1
|
Montemayor-Aldrete JA, Nieto-Villar JM, Villagómez CJ, Márquez-Caballé RF. An irreversible thermodynamic model of prebiological dissipative molecular structures inside vacuoles at the surface of the Archean Ocean. Biosystems 2025; 247:105379. [PMID: 39710184 DOI: 10.1016/j.biosystems.2024.105379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/05/2024] [Accepted: 12/05/2024] [Indexed: 12/24/2024]
Abstract
A prebiotic model, based in the framework of thermodynamic efficiency loss from small dissipative eukaryote organisms is developed to describe the maximum possible concentration of solar power to be dissipated on topological circular molecules structures encapsulated in lipid-walled vacuoles, which floated in the Archean oceans. By considering previously, the analysis of 71 species examined by covering 18 orders of mass magnitude from the Megapteranovaeangliae to Saccharomyces cerevisiae suggest that in molecular structures of smaller masses than any living being known nowadays, the power dissipation must be directly proportional to the power of the photons of solar origin that impinge them to give rise to the formation of more complex self-assembled molecular structures at the prebiotic stage by a quantum mechanics model of resonant photon wavelength excitation. The analysis of 12 circular molecules (encapsulated in lipid-walled vacuoles) relevant to the evolution of life on planet Earth such as the five nucleobases, and some aromatic molecules as pyrimidine, porphyrin, chlorin, coumarin, xanthine, etc., were carried out. Considering one vacuole of each type of molecule per square meter of the ocean's surface of planet Earth (1.8∗1015 vacuoles), their dissipative operation would require only 10-10 times the matter used by the biomass currently existing on Earth. Relevant numbers (1020-1021) for the annual dissipative cycles corresponding to high energy photo chemical events, which in principle allow the assembling of more complex polymers, were obtained. The previous figures are compatible with some results obtained by followers of the primordial soup theory where under certain suppositions about the Archean chemical kinetical changes on the precursors of RNA and DNA try to justify the formation rate of RNA and DNA components and the emergence of life within a 10-million-year window, 3.5 billion years ago. The physical foundation perspective and the simplicity of the proposed approach suggests that it can serve as a possible template for both, the development of new kind of experiments, and for prebiotic theories that address self-organization occurring inside such vacuoles. Our model provides a new way to conceptualize the self-production of simple cyclic dissipative molecular structures in the Archean period of planet Earth. © 2017 ElsevierInc.Allrightsreserved.
Collapse
Affiliation(s)
- Jorge A Montemayor-Aldrete
- Departamento de Estado Sólido, Instituto de Física, Universidad Nacional Autónoma de México, Circuito de la Investigación Científica, Ciudad Universitaria, Ciudad de México, 04510, Mexico.
| | - José Manuel Nieto-Villar
- Department of Chemical-Physics, A. Alzola Group of Thermodynamics of Complex Systems of M.V. Lomonosov Chair, Faculty of Chemistry, University of Havana, Cuba
| | - Carlos J Villagómez
- Departamento de Estado Sólido, Instituto de Física, Universidad Nacional Autónoma de México, Circuito de la Investigación Científica, Ciudad Universitaria, Ciudad de México, 04510, Mexico
| | - Rafael F Márquez-Caballé
- Departamento de Estado Sólido, Instituto de Física, Universidad Nacional Autónoma de México, Circuito de la Investigación Científica, Ciudad Universitaria, Ciudad de México, 04510, Mexico
| |
Collapse
|
2
|
|
3
|
Vigneau JN, Fahimi P, Ebert M, Cheng Y, Tannahill C, Muir P, Nguyen T, Matta C. ATP Synthase: A Moonlighting Enzyme with Unprecedented Functions. Chem Commun (Camb) 2022; 58:2650-2653. [DOI: 10.1039/d1cc06793a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ATP synthase’s intrinsic molecular electrostatic potential (MESP) adds constructively to, and hence reinforces, the chemiosmotic voltage. This ATP synthase voltage represents a new free energy term that appears to have...
Collapse
|
4
|
Wimmer JLE, Xavier JC, Vieira ADN, Pereira DPH, Leidner J, Sousa FL, Kleinermanns K, Preiner M, Martin WF. Energy at Origins: Favorable Thermodynamics of Biosynthetic Reactions in the Last Universal Common Ancestor (LUCA). Front Microbiol 2021; 12:793664. [PMID: 34966373 PMCID: PMC8710812 DOI: 10.3389/fmicb.2021.793664] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/24/2021] [Indexed: 12/02/2022] Open
Abstract
Though all theories for the origin of life require a source of energy to promote primordial chemical reactions, the nature of energy that drove the emergence of metabolism at origins is still debated. We reasoned that evidence for the nature of energy at origins should be preserved in the biochemical reactions of life itself, whereby changes in free energy, ΔG, which determine whether a reaction can go forward or not, should help specify the source. By calculating values of ΔG across the conserved and universal core of 402 individual reactions that synthesize amino acids, nucleotides and cofactors from H2, CO2, NH3, H2S and phosphate in modern cells, we find that 95-97% of these reactions are exergonic (ΔG ≤ 0 kJ⋅mol-1) at pH 7-10 and 80-100°C under nonequilibrium conditions with H2 replacing biochemical reductants. While 23% of the core's reactions involve ATP hydrolysis, 77% are ATP-independent, thermodynamically driven by ΔG of reactions involving carbon bonds. We identified 174 reactions that are exergonic by -20 to -300 kJ⋅mol-1 at pH 9 and 80°C and that fall into ten reaction types: six pterin dependent alkyl or acyl transfers, ten S-adenosylmethionine dependent alkyl transfers, four acyl phosphate hydrolyses, 14 thioester hydrolyses, 30 decarboxylations, 35 ring closure reactions, 31 aromatic ring formations, and 44 carbon reductions by reduced nicotinamide, flavins, ferredoxin, or formate. The 402 reactions of the biosynthetic core trace to the last universal common ancestor (LUCA), and reveal that synthesis of LUCA's chemical constituents required no external energy inputs such as electric discharge, UV-light or phosphide minerals. The biosynthetic reactions of LUCA uncover a natural thermodynamic tendency of metabolism to unfold from energy released by reactions of H2, CO2, NH3, H2S, and phosphate.
Collapse
Affiliation(s)
- Jessica L. E. Wimmer
- Department of Biology, Institute of Molecular Evolution, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Joana C. Xavier
- Department of Biology, Institute of Molecular Evolution, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Andrey d. N. Vieira
- Department of Biology, Institute of Molecular Evolution, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Delfina P. H. Pereira
- Department of Biology, Institute of Molecular Evolution, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jacqueline Leidner
- Department of Biology, Institute of Molecular Evolution, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Filipa L. Sousa
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Karl Kleinermanns
- Department of Chemistry, Institute of Physical Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Martina Preiner
- Department of Biology, Institute of Molecular Evolution, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - William F. Martin
- Department of Biology, Institute of Molecular Evolution, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
5
|
Schulze-Makuch D, Fairén AG. Evaluating the Microbial Habitability of Rogue Planets and Proposing Speculative Scenarios on How They Might Act as Vectors for Panspermia. Life (Basel) 2021; 11:life11080833. [PMID: 34440576 PMCID: PMC8397938 DOI: 10.3390/life11080833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 02/08/2023] Open
Abstract
There are two types of rogue planets, sub-brown dwarfs and “rocky” rogue planets. Sub-brown dwarfs are unlikely to be habitable or even host life, but rocky rogue planets may have a liquid ocean under a thick atmosphere or an ice layer. If they are overlain by an insulating ice layer, they are also referred to as Steppenwolf planets. However, given the poor detectability of rocky rogue planets, there is still no direct evidence of the presence of water or ice on them. Here we discuss the possibility that these types of rogue planets could harbor unicellular organisms, conceivably based on a variety of different energy sources, including chemical, osmotic, thermal, and luminous energy. Further, given the theoretically predicted high number of rogue planets in the galaxy, we speculate that rogue planets could serve as a source for galactic panspermia, transferring life to other planetary systems.
Collapse
Affiliation(s)
- Dirk Schulze-Makuch
- Astrobiology Group, Center for Astronomy and Astrophysics, Technische Universität Berlin, 10623 Berlin, Germany
- GFZ German Research Center for Geosciences, Section Geomicrobiology, 14473 Potsdam, Germany
- Department of Experimental Limnology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), 16775 Stechlin, Germany
- School of the Environment, Washington State University, Pullman, WA 99163, USA
- Correspondence: ; Tel.: +49-30-314-23736
| | - Alberto G. Fairén
- Centro de Astrobiología (CSIC-INTA), 28850 Madrid, Spain;
- Department of Astronomy, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
6
|
Lim CL. Fundamental Concepts of Human Thermoregulation and Adaptation to Heat: A Review in the Context of Global Warming. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E7795. [PMID: 33114437 PMCID: PMC7662600 DOI: 10.3390/ijerph17217795] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 12/18/2022]
Abstract
The international community has recognized global warming as an impending catastrophe that poses significant threat to life on earth. In response, the signatories of the Paris Agreement (2015) have committed to limit the increase in global mean temperature to < 1.5 °C from pre-industry period, which is defined as 1950-1890. Considering that the protection of human life is a central focus in the Paris Agreement, the naturally endowed properties of the human body to protect itself from environmental extremes should form the core of an integrated and multifaceted solution against global warming. Scholars believe that heat and thermoregulation played important roles in the evolution of life and continue to be a central mechanism that allows humans to explore, labor and live in extreme conditions. However, the international effort against global warming has focused primarily on protecting the environment and on the reduction of greenhouse gases by changing human behavior, industrial practices and government policies, with limited consideration given to the nature and design of the human thermoregulatory system. Global warming is projected to challenge the limits of human thermoregulation, which can be enhanced by complementing innate human thermo-plasticity with the appropriate behavioral changes and technological innovations. Therefore, the primary aim of this review is to discuss the fundamental concepts and physiology of human thermoregulation as the underlying bases for human adaptation to global warming. Potential strategies to extend human tolerance against environmental heat through behavioral adaptations and technological innovations will also be discussed. An important behavioral adaptation postulated by this review is that sleep/wake cycles would gravitate towards a sub-nocturnal pattern, especially for outdoor activities, to avoid the heat in the day. Technologically, the current concept of air conditioning the space in the room would likely steer towards the concept of targeted body surface cooling. The current review was conducted using materials that were derived from PubMed search engine and the personal library of the author. The PubMed search was conducted using combinations of keywords that are related to the theme and topics in the respective sections of the review. The final set of articles selected were considered "state of the art," based on their contributions to the strength of scientific evidence and novelty in the domain knowledge on human thermoregulation and global warming.
Collapse
Affiliation(s)
- Chin Leong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore 308232, Singapore
| |
Collapse
|
7
|
Abstract
Most definitions of life assume that, at a minimum, life is a physical form of matter distinct from its environment at a lower state of entropy than its surroundings, using energy from the environment for internal maintenance and activity, and capable of autonomous reproduction. These assumptions cover all of life as we know it, though more exotic entities can be envisioned, including organic forms with novel biochemistries, dynamic inorganic matter, and self-replicating machines. The probability that any particular form of life will be found on another planetary body depends on the nature and history of that alien world. So the biospheres would likely be very different on a rocky planet with an ice-covered global ocean, a barren planet devoid of surface liquid, a frigid world with abundant liquid hydrocarbons, on a rogue planet independent of a host star, on a tidally locked planet, on super-Earths, or in long-lived clouds in dense atmospheres. While life at least in microbial form is probably pervasive if rare throughout the Universe, and technologically advanced life is likely much rarer, the chance that an alternative form of life, though not intelligent life, could exist and be detected within our Solar System is a distinct possibility.
Collapse
|
8
|
Nguyen BNT, Grommet AB, Tron A, Georges MCA, Nitschke JR. Heat Engine Drives Transport of an Fe II 4 L 4 Cage and Cargo. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907241. [PMID: 32236986 DOI: 10.1002/adma.201907241] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/14/2020] [Accepted: 02/26/2020] [Indexed: 06/11/2023]
Abstract
The directed motion of species against a chemical potential gradient is a fundamental feature of living systems, underpinning processes that range from transport through cell membranes to neurotransmission. The development of artificial active cargo transport could enable new modes of chemical purification and pumping. Here, a heat engine is described that drives chemical cargo between liquid phases to generate a concentration gradient. The heat engine, composed of a functionalized FeII 4 L4 coordination cage, is grafted with oligoethylene glycol imidazolium chains. These chains undergo a conformational change upon heating, causing the cage and its cargo to reversibly transfer between aqueous and organic phases. Furthermore, sectional heating and cooling allow for the cage to traverse multiple phase boundaries, allowing for longer-distance transport than would be possible using a single pair of phases.
Collapse
Affiliation(s)
| | - Angela B Grommet
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Arnaud Tron
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | | | | |
Collapse
|
9
|
Muller AWJ. Cancer is an adaptation that selects in animals against energy dissipation. Med Hypotheses 2017; 104:104-115. [PMID: 28673566 DOI: 10.1016/j.mehy.2017.05.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 04/30/2017] [Accepted: 05/25/2017] [Indexed: 02/06/2023]
Abstract
As cancer usually follows reproduction, it is generally assumed that cancer does not select. Graham has however argued that juvenile cancer, which precedes reproduction, could during evolution have implemented a "cancer selection" that resulted in novel traits that suppress this juvenile cancer; an example is protection against UV sunlight-induced cancer, required for the emergence of terrestrial animals from the sea. We modify the cancer selection mechanism to the posited "cancer adaptation" mechanism, in which juvenile mortality is enhanced through the diminished care received by juveniles from their (grand) parents when these suffer from cancer in old age. Moreover, it is posited that the cancer adaptation selects against germline "dissipative genes", genes that result in enhanced free energy dissipation. Cancer's progression is interpreted as a cascade at increasing scale of repeated amplification of energy dissipation, a cascade involving heat shock, the Warburg effect, the cytokine IL-6, tumours, and hypermetabolism. Disturbance of any physiological process must enhance energy dissipation if the animal remains functioning normally, what explains multicausality, why "everything gives you cancer". The hypothesis thus comprises two newly invoked partial processes-diminished (grand) parental care and dissipation amplification-and results in a "selection against enhanced energy dissipation" which gives during evolution the benefit of energy conservation. Due to this benefit, cancer would essentially be an adaptation, and not a genetic disease, as assumed in the "somatic mutation theory". Cancer by somatic mutations is only a side process. The cancer adaptation hypothesis is substantiated by (1) cancer's extancy, (2) the failure of the somatic mutation theory, (3) cancer's initiation by a high temperature, (4) the interpretation of cancer's progression as a thermal process, and (5) the interpretation of tumours as organs that implement thermogenesis. The hypothesis could in principle be verified by monitoring in a population over several generations (1) the presence of dissipative genes, (2) the incidence of cancer, and (3) the beneficial effect of dissipative gene removal by cancer on starvation/famine survival.
Collapse
Affiliation(s)
- Anthonie W J Muller
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, Kruislaan 904, 1098 XH Amsterdam, The Netherlands.
| |
Collapse
|
10
|
Lucia U, Grazzini G, Montrucchio B, Grisolia G, Borchiellini R, Gervino G, Castagnoli C, Ponzetto A, Silvagno F. Constructal thermodynamics combined with infrared experiments to evaluate temperature differences in cells. Sci Rep 2015; 5:11587. [PMID: 26100383 PMCID: PMC4650705 DOI: 10.1038/srep11587] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 05/27/2015] [Indexed: 11/26/2022] Open
Abstract
The aim of this work was to evaluate differences in energy flows between normal and immortalized cells when these distinct biological systems are exposed to environmental stimulation. These differences were considered using a constructal thermodynamic approach, and were subsequently verified experimentally. The application of constructal law to cell analysis led to the conclusion that temperature differences between cells with distinct behaviour can be amplified by interaction between cells and external fields. Experimental validation of the principle was carried out on two cellular models exposed to electromagnetic fields. By infrared thermography we were able to assess small changes in heat dissipation measured as a variation in cell internal energy. The experimental data thus obtained are in agreement with the theoretical calculation, because they show a different thermal dispersion pattern when normal and immortalized cells are exposed to electromagnetic fields. By using two methods that support and validate each other, we have demonstrated that the cell/environment interaction can be exploited to enhance cell behavior differences, in particular heat dissipation. We propose infrared thermography as a technique effective in discriminating distinct patterns of thermal dispersion and therefore able to distinguish a normal phenotype from a transformed one.
Collapse
Affiliation(s)
- Umberto Lucia
- Dipartimento Energia, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Giuseppe Grazzini
- Dipartimento di Ingegneria Industriale, Università di Firenze, Via Santa Marta 3, 50139 Firenze, Italy
| | - Bartolomeo Montrucchio
- Dipartimento di Automatica e Informatica, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Giulia Grisolia
- Dipartimento Energia, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Romano Borchiellini
- Dipartimento Energia, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Gianpiero Gervino
- Dipartimento di Fisica, Università di Torino, via P. Giuria 1, 10125 Torino, Italy
| | - Carlotta Castagnoli
- Dipartimento di Chirurgia Generale e Specialistiche, Banca della Cute, AOU Città della Salute e della Scienza Torino, Via Zuretti 29, 10126 Torino
| | - Antonio Ponzetto
- Dipartimento di Scienze Mediche, Università di Torino, corso A.M. Dogliotti 14, 10126 Torino
| | | |
Collapse
|
11
|
Trevors JT. Origin of life: hypothesized roles of high-energy electrical discharges, infrared radiation, thermosynthesis and pre-photosynthesis. Theory Biosci 2012; 131:225-9. [PMID: 22718039 DOI: 10.1007/s12064-012-0157-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 06/05/2012] [Indexed: 11/25/2022]
Abstract
The hypothesis is proposed that during the organization of pre-biotic bacterial cell(s), high-energy electrical discharges, infrared radiation (IR), thermosynthesis and possibly pre-photosynthesis were central to the origin of life. High-energy electrical discharges generated some simple organic molecules available for the origin of life. Infrared radiation, both incoming to the Earth and generated on the cooling Earth with day/night and warming/cooling cycles, was a component of heat engine thermosynthesis before enzymes and the genetic code were present. Eventually, a primitive forerunner of photosynthesis and the capability to capture visible light emerged. In addition, the dual particle-wave nature of light is discussed from the perspective that life requires light acting both as a wave and particle.
Collapse
Affiliation(s)
- J T Trevors
- Laboratory of Microbiology, School of Environmental Sciences, University of Guelph, 50 Stone Road, E., Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
12
|
Schulze-Makuch D, Méndez A, Fairén AG, von Paris P, Turse C, Boyer G, Davila AF, António MRDS, Catling D, Irwin LN. A two-tiered approach to assessing the habitability of exoplanets. ASTROBIOLOGY 2011; 11:1041-1052. [PMID: 22017274 DOI: 10.1089/ast.2010.0592] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In the next few years, the number of catalogued exoplanets will be counted in the thousands. This will vastly expand the number of potentially habitable worlds and lead to a systematic assessment of their astrobiological potential. Here, we suggest a two-tiered classification scheme of exoplanet habitability. The first tier consists of an Earth Similarity Index (ESI), which allows worlds to be screened with regard to their similarity to Earth, the only known inhabited planet at this time. The ESI is based on data available or potentially available for most exoplanets such as mass, radius, and temperature. For the second tier of the classification scheme we propose a Planetary Habitability Index (PHI) based on the presence of a stable substrate, available energy, appropriate chemistry, and the potential for holding a liquid solvent. The PHI has been designed to minimize the biased search for life as we know it and to take into account life that might exist under more exotic conditions. As such, the PHI requires more detailed knowledge than is available for any exoplanet at this time. However, future missions such as the Terrestrial Planet Finder will collect this information and advance the PHI. Both indices are formulated in a way that enables their values to be updated as technology and our knowledge about habitable planets, moons, and life advances. Applying the proposed metrics to bodies within our Solar System for comparison reveals two planets in the Gliese 581 system, GJ 581 c and d, with an ESI comparable to that of Mars and a PHI between that of Europa and Enceladus.
Collapse
Affiliation(s)
- Dirk Schulze-Makuch
- School of Earth and Environmental Sciences, Washington State University, Pullman, Washington, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Brasier MD, Matthewman R, McMahon S, Wacey D. Pumice as a remarkable substrate for the origin of life. ASTROBIOLOGY 2011; 11:725-735. [PMID: 21879814 DOI: 10.1089/ast.2010.0546] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The context for the emergence of life on Earth sometime prior to 3.5 billion years ago is almost as big a puzzle as the definition of life itself. Hitherto, the problem has largely been addressed in terms of theoretical and experimental chemistry plus evidence from extremophile habitats like modern hydrothermal vents and meteorite impact structures. Here, we argue that extensive rafts of glassy, porous, and gas-rich pumice could have had a significant role in the origin of life and provided an important habitat for the earliest communities of microorganisms. This is because pumice has four remarkable properties. First, during eruption it develops the highest surface-area-to-volume ratio known for any rock type. Second, it is the only known rock type that floats as rafts at the air-water interface and then becomes beached in the tidal zone for long periods of time. Third, it is exposed to an unusually wide variety of conditions, including dehydration. Finally, from rafting to burial, it has a remarkable ability to adsorb metals, organics, and phosphates as well as to host organic catalysts such as zeolites and titanium oxides. These remarkable properties now deserve to be rigorously explored in the laboratory and the early rock record.
Collapse
|
14
|
Emergence of Animals from Heat Engines – Part 1. Before the Snowball Earths. ENTROPY 2009. [DOI: 10.3390/e11030463] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
On the free energy that drove primordial anabolism. Int J Mol Sci 2009; 10:1853-1871. [PMID: 19468343 PMCID: PMC2680651 DOI: 10.3390/ijms10041853] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 04/16/2009] [Accepted: 04/20/2009] [Indexed: 12/25/2022] Open
Abstract
A key problem in understanding the origin of life is to explain the mechanism(s) that led to the spontaneous assembly of molecular building blocks that ultimately resulted in the appearance of macromolecular structures as they are known in modern biochemistry today. An indispensable thermodynamic prerequisite for such a primordial anabolism is the mechanistic coupling to processes that supplied the free energy required. Here I review different sources of free energy and discuss the potential of each form having been involved in the very first anabolic reactions that were fundamental to increase molecular complexity and thus were essential for life.
Collapse
|
16
|
Lim CL, Byrne C, Lee JKW. Human Thermoregulation and Measurement of Body Temperature in Exercise and Clinical Settings. ANNALS OF THE ACADEMY OF MEDICINE, SINGAPORE 2008. [DOI: 10.47102/annals-acadmedsg.v37n4p347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
This review discusses human thermoregulation during exercise and the measurement of body temperature in clinical and exercise settings. The thermoregulatory mechanisms play important roles in maintaining physiological homeostasis during rest and physical exercise. Physical exertion poses a challenge to thermoregulation by causing a substantial increase in metabolic heat production. However, within a non-thermolytic range, the thermoregulatory mechanisms are capable of adapting to sustain physiological functions under these conditions. The central nervous system may also rely on hyperthermia to protect the body from “overheating.” Hyperthermia may serve as a self-limiting signal that triggers central inhibition of exercise performance when a temperature threshold is achieved. Exposure to sub-lethal heat stress may also confer tolerance against higher doses of heat stress by inducing the production of heat shock proteins, which protect cells against the thermolytic effects of heat. Advances in body temperature measurement also contribute to research in thermoregulation. Current evidence supports the use of oral temperature measurement in the clinical setting, although it may not be as convenient as tympanic temperature measurement using the infrared temperature scanner. Rectal and oesophagus temperatures are widely accepted surrogate measurements of core temperature (Tc), but they cause discomfort and are less likely to be accepted by users. Gastrointestinal temperature measurement using the ingestible temperature sensor provides an acceptable level of accuracy as a surrogate measure of Tc without causing discomfort to the user. This form of Tc measurement also allows Tc to be measured continuously in the field and has gained wider acceptance in the last decade.
Key words: Core temperature, Gastrointestinal temperature, Ingestible temperature sensor, Thermoregulation
Collapse
Affiliation(s)
- Chin Leong Lim
- Defence Medical and Environmental Research Institute, DSO National Laboratories, Singapore
| | - Chris Byrne
- School of Sport and Health Sciences, University of Exeter, Exeter, UK
| | - Jason KW Lee
- Defence Medical and Environmental Research Institute, DSO National Laboratories, Singapore
| |
Collapse
|
17
|
Muller AWJ, Schulze-Makuch D. Thermal energy and the origin of life. ORIGINS LIFE EVOL B 2006; 36:177-89. [PMID: 16642267 DOI: 10.1007/s11084-005-9003-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Accepted: 10/20/2005] [Indexed: 10/24/2022]
Abstract
Life has evolved on Earth with electromagnetic radiation (light), fermentable organic molecules, and oxidizable chemicals as sources of energy. Biological use of thermal energy has not been observed although heat, and the thermal gradients required to convert it into free energy, are ubiquitous and were even more abundant at the time of the origin of life on Earth. Nevertheless, Earth-organisms sense thermal energy, and in suitable environments may have gained the capability to use it as energy source. It has been proposed that the first organisms obtained their energy by a first protein named pF(1) that worked on a thermal variation of the binding change mechanism of today's ATP sythase enzyme. Organisms using thermosynthesis may still live where light or chemical energy sources are not available. Possible suitable examples are subsurface environments on Earth and in the outer Solar System, in particular the subsurface oceans of the icy satellites of Jupiter and Saturn.
Collapse
Affiliation(s)
- Anthonie W J Muller
- Department of Geology, Washington State University, Pullman, WA 99164-2812, USA
| | | |
Collapse
|
18
|
Schulze-Makuch D, Irwin LN. The prospect of alien life in exotic forms on other worlds. Naturwissenschaften 2006; 93:155-72. [PMID: 16525788 DOI: 10.1007/s00114-005-0078-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2005] [Accepted: 12/12/2005] [Indexed: 11/29/2022]
Abstract
The nature of life on Earth provides a singular example of carbon-based, water-borne, photosynthesis-driven biology. Within our understanding of chemistry and the physical laws governing the universe, however, lies the possibility that alien life could be based on different chemistries, solvents, and energy sources from the one example provided by Terran biology. In this paper, we review some of these possibilities. Silanes may be used as functional analogs to carbon molecules in environments very different from Earth; solvents other than water may be compatible for life-supporting processes, especially in cold environments, and a variety of energy sources may be utilized, some of which have no Terran analog. We provide a detailed discussion of two possible habitats for alien life which are generally not considered as such: the lower cloud level of the Venusian atmosphere and Titan's surface environment.
Collapse
Affiliation(s)
- Dirk Schulze-Makuch
- Department of Geology, Washington State University, Pullman, WA 99164-2812, USA.
| | | |
Collapse
|
19
|
Muller AWJ. Thermosynthesis as energy source for the RNA World: A model for the bioenergetics of the origin of life. Biosystems 2005; 82:93-102. [PMID: 16024164 DOI: 10.1016/j.biosystems.2005.06.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2005] [Revised: 06/10/2005] [Accepted: 06/10/2005] [Indexed: 11/26/2022]
Abstract
The thermosynthesis concept, biological free energy gain from thermal cycling, is combined with the concept of the RNA World. The resulting overall origin of life model suggests new explanations for the emergence of the genetic code and the ribosome. It is proposed that the first protein named pF(1) obtained the energy to support the RNA World by a thermal variation of F(1) ATP synthase's binding change mechanism. It is further proposed that this pF(1) was the single translation product during the emergence of the genetic machinery. During thermal cycling pF(1) condensed many substrates with broad specificity, yielding NTPs and randomly constituted protein and RNA libraries that contained self-replicating RNA. The smallness of pF(1) permitted the emergence of the genetic machinery by selection of RNA that increased the fraction of pF(1)s in the protein library: (1) an amino acids concatenating progenitor of rRNA bound to (2) a chain of 'positional tRNAs' linked by mutual recognition, and yielded a pF(1) (or its main motif); this positional tRNA set gradually evolved to a set of regular tRNAs functioning according to the genetic code, with concomitant emergence of (3) an mRNA coding for pF(1).
Collapse
Affiliation(s)
- Anthonie W J Muller
- Department of Geology, Washington State University, Pullman, WA 99164-2812, USA.
| |
Collapse
|
20
|
Savel'ev S, Marchesoni F, Nori F. Stochastic transport of interacting particles in periodically driven ratchets. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2004; 70:061107. [PMID: 15697341 DOI: 10.1103/physreve.70.061107] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2004] [Revised: 09/02/2004] [Indexed: 05/24/2023]
Abstract
An open system of overdamped, interacting Brownian particles diffusing on a periodic substrate potential U(x+l)=U(x) is studied in terms of an infinite set of coupled partial differential equations describing the time evolution of the relevant many-particle distribution functions. In the mean-field approximation, this hierarchy of equations can be replaced by a nonlinear integro-differential Fokker-Planck equation. This is applicable when the distance a between particles is much less than the interaction length lambda , i.e., a particle interacts with many others, resulting in averaging out fluctuations. The equation obtained in the mean-field approximation is applied to an ensemble of locally (a<<lambda<<l) interacting (either repelling or attracting) particles placed in an asymmetric one-dimensional substrate potential, either with an oscillating temperature (temperature rachet) or driven by an ac force (rocked ratchet). In both cases we focus on the high-frequency limit. For the temperature ratchet, we find that the net current is typically suppressed (or can even be inverted) with increasing density of the repelling particles. In contrast, the net current through a rocked ratchet can be enhanced by increasing the density of the repelling particles. In the case of attracting particles, our perturbation technique is valid up to a critical value of the particle density, above which a finite fraction of the particles starts condensing in a liquidlike state near the substrate minima. The dependence of the net transport current on the particle density and the interparticle potential is analyzed in detail for different values of the ratchet parameters.
Collapse
Affiliation(s)
- Sergey Savel'ev
- Frontier Research System, The Institute of Physical and Chemical Research (RIKEN), Wako-shi, Saitama 351-0198, Japan
| | | | | |
Collapse
|
21
|
Abstract
During thermal cycling, organisms could live on thermosynthesis, a theoretical mechanism applicable to the origin of life and the early evolution of biological energy conversion. All extraterrestrial ice may be a repository for frozen dead or dormant organisms from earlier stages of evolution. In the presence of a thermal gradient within the ice, organisms might still be harvesting energy from thermosynthesis. Possible habitats for thermosynthesizers can be found throughout the Solar System, particularly in the cold traps on Mercury and the Moon, convecting waters on Mars, the oceans on moons in the outer Solar System, and smaller bodies rotating in the sunlight such as cosmic dust, meteorites, asteroids, and comets. A general strategy for detecting thermosynthetic organisms on Earth is offered, and highlights of current and upcoming robotic exploratory missions relevant to the detection of thermosynthesis are reviewed.
Collapse
|
22
|
Schulze-Makuch D, Irwin LN. Energy cycling and hypothetical organisms in Europa's ocean. ASTROBIOLOGY 2002; 2:105-121. [PMID: 12449859 DOI: 10.1089/153110702753621385] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
While Europa has emerged as a leading candidate for harboring extraterrestrial life, the apparent lack of a source of free energy for sustaining living systems has been argued. In this theoretical analysis, we have quantified the amount of energy that could in principle be obtained from chemical cycling, heat, osmotic gradients, kinetic motion, magnetic fields, and gravity in Europa's subsurface ocean. Using reasonable assumptions based on known organisms on Earth, our calculations suggest that chemical oxidation-reduction cycles in Europa's subsurface ocean could support life. Osmotic and thermal gradients, as well as the kinetic energy of convection currents, also represent plausible alternative sources of energy for living systems at Europa. Organisms thriving on these gradients could interact with each other to form the complex energy cycling necessary for establishing a stable ecosystem.
Collapse
Affiliation(s)
- Dirk Schulze-Makuch
- Department of Geological Sciences, University of Texas at El Paso, El Paso, TX, USA.
| | | |
Collapse
|
23
|
Abstract
Competitive replication among RNA or DNA molecules at linear and non-linear rates of propagation has been reviewed from the perspective of a recent physicochemical model of molecular evolution and the findings are applied to pre-replication, prebiotic and biological evolution. A system of competitively replicating molecules was seen to follow a path of least action on both its thermodynamic and kinetic branch, in evolving toward steady state kinetics and equilibrium for the nucleotide condensation reaction. Stable and unstable states of coexistence, between competing molecular species, arise at nonlinear rates of propagation, and they derive from an equilibrium between kinetic forces. The de novo formation of self-replicating RNA molecules involves damping of these scalar forces, error tolerance and RNA driven strand separation. Increases in sequence complexity in the transition to self-replication does not exceed the free energy dissipated in RNA synthesis. Retrodiction of metabolic pathways and phylogenetic evidence point to the occurrence of three pre-replication metabolic systems, driven by autocatalytic C-fixation cycles. Thermodynamic and kinetic factors led to the replication take over. Biological evolution was found to involve resource capture, in addition to competition for a shared resource.
Collapse
Affiliation(s)
- B K Davis
- Research Foundation of Southern California Inc., La Jolla 92037, USA
| |
Collapse
|
24
|
Russell MJ, Hall AJ. The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front. JOURNAL OF THE GEOLOGICAL SOCIETY 1997; 154:377-402. [PMID: 11541234 DOI: 10.1144/gsjgs.154.3.0377] [Citation(s) in RCA: 375] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Here we argue that life emerged on Earth from a redox and pH front at c. 4.2 Ga. This front occurred where hot (c. 150 degrees C), extremely reduced, alkaline, bisulphide-bearing, submarine seepage waters interfaced with the acid, warm (c. 90 degrees C), iron-hearing Hadean ocean. The low pH of the ocean was imparted by the ten bars of CO2 considered to dominate the Hadean atmosphere/hydrosphere. Disequilibrium between the two solutions was maintained by the spontaneous precipitation of a colloidal FeS membrane. Iron monosulphide bubbles comprising this membrane were inflated by the hydrothermal solution upon sulphide mounds at the seepage sites. Our hypothesis is that the FeS membrane, laced with nickel, acted as a semipermeable catalytic boundary between the two fluids, encouraging synthesis of organic anions by hydrogenation and carboxylation of hydrothermal organic primers. The ocean provided carbonate, phosphate, iron, nickel and protons; the hydrothermal solution was the source of ammonia, acetate, HS-, H2 and tungsten, as well as minor concentrations of organic sulphides and perhaps cyanide and acetaldehyde. The mean redox potential (delta Eh) across the membrane, with the energy to drive synthesis, would have approximated to 300 millivolts. The generation of organic anions would have led to an increase in osmotic pressure within the FeS bubbles. Thus osmotic pressure could take over from hydraulic pressure as the driving force for distension, budding and reproduction of the bubbles. Condensation of the organic molecules to polymers, particularly organic sulphides, was driven by pyrophosphate hydrolysis. Regeneration of pyrophosphate from the monophosphate in the membrane was facilitated by protons contributed from the Hadean ocean. This was the first use by a metabolizing system of protonmotive force (driven by natural delta pH) which also would have amounted to c. 300 millivolts. Protonmotive force is the universal energy transduction mechanism of life. Taken together with the redox potential across the membrane, the total electrochemical and chemical energy available for protometabolism amounted to a continuous supply at more than half a volt. The role of the iron sulphide membrane in keeping the two solutions separated was appropriated by the newly synthesized organic sulphide polymers. This organic take-over of the membrane material led to the miniaturization of the metabolizing system. Information systems to govern replication could have developed penecontemporaneously in this same milieu. But iron, sulphur and phosphate, inorganic components of earliest life, continued to be involved in metabolism.
Collapse
Affiliation(s)
- M J Russell
- Department of Geology and Applied Geology, University of Glasgow, UK
| | | |
Collapse
|
25
|
|