismutase, two metalloproteins that have been extensively studied in our lab and whose misfolded forms may be relevant for important biological processes.
Collapse
Affiliation(s)
- Paola Turano
- CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
10
|
Korolev N, Lyubartsev AP, Laaksonen A, Nordenskiöld L. Molecular dynamics simulation study of oriented polyamine- and Na-DNA: sequence specific interactions and effects on DNA structure. Biopolymers 2004; 73:542-55. [PMID: 15048778 DOI: 10.1002/bip.10583] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Molecular dynamics (MD) computer simulations have been carried out on four systems that correspond to an infinite array of parallel ordered B-DNA, mimicking the state in oriented DNA fibers and also being relevant for crystals of B-DNA oligonucleotides. The systems were all comprised of a periodical hexagonal cell with three identical DNA decamers, 15 water molecules per nucleotide, and counterions balancing the DNA charges. The sequence of the double helical DNA decamer was d(5'-ATGCAGTCAG)xd(5'-TGACTGCATC). The counterions were the two natural polyamines spermidine(3+) (Spd(3+)) and putrescine(2+) (Put(2+)), the synthetic polyamine diaminopropane(2+) (DAP(2+)), and the simple monovalent cation Na(+). This work compares the specific structures of the polyamine- and Na-DNA systems and how they are affected by counterion interactions. It also describes sequence-specific hydration and interaction of the cations with DNA. The local DNA structure is dependent on the nature of the counterion. Even the very similar polyamines, Put(2+) and DAP(2+), show clear differences in binding to DNA and in effect on hydration and local structure. Generally, the polyamines disorder the hydration of the DNA around their binding sites whereas Na(+) being bound to DNA attracts and organizes water in its vicinity. Cation binding at the selected sites in the minor and in the major groove is compared for the different polyamines and Na(+). We conclude that the synthetic polyamine (DAP(2+)) binds specifically to several structural and sequence-specific motifs on B-DNA, unlike the natural polyamines, Spd(3+) and Put(2+). This specificity of DAP(2+) compared to the more dynamic behavior of Spd(3+) and Put(2+) may explain why the latter polyamines are naturally occurring in cells.
Collapse
Affiliation(s)
- Nikolay Korolev
- School of Biological Sciences, NTU - Nanyang Technological University, No. 1 Nanyang Walk, Blk. 5, Level 3, Singapore 637616
| | | | | | | |
Collapse
|
11
|
Korolev N, Lyubartsev AP, Laaksonen A, Nordenskiöld L. A molecular dynamics simulation study of polyamine? and sodium?DNA. Interplay between polyamine binding and DNA structure. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2004; 33:671-82. [PMID: 15146298 DOI: 10.1007/s00249-004-0410-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2004] [Revised: 04/02/2004] [Accepted: 04/05/2004] [Indexed: 10/26/2022]
Abstract
Four different molecular dynamics (MD) simulations have been performed for infinitely long ordered DNA molecules with different counterions, namely the two natural polyamines spermidine(3+) (Spd3+) and putrescine(2+) (Put2+), the synthetic polyamine diaminopropane(2+) (DAP2+), and the simple monovalent cation Na+. All systems comprised a periodical hexagonal cell with three identical DNA decamers, 15 water molecules per nucleotide, and counterions balancing the DNA charge. The simulation setup mimics the DNA state in oriented DNA fibers, previously studied using NMR and other experimental methods. In this paper the interplay between polyamine binding and local DNA structure is analyzed by investigating how and if the minor groove width of DNA depends on the presence and dynamics of the counterions. The results of the MD simulations reveal principal differences in the polyamine-DNA interactions between the natural [spermine(4+), Spd3+, Put2+] and the synthetic (DAP2+) polyamines.
Collapse
Affiliation(s)
- Nikolay Korolev
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | | | | | | |
Collapse
|
12
|
van Dam L, Korolev N, Nordenskiöld L. Polyamine-nucleic acid interactions and the effects on structure in oriented DNA fibers. Nucleic Acids Res 2002; 30:419-28. [PMID: 11788703 PMCID: PMC99836 DOI: 10.1093/nar/30.2.419] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Fibrous oriented calf thymus DNA containing the natural polyamines spermidine (Spd) and putrescine (Put), and the degradation polyamines cadaverine (Cad) and 1,3-diaminopropane (DAP), have been investigated at different water contents using nuclear magnetic resonance (NMR) methods, fiber X-ray diffraction and gravimetric measurements. When judged by X-ray only the DAP and Spd samples seem to undergo a B-A-form transition at reduced water activity. Solid-state two-dimensional rotor-synchronized magic angle spinning (2D-syncMAS) 31P-NMR, however, shows the A-form to be present also in the Put sample, and it appears that the separation between the amine units of diamines is correlated with the amount of A-form present. In addition, the solid-state NMR data show the polyamine-bound DNA samples to have a significant deviation from the ordinary B-form DNA structure, displaying similar amounts of BI and BII nucleotide conformations. The low water content of the samples suggest that the polyamines themselves act as hydrators of DNA. Water 2H-NMR results are in agreement with this observation. The quadrupolar splittings of the polyamine 2H signals for samples at low water content indicate some preferential spatial orientations of the polyamines in the ordered DNA environment. The polyamines show relatively fast macroscopic diffusion as detected by NMR self-diffusion measurements.
Collapse
Affiliation(s)
- Lorens van Dam
- Physical Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden
| | | | | |
Collapse
|
13
|
Rokita SE. Chemical reagents for investigating the major groove of DNA. CURRENT PROTOCOLS IN NUCLEIC ACID CHEMISTRY 2001; Chapter 6:Unit 6.6. [PMID: 18428867 DOI: 10.1002/0471142700.nc0606s05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Chemical modification provides an inexpensive and rapid method for characterizing the structure of DNA and its association with drugs and proteins. Numerous conformation-specific probes are available, but most investigations rely on only the most common and readily available of these. The major groove of DNA is typically characterized by reaction with dimethyl sulfate, diethyl pyrocarbonate, potassium permanganate, osmium tetroxide, and, quite recently, bromide with monoperoxysulfate. This commentary discusses the specificity of these reagents and their applications in protection, interference, and missing contact experiments.
Collapse
Affiliation(s)
- S E Rokita
- University of Maryland, College Park, Maryland, USA
| |
Collapse
|
14
|
Kornyshev AA, Leikin S. Sequence recognition in the pairing of DNA duplexes. PHYSICAL REVIEW LETTERS 2001; 86:3666-3669. [PMID: 11328049 DOI: 10.1103/physrevlett.86.3666] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2000] [Indexed: 05/23/2023]
Abstract
Pairing of DNA fragments with homologous sequences occurs in gene shuffling, DNA repair, and other vital processes. While chemical individuality of base pairs is hidden inside the double helix, x ray and NMR revealed sequence-dependent modulation of the structure of DNA backbone. Here we show that the resulting modulation of the DNA surface charge pattern enables duplexes longer than approximately 50 base pairs to recognize sequence homology electrostatically at a distance of up to several water layers. This may explain the local recognition observed in pairing of homologous chromosomes and the observed length dependence of homologous recombination.
Collapse
|
15
|
Kypr J, Chládková J, Zimulová M, Vorlícková M. Aqueous trifluorethanol solutions simulate the environment of DNA in the crystalline state. Nucleic Acids Res 1999; 27:3466-73. [PMID: 10446234 PMCID: PMC148588 DOI: 10.1093/nar/27.17.3466] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We took 28 fragments of DNA whose crystal structures were known and used CD spectroscopy to search for conditions stabilising the crystal structures in solution. All 28 fragments switched into their crystal structures in 60-80% aqueous trifluorethanol (TFE) to indicate that the crystals affected the conformation of DNA like the concentrated TFE. The fragments crystallising in the B-form also underwent cooperative TFE-induced changes that took place within the wide family of B-form structures, suggesting that the aqueous and crystal B-forms differed as well. Spermine and magnesium or calcium cations, which were contained in the crystallisation buffers, promoted or suppressed the TFE-induced changes of several fragments to indicate that the crystallisation agents can decide which of the possible structures is adopted by the DNA fragment in the crystal.
Collapse
Affiliation(s)
- J Kypr
- Academy of Sciences of the Czech Republic, Institute of Biophysics, Královopolská 135, CZ-61265 Brno, Czech Republic
| | | | | | | |
Collapse
|
16
|
Timsit Y, Shatzky-Schwartz M, Shakked Z. Left-handed DNA crossovers. Implications for DNA-DNA recognition and structural alterations. J Biomol Struct Dyn 1999; 16:775-85. [PMID: 10217449 DOI: 10.1080/07391102.1999.10508292] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The close approach of DNA segments participates in many biological functions including DNA condensation and DNA processing. Previous crystallographic studies have shown that B-DNA self-fitting by mutual groove-backbone interaction produces right-handed DNA crossovers. These structures have opened new perspectives on the role of close DNA-DNA interactions in the architecture and activity the DNA molecule. In the present study, the analysis of the crystal packing of two B-DNA decamer duplexes d(CCIIICCCGG) and d(CCGCCGGCGG) reveals the existence of new modes of DNA crossing. Symmetric left-handed crossovers are produced by mutual fitting of DNA grooves at the crossing point. New sequence patterns contribute to stabilize longitudinal fitting of the sugar-phosphate backbone into the major groove. In addition, the close approach of DNA segments greatly influences the DNA conformation in a sequence dependent manner. This study provides new insights into the role of DNA sequence and structure in DNA-DNA recognition. In providing detailed molecular views of DNA crossovers of opposite chirality, this study can also help to elucidate the role of symmetry and chirality in the recognition of complex DNA structures by protein dimers or tetramers, such as topoisomerase II and recombinase enzymes. These results are discussed in the context of the possible relationships between DNA condensation and DNA processing.
Collapse
Affiliation(s)
- Y Timsit
- Institut de Biologie Physico-Chimique, CNRS, Paris France.
| | | | | |
Collapse
|
17
|
Timsit Y, Duplantier B, Jannink G, Sikorav JL. Symmetry and chirality in topoisomerase II-DNA crossover recognition. J Mol Biol 1998; 284:1289-99. [PMID: 9878350 DOI: 10.1006/jmbi.1998.2281] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Several experimental data support the notion that the recognition of DNA crossovers play an important role in the multiple functions of topoisomerase II. Here, a theoretical analysis of the possible modes of assembly of yeast topoisomerase II with right and left-handed tight DNA crossovers is performed, using the crystal coordinates of the docking partners. The DNA crossovers are assumed to be clamped into the central hole of the enzyme. Taking into account the rules for building symmetric ternary complexes and the structural constraints imposed by DNA-DNA and protein-DNA interactions, this analysis shows that two geometric solutions could exist, depending on the chirality of the DNA crossovers. In the first one, the two DNA segments are symmetrically recognized by the enzyme while each single double helix binds asymmetrically the protein dimer. In the second one, each double helix is symmetrically recognized by the protein around its dyad axis, while the two DNA segments have their own binding modes. The finding of potential DNA-binding domains which could interact with the crossovers provides structural supports for each model. The structural similarity of a loop containing a cluster of conserved basic residues pointing into the central hole of topoisomerase II and the second DNA-binding site of histone H5 which binds DNA crossover is of particular interest. Each solution, which is consistent with different sets of experimental data found in the literature, could either correspond to different functions of the enzyme or different steps of the reaction. This work provides structural insights for better understanding the role of chirality and symmetry in topoisomerase II-DNA crossover recognition, suggests testable experiments to further elucidate the structure of ternary complexes, and raises new questions about the relationships between the mechanism of strand-passage and strand-exchange catalyzed by the enzyme.
Collapse
Affiliation(s)
- Y Timsit
- Institut de Biologie Physico-Chimique, CNRS, Paris, France.
| | | | | | | |
Collapse
|
18
|
Kornyshev AA, Leikin S. Electrostatic interaction between helical macromolecules in dense aggregates: an impetus for DNA poly- and meso-morphism. Proc Natl Acad Sci U S A 1998; 95:13579-84. [PMID: 9811842 PMCID: PMC24861 DOI: 10.1073/pnas.95.23.13579] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/1998] [Indexed: 11/18/2022] Open
Abstract
DNA exhibits a surprising multiplicity of structures when it is packed into dense aggregates. It undergoes various polymorphous transitions (e.g., from the B to A form) and mesomorphous transformations (from hexagonal to orthorhombic or monoclinic packing, changes in the mutual alignment of nearest neighbors, etc). In this report we show that such phenomena may have their origin in the specific helical symmetry of the charge distribution on DNA surface. Electrostatic interaction between neighboring DNA molecules exhibits strong dependence on the patterns of molecular surface groups and adsorbed counter-ions. As a result, it is affected by such structural parameters as the helical pitch, groove width, the number of base pairs per helical turn, etc. We derive expressions which relate the energy of electrostatic interaction with these parameters and with the packing variables characterizing the axial and azimuthal alignment between neighboring macromolecules. We show, in particular, that the structural changes upon the B-to-A transition reduce the electrostatic energy by approximately kcal/mol per base pair, at a random adsorption of counter ions. Ion binding into the narrow groove weakens or inverts this effect, stabilizing B-DNA, as it is presumably the case in Li+-DNA assemblies. The packing symmetry and molecular alignment in DNA aggregates are shown to be affected by the patterns of ion binding.
Collapse
|
19
|
Abstract
In this paper, a structure-function analysis of B-DNA self-fitting is reviewed in the light of recent oligonucleotide crystal structures. Their crystal packings provided a high-resolution view of B-DNA helices closely and specifically fitted by groove-backbone interaction, a natural and biologically relevant manner to assemble B-DNA helices. In revealing that new properties of the DNA molecule emerge during condensation, these crystallographic studies have pointed to the biological importance of DNA—DNA interactions.
Collapse
Affiliation(s)
- Y Timsit
- IGBMC, Parc d'Innovation, Illkirch, France
| | | |
Collapse
|
20
|
Abstract
In the years that have passed since the publication of Wolfram Saenger's classic book on nucleic acid structure (Saenger, 1984), a considerable amount of new data has been accumulated on the range of conformations which can be adopted by DNA. Many unusual species have joined the DNA zoo, including new varieties of two, three and four stranded helices. Much has been learnt about intrinsic DNA curvature, dynamics and conformational transitions and many types of damaged or deformed DNA have been investigated. In this article, we will try to summarise this progress, pointing out the scope of the various experimental techniques used to study DNA structure, and, where possible, trying to discern the rules which govern the behaviour of this subtle macromolecule. The article is divided into six major sections which begin with a general discussion of DNA structure and then present successively, B-DNA, DNA deformations, A-DNA, Z-DNA and DNARNA hybrids. An extensive set of references is included and should serve the reader who wishes to delve into greater detai.
Collapse
Affiliation(s)
- B Hartmann
- Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Paris, France
| | | |
Collapse
|
21
|
Berman HM, Gelbin A, Westbrook J. Nucleic acid crystallography: a view from the nucleic acid database. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1996; 66:255-88. [PMID: 9284453 DOI: 10.1016/s0079-6107(97)00019-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
What are the future directions of the field of nucleic acid crystallography? Although there have been many duplex structures determined, the sample is still relatively small. This is especially true if one wants to derive enough information about the relationships between sequence and structure. Indeed, there are data for all the possible 10 dimer steps, but for some steps it is very limited. If the structural code resides in trimers or tetrad steps then there is simply not enough data to do meaningful statistical analyses. So the first direction that needs to be explored is the determination of more structures with more varied sequences. The other noticeable thing about the data is the shortness of the strands. While it is probably true that attempts to crystallize very long sequences will not meet with success, the idea of crystallizing sequences engineered to fit together via sticky ends such as has been done for the CAP-DNA complex (Schultz et al., 1990) should give data about the behavior of much longer stretches of DNA. The question of the effects of environment on the structure of DNA continues to be a very important one to address since DNA is rarely alone. The preliminary data we have analysed from the current sample shows that the conformation of some steps are very sensitive to packing type. Numerous studies of the hydration around DNA shows that there is a real synergy between the hydration structure and the base conformation. More data will allow further quantitation of these observations. RNA structure is the next very exciting frontier. The emerging structures of duplexes with internal loops, the two hammerhead ribozyme structures and the group I intron ribozyme have given us a glimpse of the complexity and elegance of this class of molecules. With the technology now in place to allow the determination of the structures of these molecules, the expectation is that now we will see a large increase in the number of these structures in the NDB.
Collapse
Affiliation(s)
- H M Berman
- Department of Chemistry, Rutgers University, Piscataway, NJ 08855-0939, USA
| | | | | |
Collapse
|
22
|
Basham B, Schroth GP, Ho PS. An A-DNA triplet code: thermodynamic rules for predicting A- and B-DNA. Proc Natl Acad Sci U S A 1995; 92:6464-8. [PMID: 7604014 PMCID: PMC41538 DOI: 10.1073/pnas.92.14.6464] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The ability to predict macromolecular conformations from sequence and thermodynamic principles has long been coveted but generally has not been achieved. We show that differences in the hydration of DNA surfaces can be used to distinguish between sequences that form A- and B-DNA. From this, a "triplet code" of A-DNA propensities was derived as energetic rules for predicting A-DNA formation. This code correctly predicted > 90% of A- and B-DNA sequences in crystals and correlates with A-DNA formation in solution. Thus, with our previous studies on Z-DNA, we now have a single method to predict the relative stability of sequences in the three standard DNA duplex conformations.
Collapse
Affiliation(s)
- B Basham
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis 97331, USA
| | | | | |
Collapse
|