1
|
Tan HY, Bianco PR. SSB Facilitates Fork-Substrate Discrimination by the PriA DNA Helicase. ACS OMEGA 2021; 6:16324-16335. [PMID: 34235303 PMCID: PMC8246471 DOI: 10.1021/acsomega.1c00722] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/19/2021] [Indexed: 06/13/2023]
Abstract
Primosomal protein A (PriA) is a member of helicase SuperFamily 2. Its role in vivo is to reload the primosome onto resurrected replication forks resulting in the restart of the previously stalled DNA replication process. Single-stranded DNA-binding protein (SSB) plays a key role in mediating activities at replication forks and interacts both physically and functionally with PriA. To gain a mechanistic insight into the PriA-SSB interaction, a coupled spectrophotometric assay was utilized to characterize the ATPase activity of PriA in vitro in the presence of fork substrates. The results demonstrate that SSB enhances the ability of PriA to discriminate between fork substrates as much as 140-fold. This is due to a significant increase in the catalytic efficiency of the helicase induced by SSB. This interaction is species-specific as bacteriophage gene 32 protein cannot substitute for the Escherichia coli protein. SSB, while enhancing the activity of PriA on its preferred fork decreases both the affinity of the helicase for other forks and the catalytic efficiency. Central to the stimulation afforded by SSB is the unique ability of PriA to bind with high affinity to the 3'-OH placed at the end of the nascent leading strand at the fork. When both the 3'-OH and SSB are present, the maximum effect on the ATPase activity of the helicase is observed. This ensures that PriA will load onto the correct fork, in the right orientation, thereby ensuring that replication restart is directed to only the template lagging strand.
Collapse
Affiliation(s)
| | - Piero R. Bianco
- Department of Pharmaceutical Sciences,
College of Pharmacy, University of Nebraska
Medical Center, Omaha, Nebraska 68198-6025, United States
| |
Collapse
|
2
|
Dolezal D, Jones CE, Lai X, Brister JR, Mueser TC, Nossal NG, Hinton DM. Mutational analysis of the T4 gp59 helicase loader reveals its sites for interaction with helicase, single-stranded binding protein, and DNA. J Biol Chem 2012; 287:18596-607. [PMID: 22427673 DOI: 10.1074/jbc.m111.332080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Efficient DNA replication involves coordinated interactions among DNA polymerase, multiple factors, and the DNA. From bacteriophage T4 to eukaryotes, these factors include a helicase to unwind the DNA ahead of the replication fork, a single-stranded binding protein (SSB) to bind to the ssDNA on the lagging strand, and a helicase loader that associates with the fork, helicase, and SSB. The previously reported structure of the helicase loader in the T4 system, gene product (gp)59, has revealed an N-terminal domain, which shares structural homology with the high mobility group (HMG) proteins from eukaryotic organisms. Modeling of this structure with fork DNA has suggested that the HMG-like domain could bind to the duplex DNA ahead of the fork, whereas the C-terminal portion of gp59 would provide the docking sites for helicase (T4 gp41), SSB (T4 gp32), and the ssDNA fork arms. To test this model, we have used random and targeted mutagenesis to generate mutations throughout gp59. We have assayed the ability of the mutant proteins to bind to fork, primed fork, and ssDNAs, to interact with SSB, to stimulate helicase activity, and to function in leading and lagging strand DNA synthesis. Our results provide strong biochemical support for the role of the N-terminal gp59 HMG motif in fork binding and the interaction of the C-terminal portion of gp59 with helicase and SSB. Our results also suggest that processive replication may involve the switching of gp59 between its interactions with helicase and SSB.
Collapse
Affiliation(s)
- Darin Dolezal
- Gene Expression and Regulation Section, Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
3
|
Delagoutte E, Baldacci G. 5'CAG and 5'CTG Repeats Create Differential Impediment to the Progression of a Minimal Reconstituted T4 Replisome Depending on the Concentration of dNTPs. Mol Biol Int 2011; 2011:213824. [PMID: 22096622 PMCID: PMC3214698 DOI: 10.4061/2011/213824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 05/13/2011] [Indexed: 12/03/2022] Open
Abstract
Instability of repetitive sequences originates from strand misalignment during repair or replicative DNA synthesis. To investigate the activity of reconstituted T4 replisomes across trinucleotide repeats (TNRs) during leading strand DNA synthesis, we developed a method to build replication miniforks containing a TNR unit of defined sequence and length. Each minifork consists of three strands, primer, leading strand template, and lagging strand template with a 5′ single-stranded (ss) tail. Each strand is prepared independently, and the minifork is assembled by hybridization of the three strands. Using these miniforks and a minimal reconstituted T4 replisome, we show that during leading strand DNA synthesis, the dNTP concentration dictates which strand of the structure-forming 5′CAG/5′CTG repeat creates the strongest impediment to the minimal replication complex. We discuss this result in the light of the known fluctuation of dNTP concentration during the cell cycle and cell growth and the known concentration balance among individual dNTPs.
Collapse
Affiliation(s)
- Emmanuelle Delagoutte
- Muséum National d'Histoire Naturelle, Département "Régulations, Développement et Diversité Moléculaire", Laboratoire de Régulations et Dynamique des Génomes, USM 0503-INSERM U 565-UMR 7196, Case Postale no 26, 57 rue Cuvier, 75231 Paris cedex 05, France
| | | |
Collapse
|
4
|
Mueser TC, Hinerman JM, Devos JM, Boyer RA, Williams KJ. Structural analysis of bacteriophage T4 DNA replication: a review in the Virology Journal series on bacteriophage T4 and its relatives. Virol J 2010; 7:359. [PMID: 21129204 PMCID: PMC3012046 DOI: 10.1186/1743-422x-7-359] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 12/03/2010] [Indexed: 12/13/2022] Open
Abstract
The bacteriophage T4 encodes 10 proteins, known collectively as the replisome, that are responsible for the replication of the phage genome. The replisomal proteins can be subdivided into three activities; the replicase, responsible for duplicating DNA, the primosomal proteins, responsible for unwinding and Okazaki fragment initiation, and the Okazaki repair proteins. The replicase includes the gp43 DNA polymerase, the gp45 processivity clamp, the gp44/62 clamp loader complex, and the gp32 single-stranded DNA binding protein. The primosomal proteins include the gp41 hexameric helicase, the gp61 primase, and the gp59 helicase loading protein. The RNaseH, a 5' to 3' exonuclease and T4 DNA ligase comprise the activities necessary for Okazaki repair. The T4 provides a model system for DNA replication. As a consequence, significant effort has been put forth to solve the crystallographic structures of these replisomal proteins. In this review, we discuss the structures that are available and provide comparison to related proteins when the T4 structures are unavailable. Three of the ten full-length T4 replisomal proteins have been determined; the gp59 helicase loading protein, the RNase H, and the gp45 processivity clamp. The core of T4 gp32 and two proteins from the T4 related phage RB69, the gp43 polymerase and the gp45 clamp are also solved. The T4 gp44/62 clamp loader has not been crystallized but a comparison to the E. coli gamma complex is provided. The structures of T4 gp41 helicase, gp61 primase, and T4 DNA ligase are unknown, structures from bacteriophage T7 proteins are discussed instead. To better understand the functionality of T4 DNA replication, in depth structural analysis will require complexes between proteins and DNA substrates. A DNA primer template bound by gp43 polymerase, a fork DNA substrate bound by RNase H, gp43 polymerase bound to gp32 protein, and RNase H bound to gp32 have been crystallographically determined. The preparation and crystallization of complexes is a significant challenge. We discuss alternate approaches, such as small angle X-ray and neutron scattering to generate molecular envelopes for modeling macromolecular assemblies.
Collapse
Affiliation(s)
| | - Jennifer M Hinerman
- Department of Molecular Genetics, Biochemistry & Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Juliette M Devos
- European Molecular Biology Laboratory, Grenoble Outstation, Grenoble, France
| | | | - Kandace J Williams
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine, Toledo OH, USA
| |
Collapse
|
5
|
Nelson SW, Kumar R, Benkovic SJ. RNA primer handoff in bacteriophage T4 DNA replication: the role of single-stranded DNA-binding protein and polymerase accessory proteins. J Biol Chem 2008; 283:22838-46. [PMID: 18511422 DOI: 10.1074/jbc.m802762200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In T4 phage, coordinated leading and lagging strand DNA synthesis is carried out by an eight-protein complex termed the replisome. The control of lagging strand DNA synthesis depends on a highly dynamic replisome with several proteins entering and leaving during DNA replication. Here we examine the role of single-stranded binding protein (gp32) in the repetitive cycles of lagging strand synthesis. Removal of the protein-interacting domain of gp32 results in a reduction in the number of primers synthesized and in the efficiency of primer transfer to the polymerase. We find that the primase protein is moderately processive, and this processivity depends on the presence of full-length gp32 at the replication fork. Surprisingly, we find that an increase in the efficiency of primer transfer to the clamp protein correlates with a decrease in the dissociation rate of the primase from the replisome. These findings result in a revised model of lagging strand DNA synthesis where the primase remains as part of the replisome after each successful cycle of Okazaki fragment synthesis. A delay in primer transfer results in an increased probability of the primase dissociating from the replication fork. The interplay between gp32, primase, clamp, and clamp loader dictates the rate and efficiency of primer synthesis, polymerase recycling, and primer transfer to the polymerase.
Collapse
Affiliation(s)
- Scott W Nelson
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | |
Collapse
|
6
|
Delagoutte E, Goellner GM, Guo J, Baldacci G, McMurray CT. Single-stranded DNA-binding protein in vitro eliminates the orientation-dependent impediment to polymerase passage on CAG/CTG repeats. J Biol Chem 2008; 283:13341-56. [PMID: 18263578 DOI: 10.1074/jbc.m800153200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Small insertions and deletions of trinucleotide repeats (TNRs) can occur by polymerase slippage and hairpin formation on either template or newly synthesized strands during replication. Although not predicted by a slippage model, deletions occur preferentially when 5'-CTG is in the lagging strand template and are highly favored over insertion events in rapidly replicating cells. The mechanism for the deletion bias and the orientation dependence of TNR instability is poorly understood. We report here that there is an orientation-dependent impediment to polymerase progression on 5'-CAG and 5'-CTG repeats that can be relieved by the binding of single-stranded DNA-binding protein. The block depends on the primary sequence of the TNR but does not correlate with the thermodynamic stability of hairpins. The orientation-dependent block of polymerase passage is the strongest when 5'-CAG is the template. We propose a "template-push" model in which the slow speed of DNA polymerase across the 5'-CAG leading strand template creates a threat to helicase-polymerase coupling. To prevent uncoupling, the TNR template is pushed out and by-passed. Hairpins do not cause the block, but appear to occur as a consequence of polymerase pass-over.
Collapse
Affiliation(s)
- Emmanuelle Delagoutte
- Génotoxicologie et Cycle Cellulaire, Institut Curie, CNRS, Université Paris-Sud 11, 91405 Orsay Cedex, France.
| | | | | | | | | |
Collapse
|
7
|
Blanca G, Delagoutte E, Tanguy le gac N, Johnson N, Baldacci G, Villani G. Accessory proteins assist exonuclease-deficient bacteriophage T4 DNA polymerase in replicating past an abasic site. Biochem J 2007; 402:321-9. [PMID: 17064253 PMCID: PMC1798438 DOI: 10.1042/bj20060898] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Replicative DNA polymerases, such as T4 polymerase, possess both elongation and 3'-5' exonuclease proofreading catalytic activities. They arrest at the base preceding DNA damage on the coding DNA strand and specialized DNA polymerases have evolved to replicate across the lesion by a process known as TLS (translesion DNA synthesis). TLS is considered to take place in two steps that often require different enzymes, insertion of a nucleotide opposite the damaged template base followed by extension from the inserted nucleotide. We and others have observed that inactivation of the 3'-5' exonuclease function of T4 polymerase enables TLS across a single site-specific abasic [AP (apurinic/apyrimidinic)] lesion. In the present study we report a role for auxiliary replicative factors in this reaction. When replication is performed with a large excess of DNA template over DNA polymerase in the absence of auxiliary factors, the exo- polymerase (T4 DNA polymerase deficient in the 3'-5' exonuclease activity) inserts one nucleotide opposite the AP site but does not extend past the lesion. Addition of the clamp processivity factor and the clamp loader complex restores primer extension across an AP lesion on a circular AP-containing DNA substrate by the exo- polymerase, but has no effect on the wild-type enzyme. Hence T4 DNA polymerase exhibits a variety of responses to DNA damage. It can behave as a replicative polymerase or (in the absence of proofreading activity) as a specialized DNA polymerase and carry out TLS. As a specialized polymerase it can function either as an inserter or (with the help of accessory proteins) as an extender. The capacity to separate these distinct functions in a single DNA polymerase provides insight into the biochemical requirements for translesion DNA synthesis.
Collapse
Affiliation(s)
- Giuseppina Blanca
- *Institut de Pharmacologie et Biologie Structurale CNRS-UMR 5089, 205 route de Narbonne, 31077 Toulouse cedex 4, France
| | | | - Nicolas Tanguy le gac
- *Institut de Pharmacologie et Biologie Structurale CNRS-UMR 5089, 205 route de Narbonne, 31077 Toulouse cedex 4, France
| | - Neil P. Johnson
- *Institut de Pharmacologie et Biologie Structurale CNRS-UMR 5089, 205 route de Narbonne, 31077 Toulouse cedex 4, France
| | - Giuseppe Baldacci
- †CNRS UMR 2027-Institut Curie, Batiment 110, Centre Universitaire d'Orsay, France
| | - Giuseppe Villani
- *Institut de Pharmacologie et Biologie Structurale CNRS-UMR 5089, 205 route de Narbonne, 31077 Toulouse cedex 4, France
- To whom correspondence should be addressed (email )
| |
Collapse
|
8
|
Slocum SL, Buss JA, Kimura Y, Bianco PR. Characterization of the ATPase activity of the Escherichia coli RecG protein reveals that the preferred cofactor is negatively supercoiled DNA. J Mol Biol 2007; 367:647-64. [PMID: 17292398 PMCID: PMC1913479 DOI: 10.1016/j.jmb.2007.01.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2006] [Revised: 12/29/2006] [Accepted: 01/02/2007] [Indexed: 02/07/2023]
Abstract
RecG is a member of the superfamily 2 helicase family. Its possible role in vivo is ATP hydrolysis driven regression of stalled replication forks. To gain mechanistic insight into how this is achieved, a coupled spectrophotometric assay was utilized to characterize the ATPase activity of RecG in vitro. The results demonstrate an overwhelming preference for negatively supercoiled DNA ((-)scDNA) as a cofactor for the hydrolysis of ATP. In the presence of (-)scDNA the catalytic efficiency of RecG and the processivity (as revealed through heparin trapping), were higher than on any other cofactor examined. The activity of RecG on (-)scDNA was not due to the presence of single-stranded regions functioning as loading sites for the enzyme as relaxed circular DNA treated with DNA gyrase, resulted in the highest levels of ATPase activity. Relaxation of (-)scDNA by a topoisomerase resulted in a 12-fold decrease in ATPase activity, comparable to that observed on both linear double-stranded (ds)DNA and (+)scDNA. In addition to the elevated activity in the presence of (-)scDNA, RecG also has high activity on model 4Y-substrates (i.e. chicken foot structures). This is due largely to the high apparent affinity of the enzyme for this DNA substrate, which is 46-fold higher than a 2Y-substrate (i.e. a three-way with two single-stranded (ss)DNA arms). Finally, the enzyme exhibited significant, but lower activity on ssDNA. This activity was enhanced by the Escherichia coli stranded DNA-binding protein (SSB) protein, which occurs through stabilizing of the binding of RecG to ssDNA. Stabilization is not afforded by the bacteriophage gene 32 protein, indicating a species specific, protein-protein interaction is involved. These results combine to provide significant insight into the manner and timing of the interaction of RecG with DNA at stalled replication forks.
Collapse
Affiliation(s)
- Stephen L. Slocum
- Department of Biochemistry, University at Buffalo, Buffalo, NY 14214 USA
| | - Jackson A. Buss
- Center for Single Molecule Biophysics, University at Buffalo, Buffalo, NY 14214 USA
- Department of Microbiology and Immunology, University at Buffalo, Buffalo, NY 14214 USA
| | - Yuji Kimura
- Center for Single Molecule Biophysics, University at Buffalo, Buffalo, NY 14214 USA
- Department of Microbiology and Immunology, University at Buffalo, Buffalo, NY 14214 USA
| | - Piero R. Bianco
- Department of Biochemistry, University at Buffalo, Buffalo, NY 14214 USA
- Center for Single Molecule Biophysics, University at Buffalo, Buffalo, NY 14214 USA
- Department of Microbiology and Immunology, University at Buffalo, Buffalo, NY 14214 USA
| |
Collapse
|
9
|
Nossal NG, Makhov AM, Chastain PD, Jones CE, Griffith JD. Architecture of the Bacteriophage T4 Replication Complex Revealed with Nanoscale Biopointers. J Biol Chem 2007; 282:1098-108. [PMID: 17105722 DOI: 10.1074/jbc.m606772200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Our previous electron microscopy of DNA replicated by the bacteriophage T4 proteins showed a single complex at the fork, thought to contain the leading and lagging strand proteins, as well as the protein-covered single-stranded DNA on the lagging strand folded into a compact structure. "Trombone" loops formed from nascent lagging strand fragments were present on a majority of the replicating molecules (Chastain, P., Makhov, A. M., Nossal, N. G., and Griffith, J. D. (2003) J. Biol. Chem. 278, 21276-21285). Here we probe the composition of this replication complex using nanoscale DNA biopointers to show the location of biotin-tagged replication proteins. We find that a large fraction of the molecules with a trombone loop had two pointers to polymerase, providing strong evidence that the leading and lagging strand polymerases are together in the replication complex. 6% of the molecules had two loops, and 31% of these had three pointers to biotin-tagged polymerase, suggesting that the two loops result from two fragments that are being extended simultaneously. Under fixation conditions that extend the lagging strand, occasional molecules show two nascent lagging strand fragments, each being elongated by a biotin-tagged polymerase. T4 41 helicase is present in the complex on a large fraction of actively replicating molecules but on a smaller fraction of molecules with a stalled polymerase. Unexpectedly, we found that 59 helicase-loading protein remains on the fork after loading the helicase and is present on molecules with extensive replication.
Collapse
Affiliation(s)
- Nancy G Nossal
- Laboratory of Molecular and Cellular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-0830, USA
| | | | | | | | | |
Collapse
|
10
|
Bianco PR, Hurley EM. The type I restriction endonuclease EcoR124I, couples ATP hydrolysis to bidirectional DNA translocation. J Mol Biol 2005; 352:837-59. [PMID: 16126220 DOI: 10.1016/j.jmb.2005.07.055] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Revised: 07/18/2005] [Accepted: 07/20/2005] [Indexed: 11/16/2022]
Abstract
Type I restriction endonuclease holoenzymes contain methylase (M), restriction (R) and specificity (S) subunits, present in an M2:R2:S1 stoichiometry. These enzymes bind to specific DNA sequences and translocate dsDNA in an ATP-dependent manner toward the holoenzyme anchored at the recognition sequence. Once translocation is impeded, DNA restriction, which functions to protect the host cell from invading DNA, takes place. Translocation and DNA cleavage are afforded by the two diametrically opposed R-subunits. To gain insight into the mechanism of translocation, a detailed characterization of the ATPase activity of EcoR124I was done. Results show that following recognition sequence binding, ATP hydrolysis-coupled, bidirectional DNA translocation by EcoR124I ensues, with the R-subunits transiently disengaging, on average, every 515 bp. Macroscopic processivity of 2031(+/-184)bp is maintained, as the R-subunits remain in close proximity to the DNA through association with the methyltransferase. Transient uncoupling of ATP hydrolysis from translocation results in 3.1(+/-0.4) ATP molecules being hydrolyzed per base-pair translocated per R-subunit. This is the first clear demonstration of the coupling of ATP hydrolysis to dsDNA translocation, albeit inefficient. Once translocation is impeded on supercoiled DNA, the DNA is cleaved. DNA cleavage inactivates the EcoR124I holoenzyme partially and reversibly, which explains the stoichiometric behaviour of type I restriction enzymes. Inactivated holoenzyme remains bound to the DNA at the recognition sequence and immediately releases the nascent ends. The release of nascent ends was demonstrated using a novel, fluorescence-based, real-time assay that takes advantage of the ability of the Escherichia coli RecBCD enzyme to unwind restricted dsDNA. The resulting unwinding of EcoR124I-restricted DNA by RecBCD reveals coordination between the restriction-modification and recombination systems that functions to destroy invading DNA efficiently. In addition, we demonstrate the displacement of EcoR124I following DNA cleavage by the translocating RecBCD enzyme, resulting in the restoration of catalytic function to EcoR124I.
Collapse
Affiliation(s)
- Piero R Bianco
- Department of Microbiology and Immunology, Center for Single Molecule Biophysics, University at Buffalo, Buffalo, NY 14214, USA.
| | | |
Collapse
|
11
|
Gangisetty O, Jones CE, Bhagwat M, Nossal NG. Maturation of bacteriophage T4 lagging strand fragments depends on interaction of T4 RNase H with T4 32 protein rather than the T4 gene 45 clamp. J Biol Chem 2005; 280:12876-87. [PMID: 15659404 DOI: 10.1074/jbc.m414025200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the bacteriophage T4 DNA replication system, T4 RNase H removes the RNA primers and some adjacent DNA before the lagging strand fragments are ligated. This 5'-nuclease has strong structural and functional similarity to the FEN1 nuclease family. We have shown previously that T4 32 protein binds DNA behind the nuclease and increases its processivity. Here we show that T4 RNase H with a C-terminal deletion (residues 278-305) retains its exonuclease activity but is no longer affected by 32 protein. T4 gene 45 replication clamp stimulates T4 RNase H on nicked or gapped substrates, where it can be loaded behind the nuclease, but does not increase its processivity. An N-terminal deletion (residues 2-10) of a conserved clamp interaction motif eliminates stimulation by the clamp. In the crystal structure of T4 RNase H, the binding sites for the clamp at the N terminus and for 32 protein at the C terminus are located close together, away from the catalytic site of the enzyme. By using mutant T4 RNase H with deletions in the binding site for either the clamp or 32 protein, we show that it is the interaction of T4 RNase H with 32 protein, rather than the clamp, that most affects the maturation of lagging strand fragments in the T4 replication system in vitro and T4 phage production in vivo.
Collapse
Affiliation(s)
- Omkaram Gangisetty
- Laboratory of Molecular and Cellular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-0830, USA
| | | | | | | |
Collapse
|
12
|
Tanguy Le Gac N, Delagoutte E, Germain M, Villani G. Inactivation of the 3'-5' exonuclease of the replicative T4 DNA polymerase allows translesion DNA synthesis at an abasic site. J Mol Biol 2004; 336:1023-34. [PMID: 15037066 DOI: 10.1016/j.jmb.2004.01.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2003] [Revised: 12/22/2003] [Accepted: 01/05/2004] [Indexed: 10/26/2022]
Abstract
Here, we have investigated the consequences of the loss of proof-reading exonuclease function on the ability of the replicative T4 DNA polymerase (gp43) to elongate past a single abasic site located on model DNA substrates. Our results show that wild-type T4 DNA polymerase stopped at the base preceding the lesion on two linear substrates having different sequences, whereas the gp43 D219A exonuclease-deficient mutant was capable of efficient bypass when replicating the same substrates. The structure of the DNA template did not influence the behavior of the exonuclease-proficient or deficient T4 DNA polymerases. In fact, when replicating a damaged "minicircle" DNA substrate constructed by circularizing one of the linear DNA, elongation by wild-type enzyme was still completely blocked by the abasic site, while the D219A mutant was capable of bypass. During DNA replication, the T4 DNA polymerase associates with accessory factors whose combined action increases the polymerase-binding capacity and processivity, and could modulate the behavior of the enzyme towards an abasic site. We thus performed experiments measuring the ability of wild-type and exonuclease-deficient T4 DNA polymerases, in conjunction with these replicative accessory proteins, to perform translesion DNA replication on linear or circular damaged DNA substrates. We found no evidence of either stimulation or inhibition of the bypass activities of the wild-type and exonuclease-deficient forms of T4 DNA polymerase following addition of the accessory factors, indicating that the presence or absence of the proof-reading activity is the major determinant in dictating translesion synthesis of an abasic site by T4 DNA polymerase.
Collapse
Affiliation(s)
- Nicolas Tanguy Le Gac
- Institut de Pharmacologie et Biologie Structurale, CNRS-UMR 5089, 205 route de Narbonne, 31077 Toulouse cedex 4, France
| | | | | | | |
Collapse
|
13
|
Jones CE, Green EM, Stephens JA, Mueser TC, Nossal NG. Mutations of bacteriophage T4 59 helicase loader defective in binding fork DNA and in interactions with T4 32 single-stranded DNA-binding protein. J Biol Chem 2004; 279:25721-8. [PMID: 15084598 DOI: 10.1074/jbc.m402128200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacteriophage T4 gene 59 protein greatly stimulates the loading of the T4 gene 41 helicase in vitro and is required for recombination and recombination-dependent DNA replication in vivo. 59 protein binds preferentially to forked DNA and interacts directly with the T4 41 helicase and gene 32 single-stranded DNA-binding protein. The helicase loader is an almost completely alpha-helical, two-domain protein, whose N-terminal domain has strong structural similarity to the DNA-binding domains of high mobility group proteins. We have previously speculated that this high mobility group-like region may bind the duplex ahead of the fork, with the C-terminal domain providing separate binding sites for the fork arms and at least part of the docking area for the helicase and 32 protein. Here, we characterize several mutants of 59 protein in an initial effort to test this model. We find that the I87A mutation, at the position where the fork arms would separate in the model, is defective in binding fork DNA. As a consequence, it is defective in stimulating both unwinding by the helicase and replication by the T4 system. 59 protein with a deletion of the two C-terminal residues, Lys(216) and Tyr(217), binds fork DNA normally. In contrast to the wild type, the deletion protein fails to promote binding of 32 protein on short fork DNA. However, it binds 32 protein in the absence of DNA. The deletion is also somewhat defective in stimulating unwinding of fork DNA by the helicase and replication by the T4 system. We suggest that the absence of the two terminal residues may alter the configuration of the lagging strand fork arm on the surface of the C-terminal domain, so that it is a poorer docking site for the helicase and 32 protein.
Collapse
Affiliation(s)
- Charles E Jones
- Laboratory of Molecular and Cellular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-0830, USA
| | | | | | | | | |
Collapse
|
14
|
Jones CE, Mueser TC, Nossal NG. Bacteriophage T4 32 protein is required for helicase-dependent leading strand synthesis when the helicase is loaded by the T4 59 helicase-loading protein. J Biol Chem 2004; 279:12067-75. [PMID: 14729909 DOI: 10.1074/jbc.m313840200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the bacteriophage T4 DNA replication system, T4 gene 59 protein binds preferentially to fork DNA and accelerates the loading of the T4 41 helicase. 59 protein also binds the T4 32 single-stranded DNA-binding protein that coats the lagging strand template. Here we explore the function of the strong affinity between the 32 and 59 proteins at the replication fork. We show that, in contrast to the 59 helicase loader, 32 protein does not bind forked DNA more tightly than linear DNA. 32 protein displays a strong binding polarity on fork DNA, binding with much higher affinity to the 5' single-stranded lagging strand template arm of a model fork, than to the 3' single-stranded leading strand arm. 59 protein promotes the binding of 32 protein on forks too short for cooperative binding by 32 protein. We show that 32 protein is required for helicase-dependent leading strand DNA synthesis when the helicase is loaded by 59 protein. However, 32 protein is not required for leading strand synthesis when helicase is loaded, less efficiently, without 59 protein. Leading strand synthesis by wild type T4 polymerase is strongly inhibited when 59 protein is present without 32 protein. Because 59 protein can load the helicase on forks without 32 protein, our results are best explained by a model in which 59 helicase loader at the fork prevents the coupling of the leading strand polymerase and the helicase, unless the position of 59 protein is shifted by its association with 32 protein.
Collapse
Affiliation(s)
- Charles E Jones
- Laboratory of Molecular and Cellular Biology, NIDDK, National Institutes of Health, Building 8, Room 2A19, Bethesda, MD 20892-0830, USA
| | | | | |
Collapse
|
15
|
Delagoutte E, Von Hippel PH. Function and assembly of the bacteriophage T4 DNA replication complex: interactions of the T4 polymerase with various model DNA constructs. J Biol Chem 2003; 278:25435-47. [PMID: 12700227 DOI: 10.1074/jbc.m303370200] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Complexes formed between DNA polymerase and genomic DNA at the replication fork are key elements of the replication machinery. We used sedimentation velocity, fluorescence anisotropy, and surface plasmon resonance to measure the binding interactions between bacteriophage T4 DNA polymerase (gp43) and various model DNA constructs. These results provide quantitative insight into how this replication polymerase performs template-directed 5' --> 3' DNA synthesis and how this function is coordinated with the activities of the other proteins of the replication complex. We find that short (single- and double-stranded) DNA molecules bind a single gp43 polymerase in a nonspecific (overlap) binding mode with moderate affinity (Kd approximately 150 nm) and a binding site size of approximately 10 nucleotides for single-stranded DNA and approximately 13 bp for double-stranded DNA. In contrast, gp43 binds in a site-specific (nonoverlap) mode and significantly more tightly (Kd approximately 5 nm) to DNA constructs carrying a primer-template junction, with the polymerase covering approximately 5 nucleotides downstream and approximately 6-7 bp upstream of the 3'-primer terminus. The rate of this specific binding interaction is close to diffusion-controlled. The affinity of gp43 for the primer-template junction is modulated specifically by dNTP substrates, with the next "correct" dNTP strengthening the interaction and an incorrect dNTP weakening the observed binding. These results are discussed in terms of the individual steps of the polymerase-catalyzed single nucleotide addition cycle and the replication complex assembly process. We suggest that changes in the kinetics and thermodynamics of these steps by auxiliary replication proteins constitute a basic mechanism for protein coupling within the replication complex.
Collapse
Affiliation(s)
- Emmanuelle Delagoutte
- Institute of Molecular Biology and Department of Chemistry, University of Oregon, Eugene, Oregon 97403, USA
| | | |
Collapse
|
16
|
Kadyrov FA, Drake JW. Properties of bacteriophage T4 proteins deficient in replication repair. J Biol Chem 2003; 278:25247-55. [PMID: 12697750 DOI: 10.1074/jbc.m302564200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An epistasis group of mutations engendering increased sensitivity to diverse DNA-damaging agents was described previously in bacteriophage T4. These mutations are alleles of genes 32 and 41, which, respectively, encode a single-stranded DNA-binding protein (gp32) and the replicative DNA helicase (gp41). The mechanism by which the lethality of DNA damage is mitigated is unknown but seems not to involve the direct reversal of damage, excision repair, conventional recombination repair, or translesion synthesis. Here we explore the hypothesis that the mechanism involves a switch in DNA primer extension from the cognate template to an alternative template, the just-synthesized daughter strand of the other parental strand. The activities of the mutant proteins are reduced about 2-fold (for gp32) or 4-fold (for gp41) in replication complexes catalyzing coordinated synthesis of leading and lagging strands, in binding single-stranded DNA, promoting DNA annealing, and promoting branch migration. In striking contrast, the mutant proteins are strongly impaired in promoting template switching, thus supporting the hypothesis of survival by template switching.
Collapse
Affiliation(s)
- Farid A Kadyrov
- Laboratory of Molecular Genetics, NIEHS, National Institutes of Health/Department of Health and Human Services, Research Triangle Park, North Carolina 27709-2233, USA
| | | |
Collapse
|
17
|
Chastain PD, Makhov AM, Nossal NG, Griffith J. Architecture of the replication complex and DNA loops at the fork generated by the bacteriophage t4 proteins. J Biol Chem 2003; 278:21276-85. [PMID: 12649286 DOI: 10.1074/jbc.m301573200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rolling circle replication has previously been reconstituted in vitro using M13 duplex circles containing preformed forks and the 10 purified T4 bacteriophage replication proteins. Leading and lagging strand synthesis in these reactions is coupled and the size of the Okazaki fragments produced is typical of those generated in T4 infections. In this study the structure of the DNAs and DNA-protein complexes engaged in these in vitro reactions has been examined by electron microscopy. Following deproteinization, circular duplex templates with linear tails as great as 100 kb are observed. The tails are fully duplex except for one to three single-stranded DNA segments close to the fork. This pattern reflects Okazaki fragments stopped at different stages in their synthesis. Examination of the DNA-protein complexes in these reactions reveals M13 duplex circles in which 64% contain a single large protein mass (replication complex) and a linear duplex tail. In 56% of the replicating molecules with a tail there is at least one fully duplex loop at the replication complex resulting from the portion of the lagging strand engaged in Okazaki fragment synthesis folding back to the replisome. The single-stranded DNA segments at the fork bound by gene 32 and 59 proteins are not extended but rather appear organized into highly compact structures ("bobbins"). These bobbins constitute a major portion of the mass of the full replication complex.
Collapse
Affiliation(s)
- Paul D Chastain
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | |
Collapse
|
18
|
Miller ES, Kutter E, Mosig G, Arisaka F, Kunisawa T, Rüger W. Bacteriophage T4 genome. Microbiol Mol Biol Rev 2003; 67:86-156, table of contents. [PMID: 12626685 PMCID: PMC150520 DOI: 10.1128/mmbr.67.1.86-156.2003] [Citation(s) in RCA: 562] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phage T4 has provided countless contributions to the paradigms of genetics and biochemistry. Its complete genome sequence of 168,903 bp encodes about 300 gene products. T4 biology and its genomic sequence provide the best-understood model for modern functional genomics and proteomics. Variations on gene expression, including overlapping genes, internal translation initiation, spliced genes, translational bypassing, and RNA processing, alert us to the caveats of purely computational methods. The T4 transcriptional pattern reflects its dependence on the host RNA polymerase and the use of phage-encoded proteins that sequentially modify RNA polymerase; transcriptional activator proteins, a phage sigma factor, anti-sigma, and sigma decoy proteins also act to specify early, middle, and late promoter recognition. Posttranscriptional controls by T4 provide excellent systems for the study of RNA-dependent processes, particularly at the structural level. The redundancy of DNA replication and recombination systems of T4 reveals how phage and other genomes are stably replicated and repaired in different environments, providing insight into genome evolution and adaptations to new hosts and growth environments. Moreover, genomic sequence analysis has provided new insights into tail fiber variation, lysis, gene duplications, and membrane localization of proteins, while high-resolution structural determination of the "cell-puncturing device," combined with the three-dimensional image reconstruction of the baseplate, has revealed the mechanism of penetration during infection. Despite these advances, nearly 130 potential T4 genes remain uncharacterized. Current phage-sequencing initiatives are now revealing the similarities and differences among members of the T4 family, including those that infect bacteria other than Escherichia coli. T4 functional genomics will aid in the interpretation of these newly sequenced T4-related genomes and in broadening our understanding of the complex evolution and ecology of phages-the most abundant and among the most ancient biological entities on Earth.
Collapse
Affiliation(s)
- Eric S Miller
- Department of Microbiology, North Carolina State University, Raleigh, North Carolina 27695-7615, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Kadyrov FA, Drake JW. Characterization of DNA synthesis catalyzed by bacteriophage T4 replication complexes reconstituted on synthetic circular substrates. Nucleic Acids Res 2002; 30:4387-97. [PMID: 12384585 PMCID: PMC137140 DOI: 10.1093/nar/gkf576] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Replication complexes were reconstituted using the eight purified bacteriophage T4 replication proteins and synthetic circular 70-, 120- or 240-nt DNA substrates annealed to a leading-strand primer. To differentiate leading strands from lagging strands, the circular parts of the substrates lacked dCMP; thus, no dCTP was required for leading-strand synthesis and no dGTP for lagging-strand synthesis. The size of the substrates was crucial, the longer substrates supporting much more DNA synthesis. Leading and lagging strands were synthesized in a coupled manner. Specifically targeting leading-strand synthesis by decreasing the concentration of dGTP decreased the rate of extension of leading strands. However, blocking lagging-strand synthesis by lowering the dCTP concentration, by omitting dCTP altogether, by adding ddCTP, or with a single abasic site had no immediate effect on the rate of extension of leading strands.
Collapse
Affiliation(s)
- Farid A Kadyrov
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709-2233, USA.
| | | |
Collapse
|
20
|
Petrov VM, Ng SS, Karam JD. Protein determinants of RNA binding by DNA polymerase of the T4-related bacteriophage RB69. J Biol Chem 2002; 277:33041-8. [PMID: 12087102 DOI: 10.1074/jbc.m204754200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA polymerase (gp43) of phage T4 plays two biological roles, one as an essential DNA binding replication enzyme and the other as an mRNA-specific autogenous translational repressor. Binding of T4 gp43 to its mRNA target (translational operator RNA) interferes with gp43-DNA interactions, but it is unclear how the protein determinants for binding DNA are affected by the dynamics of gp43-mRNA interactions. We have used RB69 gp43, a natural variant of the T4 enzyme whose crystal structure has been determined to identify protein sites that respond to the interaction with specific RNA. We used protein phosphorylation markers, photocross-linking studies, protease sensitivity assays, and mutational analyses to examine the effects of operator RNA on the enzyme's five structural domains (N, exo, palm, fingers, and thumb). Our studies suggest that this RNA affects gp43-DNA interactions through global effects on protein structure that occlude DNA-binding sites but leave the enzyme accessible to interactions with the sliding clamp (RB69 gp45) and possibly other polymerase accessory proteins. We discuss the possible biological significance of putative RNA-binding motifs in the N and palm domains of RB69 gp43.
Collapse
Affiliation(s)
- Vasiliy M Petrov
- Department of Biochemistry, Tulane University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | |
Collapse
|
21
|
Kadyrov FA, Drake JW. Conditional coupling of leading-strand and lagging-strand DNA synthesis at bacteriophage T4 replication forks. J Biol Chem 2001; 276:29559-66. [PMID: 11390383 DOI: 10.1074/jbc.m101310200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eight proteins encoded by bacteriophage T4 are required for the replicative synthesis of the leading and lagging strands of T4 DNA. We show here that active T4 replication forks, which catalyze the coordinated synthesis of leading and lagging strands, remain stable in the face of dilution provided that the gp44/62 clamp loader, the gp45 sliding clamp, and the gp32 ssDNA-binding protein are present at sufficient levels after dilution. If any of these accessory proteins is omitted from the dilution mixture, uncoordinated DNA synthesis occurs, and/or large Okazaki fragments are formed. Thus, the accessory proteins must be recruited from solution for each round of initiation of lagging-strand synthesis. A modified bacteriophage T7 DNA polymerase (Sequenase) can replace the T4 DNA polymerase for leading-strand synthesis but not for well coordinated lagging-strand synthesis. Although T4 DNA polymerase has been reported to self-associate, gel-exclusion chromatography displays it as a monomer in solution in the absence of DNA. It forms no stable holoenzyme complex in solution with the accessory proteins or with the gp41-gp61 helicase-primase. Instead, template DNA is required for the assembly of the T4 replication complex, which then catalyzes coordinated synthesis of leading and lagging strands in a conditionally coupled manner.
Collapse
Affiliation(s)
- F A Kadyrov
- Laboratory of Molecular Genetics, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709-2233, USA.
| | | |
Collapse
|
22
|
Mosig G, Gewin J, Luder A, Colowick N, Vo D. Two recombination-dependent DNA replication pathways of bacteriophage T4, and their roles in mutagenesis and horizontal gene transfer. Proc Natl Acad Sci U S A 2001; 98:8306-11. [PMID: 11459968 PMCID: PMC37436 DOI: 10.1073/pnas.131007398] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two major pathways of recombination-dependent DNA replication, "join-copy" and "join-cut-copy," can be distinguished in phage T4: join-copy requires only early and middle genes, but two late proteins, endonuclease VII and terminase, are uniquely important in the join-cut-copy pathway. In wild-type T4, timing of these pathways is integrated with the developmental program and related to transcription and packaging of DNA. In primase mutants, which are defective in origin-dependent lagging-strand DNA synthesis, the late pathway can bypass the lack of primers for lagging-strand DNA synthesis. The exquisitely regulated synthesis of endo VII, and of two proteins from its gene, explains the delay of recombination-dependent DNA replication in primase (as well as topoisomerase) mutants, and the temperature-dependence of the delay. Other proteins (e.g., the single-stranded DNA binding protein and the products of genes 46 and 47) are important in all recombination pathways, but they interact differently with other proteins in different pathways. These homologous recombination pathways contribute to evolution because they facilitate acquisition of any foreign DNA with limited sequence homology during horizontal gene transfer, without requiring transposition or site-specific recombination functions. Partial heteroduplex repair can generate what appears to be multiple mutations from a single recombinational intermediate. The resulting sequence divergence generates barriers to formation of viable recombinants. The multiple sequence changes can also lead to erroneous estimates in phylogenetic analyses.
Collapse
Affiliation(s)
- G Mosig
- Department of Molecular Biology, Vanderbilt University, Nashville, TN 37235, USA.
| | | | | | | | | |
Collapse
|
23
|
Bhagwat M, Nossal NG. Bacteriophage T4 RNase H removes both RNA primers and adjacent DNA from the 5' end of lagging strand fragments. J Biol Chem 2001; 276:28516-24. [PMID: 11376000 DOI: 10.1074/jbc.m103914200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacteriophage T4 RNase H belongs to a family of prokaryotic and eukaryotic nucleases that remove RNA primers from lagging strand fragments during DNA replication. Each enzyme has a flap endonuclease activity, cutting at or near the junction between single- and double-stranded DNA, and a 5'- to 3'-exonuclease, degrading both RNA.DNA and DNA.DNA duplexes. On model substrates for lagging strand synthesis, T4 RNase H functions as an exonuclease removing short oligonucleotides, rather than as an endonuclease removing longer flaps created by the advancing polymerase. The combined length of the DNA oligonucleotides released from each fragment ranges from 3 to 30 nucleotides, which corresponds to one round of processive degradation by T4 RNase H with 32 single-stranded DNA-binding protein present. Approximately 30 nucleotides are removed from each fragment during coupled leading and lagging strand synthesis with the complete T4 replication system. We conclude that the presence of 32 protein on the single-stranded DNA between lagging strand fragments guarantees that the nuclease will degrade processively, removing adjacent DNA as well as the RNA primers, and that the difference in the relative rates of synthesis and hydrolysis ensures that there is usually only a single round of degradation during each lagging strand cycle.
Collapse
Affiliation(s)
- M Bhagwat
- Laboratory of Molecular and Cellular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-0830, USA
| | | |
Collapse
|
24
|
Nossal NG, Dudas KC, Kreuzer KN. Bacteriophage T4 proteins replicate plasmids with a preformed R loop at the T4 ori(uvsY) replication origin in vitro. Mol Cell 2001; 7:31-41. [PMID: 11172709 DOI: 10.1016/s1097-2765(01)00152-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bacteriophage T4 DNA replication proteins catalyze complete unidirectional replication of plasmids containing the T4 ori(uvsY) replication origin in vitro, beginning with a preformed R loop at the position of the origin R loop previously identified in vivo. T4 DNA polymerase, clamp, clamp loader, and 32 protein are needed for initial elongation of the RNA, which serves as the leading-strand primer. Normal replication is dependent on T4 41 helicase and 61 primase and is strongly stimulated by the 59 helicase loading protein. 59 protein slows replication without the helicase. As expected, leading-strand synthesis stalls prematurely in the absence of T4 DNA topoisomerase. A DNA unwinding element (DUE) is essential for replication, but the ori(uvsY) DUE can be replaced by other DUE sequences.
Collapse
Affiliation(s)
- N G Nossal
- Laboratory of Molecular, Cellular Biology, National Institute of Diabetes and Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
25
|
Chastain PD, Makhov AM, Nossal NG, Griffith JD. Analysis of the Okazaki fragment distributions along single long DNAs replicated by the bacteriophage T4 proteins. Mol Cell 2000; 6:803-14. [PMID: 11090619 DOI: 10.1016/s1097-2765(05)00093-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rolling circle replication from M13 DNA circles was previously reconstituted in vitro using purified factors encoded by bacteriophage T4. The products are duplex circles with linear tails >100 kb. When T4 DNA polymerase deficient in 3' to 5' exonuclease activity was employed, electron microscopy revealed short single-stranded DNA "flaps" along the replicated tails. This marked the beginning of each Okazaki fragment, allowing an analysis of the lengths of sequential Okazaki fragments on individual replicating molecules. DNAs containing runs of Okazaki fragments of similar length were found, but most showed large length variations over runs of six or more fragments reflecting the broad population distribution.
Collapse
Affiliation(s)
- P D Chastain
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 27599, USA
| | | | | | | |
Collapse
|
26
|
Vaiskunaite R, Miller A, Davenport L, Mosig G. Two new early bacteriophage T4 genes, repEA and repEB, that are important for DNA replication initiated from origin E. J Bacteriol 1999; 181:7115-25. [PMID: 10559179 PMCID: PMC94188 DOI: 10.1128/jb.181.22.7115-7125.1999] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/1999] [Accepted: 09/13/1999] [Indexed: 11/20/2022] Open
Abstract
Two new, small, early bacteriophage T4 genes, repEA and repEB, located within the origin E (oriE) region of T4 DNA replication, affect functioning of this origin. An important and unusual property of the oriE region is that it is transcribed at early and late periods after infection, but in opposite directions (from complementary DNA strands). The early transcripts are mRNAs for RepEA and RepEB proteins, and they can serve as primers for leading-strand DNA synthesis. The late transcripts, which are genuine antisense RNAs for the early transcripts, direct synthesis of virion components. Because the T4 genome contains several origins, and because recombination can bypass a primase requirement for retrograde synthesis, neither defects in a single origin nor primase deficiencies are lethal in T4 (Mosig et al., FEMS Microbiol. Rev. 17:83-98, 1995). Therefore, repEA and repEB were expected and found to be important for T4 DNA replication only when activities of other origins were reduced. To investigate the in vivo roles of the two repE genes, we constructed nonsense mutations in each of them and combined them with the motA mutation sip1 that greatly reduces initiation from other origins. As expected, T4 DNA synthesis and progeny production were severely reduced in the double mutants as compared with the single motA mutant, but early transcription of oriE was reduced neither in the motA nor in the repE mutants. Moreover, residual DNA replication and growth of the double mutants were different at different temperatures, suggesting different functions for repEA and repEB. We surmise that the different structures and protein requirements for functioning of the different origins enhance the flexibility of T4 to adapt to varied growth conditions, and we expect that different origins in other organisms with multiorigin chromosomes might differ in structure and function for similar reasons.
Collapse
Affiliation(s)
- R Vaiskunaite
- Department of Molecular Biology, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | | | | | |
Collapse
|
27
|
Abstract
General recombination is essential for growth of phage T4, because origin initiation of DNA replication is inactivated during development, and recombination-dependent initiation is necessary for continuing DNA replication. The requirement of recombination for T4 growth has apparently been a driving force to acquire and maintain multiple recombination mechanisms. This requirement makes this phage an excellent model to analyze several recombination mechanisms that appear redundant under optimal growth conditions but become essential under other conditions, or at different stages of the developmental program. The most important substrate for wild-type T4 recombination is single-stranded DNA generated by incomplete replication of natural or artificial chromosomal ends, or by nucleolytic degradation from induced breaks, or nicks. Recombination circumvents the further erosion of such ends. There are multiple proteins and multiple pathways to initiate formation of recombinants (by single-strand annealing or by strand invasion) and to convert recombinational intermediates into final recombinants ("cut and paste" or "cut and package"), or to initiate extensive DNA replication by "join-copy" or "join-cut-copy" mechanisms. Most T4 recombination is asymmetrical, favoring the initiation of replication. In wild-type T4 these pathways are integrated with physiological changes of other DNA transactions: mainly replication, transcription, and packaging. DNA replication and packaging enzymes participate in recombination, and recombination intermediates supply substrates for replication and packaging. The replicative recombination pathways are also important for transmission of intron DNA to intronless genomes ("homing"), and are implicated in horizontal transfer of foreign genes during evolution of the T-even phages. When horizontal transfer involves heteroduplex formation and repair, it is intrinsically mutagenic and contributes to generation of species barriers between phages.
Collapse
Affiliation(s)
- G Mosig
- Department of Molecular Biology, Vanderbilt University, Nashville, Tennessee 37235, USA.
| |
Collapse
|
28
|
Bhagwat M, Hobbs LJ, Nossal NG. The 5'-exonuclease activity of bacteriophage T4 RNase H is stimulated by the T4 gene 32 single-stranded DNA-binding protein, but its flap endonuclease is inhibited. J Biol Chem 1997; 272:28523-30. [PMID: 9353314 DOI: 10.1074/jbc.272.45.28523] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Bacteriophage T4 RNase H is a 5'- to 3'-nuclease that has exonuclease activity on RNA.DNA and DNA.DNA duplexes and can remove the pentamer RNA primers made by the T4 primase-helicase (Hollingsworth, H. C., and Nossal, N. G. (1991) J. Biol. Chem. 266, 1888-1897; Hobbs, L. J., and Nossal, N. G. (1996) J. Bacteriol. 178, 6772-6777). Here we show that this exonuclease degrades duplex DNA nonprocessively, releasing a single oligonucleotide (nucleotides 1-4) with each interaction with the substrate. Degradation continues nonprocessively until the enzyme stops 8-11 nucleotides from the 3'-end of the substrate. T4 gene 32 single-stranded DNA-binding protein strongly stimulates the exonuclease activity of T4 RNase H, converting it into a processive nuclease that removes multiple short oligonucleotides with a combined length of 10-50 nucleotides each time it binds to the duplex substrate. 32 protein must bind on single-stranded DNA behind T4 RNase H for processive degradation. T4 RNase H also has a flap endonuclease activity that cuts preferentially on either side of the junction between single- and double-stranded DNA in flap and fork DNA structures. In contrast to the exonuclease, the endonuclease is inhibited completely by 32 protein binding to the single strand of the flap substrate. These results suggest an important role for T4 32 protein in controlling T4 RNase H degradation of RNA primers and adjacent DNA during each lagging strand cycle.
Collapse
Affiliation(s)
- M Bhagwat
- Laboratory of Molecular and Cellular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-0830, USA
| | | | | |
Collapse
|
29
|
Bhagwat M, Meara D, Nossal NG. Identification of residues of T4 RNase H required for catalysis and DNA binding. J Biol Chem 1997; 272:28531-8. [PMID: 9353315 DOI: 10.1074/jbc.272.45.28531] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Bacteriophage T4 RNase H, which removes the RNA primers that initiate lagging strand fragments, has a 5'- to 3'-exonuclease activity on DNA.DNA and RNA.DNA duplexes and an endonuclease activity on flap or forked DNA structures (Bhagwat, M., Hobbs, L. J., and Nossal, N. J. (1997) J. Biol. Chem. 272, 28523-28530). It is a member of the RAD2 family of prokaryotic and eukaryotic replication and repair nucleases. The crystal structure of T4 RNase H, in the absence of DNA, shows two Mg2+ ions coordinated to the amino acids highly conserved in this family. It also shows a disordered region proposed to be involved in DNA binding (Mueser, T. C., Nossal, N. G., and Hyde, C. C. Cell (1996) 85, 1101-1112). To identify the amino acids essential for catalysis and DNA binding, we have constructed and characterized three kinds of T4 RNase H mutant proteins based on the possible roles of the amino acid residues: mutants of acidic residues coordinated to each of the two Mg2+ ions (Mg2+-1: D19N, D71N, D132N, and D155N; and Mg2+-2: D157N and D200N); mutants of conserved basic residues in or near the disordered region (K87A and R90A); and mutants of residues with hydroxyl side chains involved in the hydrogen bonding network (Y86F and S153A). Our studies show that Mg2+-1 and the residues surrounding it are important for catalysis and that Lys87 is necessary for DNA binding.
Collapse
Affiliation(s)
- M Bhagwat
- Laboratory of Molecular and Cellular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-0830, USA
| | | | | |
Collapse
|
30
|
Elías-Arnanz M, Salas M. Bacteriophage phi29 DNA replication arrest caused by codirectional collisions with the transcription machinery. EMBO J 1997; 16:5775-83. [PMID: 9312035 PMCID: PMC1170208 DOI: 10.1093/emboj/16.18.5775] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The consequences on replication of collisions between phi29 DNA polymerase, a monomeric replicase endowed with strand displacement capacity, and the transcription machinery have been studied in vitro. Codirectional collisions with stalled transcription ternary complexes at four different promoters in the phi29 genome were found to block replication fork progression. Upon collision, the DNA polymerase remained on the template and was able to resume elongation once the RNA polymerase was allowed to move. Collisions with RNA polymerase molecules moving in the same direction also interfered with replication, causing a decrease in the replication rate. These results lead to the proposal that in bacteriophage phi29 a transcription complex physically blocks the progression of a replication fork. We suggest that temporal regulation of transcription and the low probability that the replication and transcription processes colocalize in vivo contribute to achieving minimal interference between the two events.
Collapse
Affiliation(s)
- M Elías-Arnanz
- Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Universidad Autónoma, Canto Blanco, 28049 Madrid, Spain
| | | |
Collapse
|
31
|
Hobbs LJ, Nossal NG. Either bacteriophage T4 RNase H or Escherichia coli DNA polymerase I is essential for phage replication. J Bacteriol 1996; 178:6772-7. [PMID: 8955295 PMCID: PMC178574 DOI: 10.1128/jb.178.23.6772-6777.1996] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Bacteriophage T4 rnh encodes an RNase H that removes ribopentamer primers from nascent DNA chains during synthesis by the T4 multienzyme replication system in vitro (H. C. Hollingsworth and N. G. Nossal, J. Biol. Chem. 266:1888-1897, 1991). This paper demonstrates that either T4 RNase HI or Escherichia coli DNA polymerase I (Pol I) is essential for phage replication. Wild-type T4 phage production was not diminished by the polA12 mutation, which disrupts coordination between the polymerase and the 5'-to-3' nuclease activities of E. coli DNA Pol I, or by an interruption in the gene for E. coli RNase HI. Deleting the C-terminal amino acids 118 to 305 from T4 RNase H reduced phage production to 47% of that of wild-type T4 on a wild-type E. coli host, 10% on an isogenic host defective in RNase H, and less than 0.1% on a polA12 host. The T4 rnh(delta118-305) mutant synthesized DNA at about half the rate of wild-type T4 in the polA12 host. More than 50% of pulse-labelled mutant DNA was in short chains characteristic of Okazaki fragments. Phage production was restored in the nonpermissive host by providing the T4 rnh gene on a plasmid. Thus, T4 RNase H was sufficient to sustain the high rate of T4 DNA synthesis, but E. coli RNase HI and the 5'-to-3' exonuclease of Pol I could substitute to some extent for the T4 enzyme. However, replication was less accurate in the absence of the T4 RNase H, as judged by the increased frequency of acriflavine-resistant mutations after infection of a wild-type host with the T4 rnh (delta118-305) mutant.
Collapse
Affiliation(s)
- L J Hobbs
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0830, USA
| | | |
Collapse
|
32
|
Mueser TC, Nossal NG, Hyde CC. Structure of bacteriophage T4 RNase H, a 5' to 3' RNA-DNA and DNA-DNA exonuclease with sequence similarity to the RAD2 family of eukaryotic proteins. Cell 1996; 85:1101-12. [PMID: 8674116 DOI: 10.1016/s0092-8674(00)81310-0] [Citation(s) in RCA: 152] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Bacteriophage T4 RNase H is a 5' to 3' exonuclease that removes RNA primers from the lagging strand of the DNA replication fork and is a member of the RAD2 family of eukaryotic and prokaryotic replication and repair nucleases. The crystal structure of the full-length native form of T4 RNase H has been solved at 2.06 angstroms resolution in the presence of Mg2+ but in the absence of nucleic acids. The most conserved residues are clustered together in a large cleft with two Mg2+ in the proposed active site. This structure suggests the way in which the widely separated conserved regions in the larger nucleotide excision repair proteins, such as human XPG, could assemble into a structure like that of the smaller replication nucleases.
Collapse
Affiliation(s)
- T C Mueser
- Laboratory of Structural Biology Research, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892-2755, USA
| | | | | |
Collapse
|
33
|
Hinton DM, March-Amegadzie R, Gerber JS, Sharma M. Bacteriophage T4 middle transcription system: T4-modified RNA polymerase; AsiA, a sigma 70 binding protein; and transcriptional activator MotA. Methods Enzymol 1996; 274:43-57. [PMID: 8902795 DOI: 10.1016/s0076-6879(96)74007-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- D M Hinton
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|