1
|
Korver W, Wong A, Gebremeskel S, Negri GL, Schanin J, Chang K, Leung J, Benet Z, Luu T, Brock EC, Luehrsen K, Xu A, Youngblood BA. The Inhibitory Receptor Siglec-8 Interacts With FcεRI and Globally Inhibits Intracellular Signaling in Primary Mast Cells Upon Activation. Front Immunol 2022; 13:833728. [PMID: 35154156 PMCID: PMC8837033 DOI: 10.3389/fimmu.2022.833728] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/11/2022] [Indexed: 12/13/2022] Open
Abstract
Immunomodulation of mast cell (MC) activity is warranted in allergic and inflammatory diseases where MCs have a central role in pathogenesis. Targeting Siglec-8, an inhibitory receptor on MCs and eosinophils, has shown promising activity in preclinical and clinical studies. While the intracellular pathways that regulate Siglec-8 activity in eosinophils have been well studied, the signaling mechanisms that lead to MC inhibition have not been fully elucidated. Here, we evaluate the intracellular signaling pathways of Siglec-8-mediated inhibition in primary MCs using an anti-Siglec-8 monoclonal antibody (mAb). Phospho-proteomic profiling of FcεRI-activated MCs revealed Siglec-8 mAb-treatment globally inhibited proximal and downstream kinases, leading to attenuated MC activation and degranulation. In fact, Siglec-8 was found to directly interact with FcεRI signaling molecules. Siglec-8 inhibition was dependent on both cytoplasmic immunoreceptor tyrosine-based inhibitory motifs (ITIMs) that interact with the SH2 containing protein phosphatase Shp-2 upon Siglec-8 phosphorylation. Taken together, these data support a model in which Siglec-8 regulates proximal FcεRI-induced phosphorylation events through phosphatase recruitment and interaction with FcεRIγ, resulting in global inhibition of MCs upon Siglec-8 mAb engagement.
Collapse
Affiliation(s)
| | - Alan Wong
- Allakos Inc., Redwood City, CA, United States
| | | | | | | | | | - John Leung
- Allakos Inc., Redwood City, CA, United States
| | | | - Thuy Luu
- Allakos Inc., Redwood City, CA, United States
| | | | | | - Alan Xu
- Allakos Inc., Redwood City, CA, United States
| | | |
Collapse
|
2
|
Khodoun MV, Morris SC, Shao WH, Potter C, Angerman E, Kiselev A, Yarawsky AE, Herr AB, Klausz K, Otte A, Peipp M, Finkelman FD. Suppression of IgE-mediated anaphylaxis and food allergy with monovalent anti-FcεRIα mAbs. J Allergy Clin Immunol 2021; 147:1838-1854.e4. [PMID: 33326804 PMCID: PMC8215870 DOI: 10.1016/j.jaci.2020.10.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/20/2020] [Accepted: 10/30/2020] [Indexed: 01/28/2023]
Abstract
BACKGROUND Mast cell and basophil activation by antigen cross-linking of FcεRI-bound IgE is central to allergy pathogenesis. We previously demonstrated global suppression of this process by rapid desensitization with anti-FcεRIα mAbs. OBJECTIVES We sought to determine whether use of monovalent (mv) anti-FcεRIα mAbs increases desensitization safety without loss of efficacy. METHODS mv anti-human (hu) FcεRIα mAbs were produced with mouse-derived immunoglobulin variable regions and huIgG1 or huIgG4 C regions and were used to suppress murine IgE-mediated anaphylaxis and food allergy. mAbs were administered as a single dose or as serially increasing doses to mice that express hu instead of mouse FcεRIα; mice that additionally have an allergy-promoting IL-4Rα mutation; and hu cord blood-reconstituted immunodeficient, hu cytokine-secreting, mice that have large numbers of activated hu mast cells. Anaphylaxis susceptibility was sometimes increased by treatment with IL-4 or a β-adrenergic receptor antagonist. RESULTS mv anti-hu FcεRIα mAbs are considerably less able than divalent mAbs are to induce anaphylaxis and deplete mast cell and basophil IgE, but mv mAbs still strongly suppress IgE-mediated disease. The mv mAbs can be safely administered as a single large dose to mice with typical susceptibility to anaphylaxis, while a rapid desensitization approach safely suppresses disease in mice with increased susceptibility. Our huIgG4 variant of mv anti-huFcεRIα mAb is safer than our huIgG1 variant is, apparently because reduced interactions with FcεRs decrease ability to indirectly cross-link FcεRI. CONCLUSIONS mv anti-FcεRIα mAbs more safely suppress IgE-mediated anaphylaxis and food allergy than divalent variants of the same mAbs do. These mv mAbs may be useful for suppression of huIgE-mediated disease.
Collapse
Affiliation(s)
- Marat V Khodoun
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Suzanne C Morris
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Wen-Hai Shao
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Crystal Potter
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Elizabeth Angerman
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Artem Kiselev
- Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, Russia
| | - Alexander E Yarawsky
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Andrew B Herr
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio; Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Katja Klausz
- Division of Stem Cell Transplantation and Immunotherapy, University Hospital Schleswig-Holstein, University of Kiel, Kiel, Germany
| | - Anna Otte
- Division of Stem Cell Transplantation and Immunotherapy, University Hospital Schleswig-Holstein, University of Kiel, Kiel, Germany
| | - Matthias Peipp
- Division of Stem Cell Transplantation and Immunotherapy, University Hospital Schleswig-Holstein, University of Kiel, Kiel, Germany
| | - Fred D Finkelman
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.
| |
Collapse
|
3
|
Suzuki Y, Yoshimaru T, Inoue T, Ra C. Discrete generations of intracellular hydrogen peroxide and superoxide in antigen-stimulated mast cells: reciprocal regulation of store-operated Ca2+ channel activity. Mol Immunol 2009; 46:2200-9. [PMID: 19467708 DOI: 10.1016/j.molimm.2009.04.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Accepted: 04/16/2009] [Indexed: 12/01/2022]
Abstract
Mast cells and T cells produce reactive oxygen species (ROS) after stimulation with the high-affinity IgE receptor (Fc epsilon RI) and T cell receptor. A growing body of evidence suggests the existence of ROS-regulated intracellular and/or plasma membrane Ca(2+) channels in these cells but their molecular entities remain to be identified. Here, we report that store-operated Ca(2+) channel (SOC) activity is regulated by superoxide (O(2)(*-)) and hydrogen peroxide (H(2)O(2)) in mast cells. MnTBaP (Mn(III)tetrakis(4-benzoic acid)porphyrin) and ebselen (2-phenyl-1,2-benziso-selenazol-3(2H)-one) selectively blocked the generation of O(2)(*-) and H(2)O(2), respectively, in antigen-stimulated cells. The H(2)O(2) generation was dependent on the Src family kinase (SFK) and phosphatidylinositol-3-kinase (PI3K) activities but independent of extracellular Ca(2+), and the Fc epsilon RI beta-chain immunoreceptor tyrosine-based activation motif played an essential role. On the other hand, O(2)(*-) generation was strictly dependent on extracellular Ca(2+), but negatively regulated by the SFK and PI3K activities. Inhibition of O(2)(*-) generation resulted in increased H(2)O(2) generation and reduced SOC activity, although it had a minimal effect on endoplasmic reticulum Ca(2+) store depletion. On the contrary, inhibition of H(2)O(2) generation resulted in increased intracellular O(2)(*-) generation and augmented SOC activity. The findings suggest that O(2)(*-) and H(2)O(2), which are generated by separate signaling pathways/sources, reciprocally regulate SOC activity in mast cells. Such generations of multiple oxidant species and their distinct roles in the regulation of SOC activity may facilitate the fine tuning of Ca(2+) signaling in mast cells.
Collapse
Affiliation(s)
- Yoshihiro Suzuki
- Division of Molecular Cell Immunology and Allergology, Nihon University Graduate School of Medical Science, 30-1 Oyaguchikami-cho Itabashi-ku, Tokyo, Japan.
| | | | | | | |
Collapse
|
4
|
Immunoglobulin-free light chains mediate antigen-specific responses of murine dorsal root ganglion neurons. J Neuroimmunol 2009; 208:80-6. [DOI: 10.1016/j.jneuroim.2009.01.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 12/19/2008] [Accepted: 01/02/2009] [Indexed: 11/21/2022]
|
5
|
Suzuki Y, Yoshimaru T, Inoue T, Nunomura S, Ra C. The high-affinity immunoglobulin E receptor (FcɛRI) regulates mitochondrial calcium uptake and a dihydropyridine receptor-mediated calcium influx in mast cells: Role of the FcɛRIβ chain immunoreceptor tyrosine-based activation motif. Biochem Pharmacol 2008; 75:1492-503. [DOI: 10.1016/j.bcp.2007.12.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Revised: 12/03/2007] [Accepted: 12/17/2007] [Indexed: 10/22/2022]
|
6
|
Kim YK, Park HW, Yang JS, Oh SY, Chang YS, Shin ES, Lee JE, Kim S, Gho YS, Cho SH, Min KU, Kim YY. Association and functional relevance of E237G, a polymorphism of the high-affinity immunoglobulin E-receptor beta chain gene, to airway hyper-responsiveness. Clin Exp Allergy 2007; 37:592-8. [PMID: 17430357 DOI: 10.1111/j.1365-2222.2007.02680.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND The hyper-sensitivity reaction of IgE, with its high-affinity receptors (FcepsilonRI), is central to the phenomenon of atopic diseases. OBJECTIVE To evaluate the genetic effects of non-synonymous single-nucleotide polymorphisms (SNPs) of FcepsilonRI on intermediate phenotypes of asthma, i.e. atopy and airway hyper-responsiveness (AHR), in the Korean general population. SUBJECTS AND METHODS Atopy and AHR were evaluated in a cohort of 2055 subjects, aged 10-18 years, using skin prick tests (SPTs) for common aeroallergens and total serum IgE and methacholine bronchial provocation tests. All FcepsilonRI-alpha, FcepsilonRI-beta, and FcepsilonRI-gamma gene exons of 24 healthy subjects were sequenced to locate informative non-synonymous SNPs (minor allele frequency>2%). Informative SNPs were then scored, using the high-throughput single base extension method. Relative risk (RR) was determined by multiple logistic regression analysis, after adjusting for confounding factors. The functional relevance of non-synonymous SNPs was analysed using the sorting intolerant from tolerant (SIFT) program. RESULTS The SNP search found only one informative non-synonymous SNP in FcepsilonRI-beta: E237G (minor allele frequency=0.21). The positive rate of AHR was lower among subjects with the 237*E allele than among those with 237*G [RR (95% confidence interval)=0.41 (0.19-0.89); P=0.01]. However, the E237G substitution was not associated with either a positive SPT response or total serum IgE levels. Sequence evolution analysis predicted that the E237G variation is an intolerant amino acid substitution, with functional importance. CONCLUSION In the Korean general population, AHR is significantly associated with the E237G polymorphism of FcepsilonRI-beta, which results in an intolerant amino acid substitution.
Collapse
Affiliation(s)
- Y-K Kim
- Department of Life Science, Postech Biotech Center, Pohang University of Science and Technology, Pohang, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
We have investigated whether Ca(2+)-binding proteins, which have been implicated in the control of neurons and neuroendocrine secretion, play a role in controlling mast cell function. These studies have identified synaptotagmins (Syts) II, III, and IX as well as neuronal Ca(2+) sensor 1 (NCS-1) as important regulators of mast cell function. Strikingly, we find that these Ca(2+)-binding proteins contribute to mast cell function by regulating specific endocytic pathways. Syt II, the most abundant Syt homologue in mast cells, resides in an amine-free lysosomal compartment. Studying the function of Syt II-knocked down rat basophilic leukemia cells has shown a dual function of this homologue. Syt II is required for the downregulation of protein kinase Calpha, but it negatively regulates lysosomal exocytosis. Syt III, the next most abundant homologue, localizes to early endosomes and is required for the formation of the endocytic recycling compartment (ERC). Syt IX and NCS-1 localize to the ERC and regulate ERC export, NCS-1 by activating phosphatidylinositol 4-kinase beta. Finally, we show that recycling through the ERC is needed for secretory granule protein sorting as well as for the activation of the mitogen-activated protein kinases, extracellular signal-regulated kinase 1 and 2. Accordingly, NCS-1 stimulates Fc epsilon RI-triggered exocytosis and release of arachidonic acid metabolites.
Collapse
Affiliation(s)
- Ronit Sagi-Eisenberg
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
8
|
Nunomura S, Gon Y, Yoshimaru T, Suzuki Y, Nishimoto H, Kawakami T, Ra C. Role of the FcepsilonRI beta-chain ITAM as a signal regulator for mast cell activation with monomeric IgE. Int Immunol 2005; 17:685-94. [PMID: 15944196 DOI: 10.1093/intimm/dxh248] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The beta-chain of the high-affinity receptor for IgE (FcepsilonRI) plays a crucial role for amplification of the intracellular signaling in mast cells upon FcepsilonRI cross-linking by IgE*antigen complexes (IgE*Ag). Some monomeric IgE as well as IgE*Ag stimulate FcepsilonRI-signaling pathways, leading to cell activation, whereas the biological functions of the beta-chain in the monomeric IgE-mediated mast cell signaling and responses are largely unknown. In the present study, FcepsilonRI is reconstituted with either wild-type beta-chain or mutated beta-chain immunoreceptor tyrosine-based activation motif (ITAM) employing retrovirus-mediated gene transfer into the FcepsilonRI beta-chain-/- mast cells. We demonstrated that the transfectants with mutated beta-chain ITAM stimulated with monomeric IgE sufficiently produce inflammatory cytokines, although degranulation, intracellular Ca(2+) mobilization and leukotriene C(4) synthesis are significantly reduced. Furthermore, analyses of molecular mechanisms of the signaling revealed that the expression of cytokine genes and activation of extracellular signal-regulated kinase 1/2 and protein kinase C were significantly delayed in the beta-chain ITAM mutant cells stimulated with monomeric IgE, suggesting that the beta-chain ITAM regulates kinetics of gene transcriptions and signaling pathways for cytokine production. These findings for the first time revealed the unique functions of the beta-chain ITAM in both chemical mediator release and cytokine production of mast cells upon monomeric IgE stimulation.
Collapse
Affiliation(s)
- Satoshi Nunomura
- Division of Molecular Cell Immunology and Allergology, Nihon University School of Medicine, Itabashi-ku, Tokyo 173-8910, Japan
| | | | | | | | | | | | | |
Collapse
|
9
|
Gorska MM, Alam R. Signaling molecules as therapeutic targets in allergic diseases. J Allergy Clin Immunol 2003; 112:241-50; quiz 251. [PMID: 12897726 DOI: 10.1067/mai.2003.1667] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A molecular understanding of physiologic and pathologic processes requires complete knowledge about the signal transduction mechanism of involved cells. Signal transduction research is a rapidly growing field in basic science. Unlike intercellular inflammatory mediators, signaling molecules show less functional redundancy. This allows inhibition of multiple cytokines/mediators by blocking one common signaling molecule. Interference with signaling pathways has shown significant potential for inhibition of fundamental processes as well as clinical phenotype of allergic diseases. The purpose of this review was to provide a theoretical classification of signaling molecules based on their function and to analyze various strategies for developing effective signaling inhibitors for allergic diseases.
Collapse
Affiliation(s)
- Magdalena M Gorska
- Division of Allergy and Immunology, National Jewish Medical and Research Center and University of Colorado Health Sciences Center, Denver, CO, USA
| | | |
Collapse
|
10
|
Simon Thomas N, Wilkinson J, Lonjou C, Morton NE, Holgate ST. Linkage analysis of markers on chromosome 11q13 with asthma and atopy in a United Kingdom population. Am J Respir Crit Care Med 2000; 162:1268-72. [PMID: 11029329 DOI: 10.1164/ajrccm.162.4.9909078] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Previous studies have suggested that atopy is linked to the beta chain of the high affinity IgE receptor (Fcepsilon R1-beta) on chromosome 11q13. Fcepsilon R1-beta polymorphisms, I181L, V183L, and E237G, are reported to be associated with asthma and atopy. The aim of this study was to investigate linkage to Fcepsilon R1-beta in a UK population and to assess the frequency of the polymorphisms and their association with asthma and atopy. A sample of 131 families was recruited at random with a sample of 109 families ascertained via an asthmatic proband. Each subject completed a written and video-assisted questionnaire and underwent bronchial challenge and skin prick testing. Serum total and specific IgE levels were measured. Quantitative scores were derived for asthma and atopy using principal component analysis. Four microsatellite markers were genotyped, including Fcepsilon R1-beta. The frequency of the I181L and V183L polymorphisms were determined by sequencing, and the E237G polymorphism was determined using the amplification refractory mutation system. We found no evidence for linkage to Fcepsilon R1-beta and only weak evidence for linkage to the less informative marker E237G. We found no examples of the I181L/V183L polymorphism in our population sample. Our study has failed to strengthen the evidence for a candidate gene on chromosome 11q13.
Collapse
Affiliation(s)
- N Simon Thomas
- Human Genetics, and Respiratory Cell and Molecular Biology Division, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | | | | | | | | |
Collapse
|
11
|
Turner M, Schweighoffer E, Colucci F, Di Santo JP, Tybulewicz VL. Tyrosine kinase SYK: essential functions for immunoreceptor signalling. IMMUNOLOGY TODAY 2000; 21:148-54. [PMID: 10689303 DOI: 10.1016/s0167-5699(99)01574-1] [Citation(s) in RCA: 295] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The tyrosine kinase SYK plays critical roles in signalling through immune receptors. Gene-targeting studies have identified the cell types that require SYK for development and function, and the receptors that use SYK as well as their downstream signalling effectors. There is also evidence of a role for SYK in non-immune cells and in the maintenance of vascular integrity.
Collapse
Affiliation(s)
- M Turner
- Molecular Immunology Programme, The Babraham Institute, Cambridge, UK CB2 4AT.
| | | | | | | | | |
Collapse
|
12
|
Honda ZI, Suzuki T, Kono H, Okada M, Yamamoto T, Ra C, Morita Y, Yamamoto K. Sequential requirements of the N-terminal palmitoylation site and SH2 domain of Src family kinases in the initiation and progression of FcepsilonRI signaling. Mol Cell Biol 2000; 20:1759-71. [PMID: 10669752 PMCID: PMC85358 DOI: 10.1128/mcb.20.5.1759-1771.2000] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/1999] [Accepted: 11/10/1999] [Indexed: 11/20/2022] Open
Abstract
Initial biochemical signaling originating from high-affinity immunoglobulin E receptor (FcepsilonRI) has been ascribed to Src family kinases. To understand the mechanisms by which individual kinases drive the signaling, we conducted reconstitution experiments: FcepsilonRI signaling in RBL2H3 cells was first suppressed by a membrane-anchored, gain-of-function C-terminal Src kinase and then reconstructed with Src family kinases whose C-terminal negative regulatory sequence was replaced with a c-myc epitope. Those constructs derived from Lyn and Fyn, which are associated with detergent-resistant membranes (DRMs), physically interacted with resting FcepsilonRI and reconstructed clustering-induced signaling that leads to calcium mobilization and ERK1 and -2 activation. c-Src-derived construct, which was excluded from DRMs, failed to interact with FcepsilonRI and to restore the signaling, whereas creation of palmitoylatable Cys3 enabled it to interact with DRMs and with FcepsilonRI and to restore the signaling. Deletion of Src homology 3 (SH3) domain from the Lyn-derived construct did not alter its ability to transduce the series of signaling. Deletion of SH2 domain did not affect its association with DRMs and with FcepsilonRI nor clustering-induced tyrosine phosphorylation of FcepsilonRI beta and gamma subunits, but it almost abrogated the next step of tyrosine phosphorylation of Syk and its recruitment to FcepsilonRI. These findings suggest that Lyn and Fyn could, but c-Src could not, drive FcepsilonRI signaling and that N-terminal palmitoylation and SH2 domain are required in sequence for the initial interaction with FcepsilonRI and for the signal progression to the molecular assembly.
Collapse
Affiliation(s)
- Z i Honda
- Department of Allergy and Rheumatology, Faculty of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Hirasawa N, Sato Y, Fujita Y, Ohuchi K. Involvement of a phosphatidylinositol 3-kinase-p38 mitogen activated protein kinase pathway in antigen-induced IL-4 production in mast cells. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1456:45-55. [PMID: 10611455 DOI: 10.1016/s0005-2728(99)00104-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We studied the involvement of phosphatidylinositol 3-kinase (PI3-kinase) in the antigen-induced IL-4 production in a rat mast cell line, RBL-2H3. The stimulation of IgE-sensitized RBL-2H3 cells by the antigen resulted in increased IL-4 mRNA levels followed by increased IL-4 production. Wortmannin and LY294002, PI3-kinase inhibitors, partially reduced both the antigen-induced increases in the IL-4 mRNA levels and IL-4 production in a concentration-dependent manner. Extracellular signal-regulated kinase, p38 mitogen-activated protein kinase (p38 MAPK) and c-Jun N-terminal kinase (JNK), which belong to the MAPK family, were activated by the antigen stimulation, and the activation of p38 MAPK in addition to JNK was suppressed markedly by wortmannin. The phosphorylation of endogenous activating transcription factor-2, a substrate of p38 MAPK, was also inhibited by wortmannin. The specific p38 MAPK inhibitor SB203580 partially inhibited the antigen-induced IL-4 production at mRNA levels, but the MEK-1 inhibitor PD98059 enhanced it. These findings suggest that the activation of PI3-kinase and p38 MAPK is partially responsible for the antigen-induced IL-4 production in RBL-2H3 cells.
Collapse
Affiliation(s)
- N Hirasawa
- Department of Pathophysiological Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan.
| | | | | | | |
Collapse
|
14
|
Matsuda H, Shimoda H, Yoshikawa M. Structure-requirements of isocoumarins, phthalides, and stilbenes from Hydrangeae Dulcis Folium for inhibitory activity on histamine release from rat peritoneal mast cells. Bioorg Med Chem 1999; 7:1445-50. [PMID: 10465418 DOI: 10.1016/s0968-0896(99)00058-9] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We examined the structure-activity relationships of isocoumarins, phthalides and stilbenes isolated from Hydrangeae Dulcis Folium and related compounds for the inhibition of histamine release in rat peritoneal mast cells. The activities of isocoumarins such as thunberginols A and B were more potent than those of dihydroisocoumarins such as hydrangenol and thunberginol G. The double bond at the 3-position seemed to be essential to potentiate the activity. The hydroxyl groups at the 8-, 3'- and 4'-positions of isocoumarin were essential for the activity, while the hydroxyl group at the 6-position was scarcely needed. Since the activities of benzylidenephthalides such as thunberginol F were more potent than those of hydramacrophyllols A and B, the presence of a double bond at the 3-position was needed to increase the activity. Moreover, the hydroxyl group at the 8-position was essential for the activity. On the time course study, thunberginols A, B and F completely inhibited histamine release by pretreatment at 100 microM for 1 to 15 min, whereas DSCG inhibited histamine release only following 1-min pretreatment at 1000 microM. These results suggested that the mechanisms of the inhibitory effect of thunberginols are different from that of DSCG.
Collapse
Affiliation(s)
- H Matsuda
- Kyoto Pharmaceutical University, Japan
| | | | | |
Collapse
|
15
|
Wang L, Correia I, Basu S, Theoharides TC. Ca2+ and phorbol ester effect on the mast cell phosphoprotein induced by cromolyn. Eur J Pharmacol 1999; 371:241-9. [PMID: 10357262 DOI: 10.1016/s0014-2999(99)00179-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Several phosphoproteins are involved in stimulus-secretion coupling. The beta and gamma subunits of immunoglobulin E binding protein (FC epsilonRI) and three other protein bands get phosphorylated during stimulation of mast cell secretion. These additional proteins of 42, 59 and 68 kDa are also phosphorylated when secretion is stimulated by compound 48/80 (C48/80). A 78 kDa band, however, is phosphorylated as secretion wanes after stimulation with C48/80 and by the anti-allergic drug disodium cromoglycate (cromolyn). Phosphorylation was blocked by protein kinase C inhibitors. We investigated the isozyme involved by first showing that a cation ionophore prevented the phosphorylation of the 78 kDa protein, while a Ca2+ chelator did not affect phosphorylation even though it enhanced the inhibitory effect of cromolyn. This protein was identified as moesin by immunoprecipitation. Protein kinase C activators had no effect on 78 kDa protein phosphorylation either in the presence or absence of Ca2+ ions, but prevented its phosphorylation by cromolyn. Protein phosphatase inhibitors prolonged the duration, but not the amount of phosphate incorporated in the 78 kDa protein band while cromolyn had no effect on protein phosphatase action in vitro. The insensitivity of the 78 kDa protein phosphorylation to calcium and protein kinase C activators suggests that an atypical protein kinase C isozyme may be involved. Western blot analysis identified the presence of isozymes alpha, beta, delta and zeta, of which only the latter fits the profile suggested by the present findings.
Collapse
Affiliation(s)
- L Wang
- Department of Pharmacology and Experimental Therapeutics, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | | | |
Collapse
|
16
|
Kimata M, Shichijo M, Miura T, Serizawa I, Inagaki N, Nagai H. Ca2+ and protein kinase C signaling for histamine and sulfidoleukotrienes released from human cultured mast cells. Biochem Biophys Res Commun 1999; 257:895-900. [PMID: 10208881 DOI: 10.1006/bbrc.1999.0557] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human cultured mast cells (HCMC) release histamine and sulfidoleukotrienes (LTs) upon IgE-FcepsilonRI-mediated mast cell activation. We analyzed the Ca2+ and PKC signaling in HCMC and compared it to that in rodent mast cells. In HCMC, after IgE-mediated stimulation, an elevation of [Ca2+]i and PKC translocation to the membrane fraction was observed. As concerns Ca2+ signaling, 1) IgE-mediated histamine and LTs release was abolished after Ca2+ depletion, and the reconstitution of Ca2+ recovered the release of histamine and LTs. As regards PKC signaling, 1) staurosporine inhibited IgE-mediated mediator release. 2) PKC-downregulated mast cells did not release histamine and LTs. A23187 and PMA synergistically potentiated the activation of extracellular-regulated kinase and synergistically induced histamine and LTs release. These results demonstrated that HCMC might be useful for analysis of the signal transduction pathway for mediator release, such as histamine and LTs.
Collapse
Affiliation(s)
- M Kimata
- Department of Pharmacology, Gifu Pharmaceutical University, Gifu, Japan
| | | | | | | | | | | |
Collapse
|
17
|
Tsang F, Koh AH, Ting WL, Wong PT, Wong WS. Effects of mitogen-activated protein kinase kinase inhibitor PD 098059 on antigen challenge of guinea-pig airways in vitro. Br J Pharmacol 1998; 125:61-8. [PMID: 9776345 PMCID: PMC1565601 DOI: 10.1038/sj.bjp.0702049] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. It has been shown that activation of protein tyrosine kinases is the earliest detectable signalling response to FcepsilonRI cross-linking on mast cell. Following tyrosine kinase activation, a family of mitogen-activated protein kinases (MAPKs) was found to be activated as well. The present study examined the role of MAPK signalling cascade in in vitro model of allergic asthma using a specific MAPK kinase inhibitor PD 098059. 2. Guinea-pigs were passively sensitized with IgG antibody raised against ovalbumin (OA). Effects of PD 098059 on OA-induced anaphylactic contraction of isolated bronchi and release of histamine and peptidoleukotrienes from chopped lung preparations were studied. 3. PD 098059 (10-50 microM) produced only minor reduction of maximal OA-induced bronchial contraction. In contrast, the rate of relaxation of OA-induced bronchial contraction was markedly faster in the presence of PD 098059 than the vehicle control in a concentration-dependent manner. 4. These observations corroborate well with the inability of PD 098059 (5-50 microM) to substantially block the OA-induced release of histamine and with marked inhibition of OA-induced release of peptidoleukotrienes from lung fragments in the presence of PD 098059. Exogenous arachidonic acid-induced release of peptidoleukotrienes from lung fragments was not blocked by PD 098059. 5. In immunoblotting study, we found that p42MAPK was constitutively expressed in guinea-pig bronchi. However, treatment with OA, histamine or LTD4 did not cause activation of p42MAPK. These findings together with the lack of inhibitory effects of PD 098059 on bronchial contraction induced by histamine or LTD4 suggest that histamine- and LTD4-induced bronchial contractions are not mediated by p42MAPK activation. 6. Taken together, our findings show that inhibition of MAPK signalling cascade by PD 098059 significantly reduced the OA-triggered release of peptidoleukotrienes leading to rapid relaxation of anaphylactic bronchial contraction. On the other hand, p42MAPK did not play a role in histamine- or LTD4-induced bronchial smooth muscle contraction suggesting that PD 098059 exerts its inhibitory effects on OA-induced bronchial contraction primarily through inhibition of peptidoleukotrienes release from mast cells.
Collapse
Affiliation(s)
- F Tsang
- Department of Pharmacology, Faculty of Medicine, National University of Singapore, Republic of Singapore
| | | | | | | | | |
Collapse
|
18
|
Fischer MJ, Paulussen JJ, de Mol NJ, Janssen LH. Dual effect of the anti-allergic astemizole on Ca2+ fluxes in rat basophilic leukemia (RBL-2H3) cells: release of Ca2+ from intracellular stores and inhibition of Ca2+ release-activated Ca2+ influx. Biochem Pharmacol 1998; 55:1255-62. [PMID: 9719481 DOI: 10.1016/s0006-2952(97)00600-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The antiallergic drugs astemizole and norastemizole inhibit exocytosis in mast cells, which might be relevant for their therapeutic action. From previous studies, it appeared that the drugs inhibited 45Ca2+ influx. Here, we present a more detailed study on the effects of astemizole and norastemizole on Ca2+ fluxes. Fura-2-loaded rat basophilic leukemia (RBL-2H3) cells were activated through the high-affinity receptor for IgE (FcepsilonRI) with antigen or by the endoplasmatic reticulum ATPase inhibitor thapsigargin, bypassing direct FcepsilonRI-related events. It appeared that astemizole (>15 microM), in contrast to norastemizole, showed a dual effect on intracellular calcium concentration ([Ca2+]i): a rise in intracellular calcium concentration was induced, which originated in the release of intracellular Ca2+ stores, whereas Ca2+ influx via store-operated Ca2+ (SOC) channels was inhibited. Ca2+ influx was further characterized using Ba2+ influx, whereas processes in the absence of Ca2+ influx were studied using Ni2+ or EGTA. It was concluded that the drugs most likely affect the store-operated Ca2+ channels in RBL cells directly. The two effects of astemizole on Ca2+ fluxes had opposing influences on exocytosis, thereby accounting for the biphasic effect of increasing astemizole concentration on mediator release in RBL cells.
Collapse
Affiliation(s)
- M J Fischer
- Department of Medicinal Chemistry, Utrecht Institute for Pharmaceutical Sciences, Faculty of Pharmacy, Utrecht University, The Netherlands.
| | | | | | | |
Collapse
|
19
|
Frew A, Chan H, Salari H, Chan-Yeung M. Is tyrosine kinase activation involved in basophil histamine release in asthma due to western red cedar? Allergy 1998; 53:139-43. [PMID: 9534911 DOI: 10.1111/j.1398-9995.1998.tb03861.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Occupational asthma due to western red cedar is associated with histamine release from basophils and mast cells on exposure to plicatic acid (PA), but the mechanisms underlying this response remain unclear. Specific kinase inhibitors were used to study the role of tyrosine and serine/threonine kinases in PA-induced histamine release from human basophils. Pretreatment with the tyrosine kinase inhibitor methyl 2,5-dihydroxy-cinnamate (MDHC) attenuated histamine release from basophils triggered by anti-IgE (29.8% inhibition; n = 15; P < 0.01) or grass pollen (48% inhibition; n = 6; P < 0.01). Inhibition was concentration-dependent and could be reversed by washing the cells in buffer, while the inactive stereoisomer of MDHC did not affect histamine release. In contrast, the protein kinase C inhibitor staurosporine did not affect histamine release by either anti-IgE or grass pollen. Pretreatment with MDHC partially inhibited PA-induced histamine release from basophils of 6/9 patients with red cedar asthma (25.4% vs 33.8%; P = NS). Staurosporine gave a similar level of inhibition of PA-induced histamine release (25.3% vs 33.8%; P = NS). Thus, signal transduction of the human basophil Fc epsilon RI appears to depend upon tyrosine kinase activation, but not on protein kinase C (serine/threonine kinase) activation. The lack of specific effect on plicatic acid-induced histamine release in basophils obtained from patients with occupational asthma due to western red cedar suggests that tyrosine kinases are not as important in this disease as in atopic asthma, and is consistent with the view that histamine release in red cedar asthma is largely IgE-independent.
Collapse
Affiliation(s)
- A Frew
- Department of Medicine Vancouver General Hospital, University of British Columbia, Canada
| | | | | | | |
Collapse
|
20
|
Fischer MJ, Paulussen JJ, Kok-Van Esterik JA, Van der Heijden VS, De Mol NJ, Janssen LH. Effects of the anti-allergics astemizole and norastemizole on Fc epsilon RI receptor-mediated signal transduction processes. Eur J Pharmacol 1997; 322:97-105. [PMID: 9088877 DOI: 10.1016/s0014-2999(96)00981-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The non-sedating anti-allergic drug astemizole, apart from its potential to antagonise H1 receptors, inhibits the release of inflammation mediators from mast cells. To study the mechanism of this inhibition, we investigated the effects of astemizole and one of its active metabolites, norastemizole, on different phases of Fc epsilon RI (the high affinity receptor for the immunoglobulin IgE) receptor-activated signal transduction in rat basophilic leukemia cells (RBL-2H3), leading to exocytosis. Cells were stimulated either through antigen, or thapsigargin, or synergistic combinations of Fc epsilon RI receptor activation with either adenosine A3 receptors or integrins, activated by fibronectin adherence. The effects of the drugs on mediator release, inositol 1,4,5-trisphosphate formation, tyrosine phosphorylation of cellular proteins and Ca2+ fluxes were investigated. Inositol 1,4,5-trisphosphate levels are not affected. Astemizole increased tyrosine phosphorylation in resting cells, especially a 96-kDa protein band. Particularly tyrosine phosphorylation related to post Ca2+ processes is changed after cell triggering in the presence of astemizole. Both drugs inhibit the influx of 45Ca2+, with similar dose response curves as for the inhibition of exocytosis. Astemizole but not norastemizole, when used in resting cells, released Ca2+ from intracellular stores. Astemizole (> 15 microM) also induced exocytosis in resting cells. It did not induce additional changes in its inhibiting effect when cells were triggered with synergistic combinations of Fc epsilon RI receptor activation with either adenosine A3 receptors or integrins. Effects on haemolysis of erythrocytes and differential scanning calorimetry in liposomes showed clear differences in membrane perturbation between astemizole and norastemizole. The observed differences, and the role of membrane perturbation in the action on Ca2+ fluxes, are discussed.
Collapse
Affiliation(s)
- M J Fischer
- Department of Pharmaceutical Chemistry, Utrecht Institute for Pharmaceutical Sciences, Faculty of Pharmacy, Utrecht University, Netherlands
| | | | | | | | | | | |
Collapse
|
21
|
Ota Y, Beitz LO, Scharenberg AM, Donovan JA, Kinet JP, Samelson LE. Characterization of Cbl tyrosine phosphorylation and a Cbl-Syk complex in RBL-2H3 cells. J Exp Med 1996; 184:1713-23. [PMID: 8920860 PMCID: PMC2192902 DOI: 10.1084/jem.184.5.1713] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Tyrosine phosphorylation of the Cbl protooncogene has been shown to occur after engagement of a number of different receptors on hematopoietic cells. However, the mechanisms by which these receptors induce Cbl tyrosine phosphorylation are poorly understood. Here we demonstrate that engagement of the high affinity IgE receptor (Fc epsilon R1) leads to the tyrosine phosphorylation of Cbl and analyze how this occurs. We show that at least part of Fc epsilon R1-induced Cbl tyrosine phosphorylation is mediated by the Syk tyrosine kinase, and that the Syk-dependent tyrosine phosphorylation of Cbl occurs mainly distal to the Cbl proline-rich region within the COOH-terminal 250 amino acids. Furthermore, we show by coprecipitation that Cbl is present in a complex with Syk before receptor engagement, that the proline-rich region of Cbl and a region of Syk comprised of the two SH2 domains and intradomain linker are required for formation of the complex, and that little or no tyrosine-phosphorylated Cbl is detected in complex with Syk. Overexpression of truncation mutants of Cbl capable of binding Syk has the effect of blocking tyrosine phosphorylation of endogenous Cbl. These results define a potentially important intramolecular interaction in mast cells and suggest a complex function for Cbl in intracellular signaling pathways.
Collapse
Affiliation(s)
- Y Ota
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, Bethesda, Maryland 20892-5430, USA
| | | | | | | | | | | |
Collapse
|
22
|
Fischer MJ, Paulussen JJ, Roozendaal R, Tiemessen RC, de Mol NJ, Janssen LH. Relation between effects of a set of anti-allergic drugs on calcium pathways and membrane structure in Fc epsilon RI activated signal transduction. Inflamm Res 1996; 45:564-73. [PMID: 8951508 DOI: 10.1007/bf02342228] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The antigen induced stimulation of mast cells by aggregation of Fc epsilon RI receptors activates a signal transduction cascade leading to release of mediators of inflammation like histamine, arachidonic acid metabolites and cytokines. In this study we investigated a series of structurally related anti-allergic drugs, containing a common lipophilic diphenylmethyl piperazinyl tail and head groups that differ in lipophilicity. Effects of these drugs on various steps of the signal transduction cascade was investigated to gain insight into the mechanism of action of these drugs. It appeared that addition of the drugs to resting cells induced changes in the tyrosine phosphorylation of cellular proteins. The most active anti-allergics in inhibiting exocytosis, AL3264 and oxatomide, also induced the largest changes in phosphorylation. The effects of the drugs on tyrosine phosphorylation after cell activation was complex. Additionally, Ca2+ fluxes were investigated. Ca2+ efflux from the cells was negligibly influenced by the active drugs. However, the drugs inhibited influx from extracellular Ca2+, which was correlated with the effects of the drugs on inhibition of exocytosis and on membrane stabilization induced by the drugs, measured as haemolysis of erythrocytes. It is concluded that inhibition of Ca2+ influx is the major mechanism with which these drugs inhibit exocytosis and that for this effect drug-membrane interactions, possibly affecting the function of membrane embedded proteins, are of importance. Possible mechanisms including drug-membrane interactions, phosphorylation and inhibition of Ca2+ influx are discussed.
Collapse
Affiliation(s)
- M J Fischer
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Utrecht University, The Netherlands
| | | | | | | | | | | |
Collapse
|
23
|
Correia I, Wang L, Pang X, Theoharides TC. Characterization of the 78 kDa mast cell protein phosphorylated by the antiallergic drug cromolyn and homology to moesin. Biochem Pharmacol 1996; 52:413-24. [PMID: 8687495 DOI: 10.1016/0006-2952(96)00243-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Mast cells (MC) can be stimulated to secrete by cross-linking immunoglobulin E bound to specific surface receptors, as well as in response to polycationic molecules such as substance P and compound 48/80. The antiallergic drug disodium cromoglycate (cromolyn) inhibited MC secretion and rapidly incorporated phosphate into a 78 kDa protein, speculated to be its mode of action. This protein was purified by single and two-dimensional gel electrophoresis, and was shown to be phosphorylated primarily on serine residues by protein kinase C. Partial amino acid sequencing of two generated fragments was identical to that of portions of mouse moesin, a member of the band 4.1 superfamily of proteins, with no definitive function known to date. Polyclonal antibodies raised against the rat basophil leukemia cell moesin cDNA expressed in Escherichia coli immunoprecipitated the 78 kDa phosphoprotein quantitatively, and immunocytochemistry localized it to the plasma membrane. Reversible phosphorylation of this 78 kDa phosphoprotein could affect its possible cytoskeletal binding through which it may regulate stimulus-secretion coupling in MC.
Collapse
Affiliation(s)
- I Correia
- Department of Pharmacology and Experimental Therapeutics, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | | | |
Collapse
|
24
|
Abstract
New techniques for scanning the human genome promise great advances in tracking the origins of disorders caused by multiple genes. However, it is clear from the studies presented in this overview that we are far from understanding the genetic basis of asthma and atopy and their interaction with the environment. It is also clear that agreement must be reached on definition of the phenotype and methods of ascertainment in order to carry out large multicentre collaborative studies. Positive findings need to be validated in different populations selected for the presence of the disease and then confirmed in a random population where the prevalence of asthma and atopy will also be expected to be significant.
Collapse
|