1
|
Boyd PS, Brown JB, Brown JD, Catazaro J, Chaudry I, Ding P, Dong X, Marchant J, O’Hern CT, Singh K, Swanson C, Summers MF, Yasin S. NMR Studies of Retroviral Genome Packaging. Viruses 2020; 12:v12101115. [PMID: 33008123 PMCID: PMC7599994 DOI: 10.3390/v12101115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/18/2020] [Accepted: 09/26/2020] [Indexed: 12/03/2022] Open
Abstract
Nearly all retroviruses selectively package two copies of their unspliced RNA genomes from a cellular milieu that contains a substantial excess of non-viral and spliced viral RNAs. Over the past four decades, combinations of genetic experiments, phylogenetic analyses, nucleotide accessibility mapping, in silico RNA structure predictions, and biophysical experiments were employed to understand how retroviral genomes are selected for packaging. Genetic studies provided early clues regarding the protein and RNA elements required for packaging, and nucleotide accessibility mapping experiments provided insights into the secondary structures of functionally important elements in the genome. Three-dimensional structural determinants of packaging were primarily derived by nuclear magnetic resonance (NMR) spectroscopy. A key advantage of NMR, relative to other methods for determining biomolecular structure (such as X-ray crystallography), is that it is well suited for studies of conformationally dynamic and heterogeneous systems—a hallmark of the retrovirus packaging machinery. Here, we review advances in understanding of the structures, dynamics, and interactions of the proteins and RNA elements involved in retroviral genome selection and packaging that are facilitated by NMR.
Collapse
|
2
|
Orchestrating the Selection and Packaging of Genomic RNA by Retroviruses: An Ensemble of Viral and Host Factors. Viruses 2016; 8:v8090257. [PMID: 27657110 PMCID: PMC5035971 DOI: 10.3390/v8090257] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 09/09/2016] [Accepted: 09/13/2016] [Indexed: 12/31/2022] Open
Abstract
Infectious retrovirus particles contain two copies of unspliced viral RNA that serve as the viral genome. Unspliced retroviral RNA is transcribed in the nucleus by the host RNA polymerase II and has three potential fates: (1) it can be spliced into subgenomic messenger RNAs (mRNAs) for the translation of viral proteins; or it can remain unspliced to serve as either (2) the mRNA for the translation of Gag and Gag-Pol; or (3) the genomic RNA (gRNA) that is packaged into virions. The Gag structural protein recognizes and binds the unspliced viral RNA to select it as a genome, which is selected in preference to spliced viral RNAs and cellular RNAs. In this review, we summarize the current state of understanding about how retroviral packaging is orchestrated within the cell and explore potential new mechanisms based on recent discoveries in the field. We discuss the cis-acting elements in the unspliced viral RNA and the properties of the Gag protein that are required for their interaction. In addition, we discuss the role of host factors in influencing the fate of the newly transcribed viral RNA, current models for how retroviruses distinguish unspliced viral mRNA from viral genomic RNA, and the possible subcellular sites of genomic RNA dimerization and selection by Gag. Although this review centers primarily on the wealth of data available for the alpharetrovirus Rous sarcoma virus, in which a discrete RNA packaging sequence has been identified, we have also summarized the cis- and trans-acting factors as well as the mechanisms governing gRNA packaging of other retroviruses for comparison.
Collapse
|
3
|
|
4
|
Chamanian M, Purzycka KJ, Wille PT, Ha JS, McDonald D, Gao Y, Le Grice SFJ, Arts EJ. A cis-acting element in retroviral genomic RNA links Gag-Pol ribosomal frameshifting to selective viral RNA encapsidation. Cell Host Microbe 2013; 13:181-92. [PMID: 23414758 DOI: 10.1016/j.chom.2013.01.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 11/06/2012] [Accepted: 01/09/2013] [Indexed: 12/18/2022]
Abstract
During retroviral RNA encapsidation, two full-length genomic (g) RNAs are selectively incorporated into assembling virions. Packaging involves a cis-acting packaging element (Ψ) within the 5' untranslated region of unspliced HIV-1 RNA genome. However, the mechanism(s) that selects and limits gRNAs for packaging remains uncertain. Using a dual complementation system involving bipartite HIV-1 gRNA, we observed that gRNA packaging is additionally dependent on a cis-acting RNA element, the genomic RNA packaging enhancer (GRPE), found within the gag p1-p6 domain and overlapping the Gag-Pol ribosomal frameshift signal. Deleting or disrupting the two conserved GRPE stem loops diminished gRNA packaging and infectivity >50-fold, while deleting gag sequences between Ψ and GRPE had no effect. Downregulating the translation termination factor eRF1 produces defective virus particles containing 20 times more gRNA. Thus, only the HIV-1 RNAs employed for Gag-Pol translation may be specifically selected for encapsidation, possibly explaining the limitation of two gRNAs per virion.
Collapse
Affiliation(s)
- Mastooreh Chamanian
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Parent LJ, Gudleski N. Beyond plasma membrane targeting: role of the MA domain of Gag in retroviral genome encapsidation. J Mol Biol 2011; 410:553-64. [PMID: 21762800 DOI: 10.1016/j.jmb.2011.04.072] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 04/27/2011] [Accepted: 04/29/2011] [Indexed: 01/16/2023]
Abstract
The MA (matrix) domain of the retroviral Gag polyprotein plays several critical roles during virus assembly. Although best known for targeting the Gag polyprotein to the inner leaflet of the plasma membrane for virus budding, recent studies have revealed that MA also contributes to selective packaging of the genomic RNA (gRNA) into virions. In this Review, we summarize recent progress in understanding how MA participates in genome incorporation. We compare the mechanisms by which the MA domains of different retroviral Gag proteins influence gRNA packaging, highlighting variations and similarities in how MA directs the subcellular trafficking of Gag, interacts with host factors and binds to nucleic acids. A deeper understanding of how MA participates in these diverse functions at different stages in the virus assembly pathway will require more detailed information about the structure of the MA domain within the full-length Gag polyprotein. In particular, it will be necessary to understand the structural basis of the interaction of MA with gRNA, host transport factors and membrane phospholipids. A better appreciation of the multiple roles MA plays in genome packaging and Gag localization might guide the development of novel antiviral strategies in the future.
Collapse
Affiliation(s)
- Leslie J Parent
- Department of Medicine, Penn State College of Medicine, The Milton S. Hershey Medical Center, Hershey, PA 17033, USA.
| | | |
Collapse
|
6
|
Mougel M, Cimarelli A, Darlix JL. Implications of the nucleocapsid and the microenvironment in retroviral reverse transcription. Viruses 2010; 2:939-960. [PMID: 21994662 PMCID: PMC3185662 DOI: 10.3390/v2040939] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 03/03/2010] [Accepted: 04/01/2010] [Indexed: 01/21/2023] Open
Abstract
This mini-review summarizes the process of reverse-transcription, an obligatory step in retrovirus replication during which the retroviral RNA/DNA-dependent DNA polymerase (RT) copies the single-stranded genomic RNA to generate the double-stranded viral DNA while degrading the genomic RNA via its associated RNase H activity. The hybridization of complementary viral sequences by the nucleocapsid protein (NC) receives a special focus, since it acts to chaperone the strand transfers obligatory for synthesis of the complete viral DNA and flanking long terminal repeats (LTR). Since the physiological microenvironment can impact on reverse-transcription, this mini-review also focuses on factors present in the intra-cellular or extra-cellular milieu that can drastically influence both the timing and the activity of reverse-transcription and hence virus infectivity.
Collapse
Affiliation(s)
- Marylène Mougel
- CPBS, UMR5236 CNRS, UMI, 4 bd Henri IV, 34965 Montpellier, France; E-Mail:
| | - Andrea Cimarelli
- LaboRetro Unité de Virologie humaine INSERM #758, IFR128, ENS Lyon, 46 Allée d’Italie, 69364 Lyon, France; E-Mail:
| | - Jean-Luc Darlix
- LaboRetro Unité de Virologie humaine INSERM #758, IFR128, ENS Lyon, 46 Allée d’Italie, 69364 Lyon, France; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +33 472728169; Fax: +33 472728137
| |
Collapse
|
7
|
Kenyon JC, Ghazawi A, Cheung WKS, Phillip PS, Rizvi TA, Lever AML. The secondary structure of the 5' end of the FIV genome reveals a long-range interaction between R/U5 and gag sequences, and a large, stable stem-loop. RNA (NEW YORK, N.Y.) 2008; 14:2597-608. [PMID: 18974279 PMCID: PMC2590967 DOI: 10.1261/rna.1284908] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Feline immunodeficiency virus (FIV) is a lentivirus that infects cats and is related to human immunodeficiency virus (HIV). Although it is a common worldwide infection, and has potential uses as a human gene therapy vector and as a nonprimate model for HIV infection, little detail is known of the viral life cycle. Previous experiments have shown that its packaging signal includes two or more regions within the first 511 nucleotides of the genomic RNA. We have undertaken a secondary structural analysis of this RNA by minimal free-energy structural prediction, biochemical mapping, and phylogenetic analysis, and show that it contains five conserved stem-loops and a conserved long-range interaction between heptanucleotide sequences 5'-CCCUGUC-3' in R/U5 and 5'-GACAGGG-3' in gag. This long-range interaction is similar to that seen in primate lentiviruses where it is thought to be functionally important. Along with strains that infect domestic cats, this heptanucleotide interaction can also occur in species-specific FIV strains that infect pumas, lions, and Pallas' cats where the heptanucleotide sequences involved vary. We have analyzed spliced and genomic FIV RNAs and see little structural change or sequence conservation within single-stranded regions of the 5' UTR that are important for viral packaging, suggesting that FIV may employ a cotranslational packaging mechanism.
Collapse
Affiliation(s)
- Julia C Kenyon
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 2QQ, United Kingdom
| | | | | | | | | | | |
Collapse
|
8
|
Khan MA, Goila-Gaur R, Opi S, Miyagi E, Takeuchi H, Kao S, Strebel K. Analysis of the contribution of cellular and viral RNA to the packaging of APOBEC3G into HIV-1 virions. Retrovirology 2007; 4:48. [PMID: 17631688 PMCID: PMC1948019 DOI: 10.1186/1742-4690-4-48] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2007] [Accepted: 07/16/2007] [Indexed: 11/10/2022] Open
Abstract
Background Efficient incorporation of the cellular cytidine deaminase APOBEC3G (APO3G) into HIV-1 virions is necessary for its antiviral activity. Even though cellular RNAs are known to be non-specifically incorporated into virus particles, we have previously found that encapsidation of APO3G into HIV-1 virions is specifically enhanced by viral genomic RNA. Intracellularly, APO3G was found to form large RNA-protein complexes involving a variety of cellular RNAs. The goal of this study was to investigate the possible contribution of host RNAs recently identified in intracellular APO3G ribonucleoprotein complexes to APO3G's encapsidation into HIV-1 virions. Results Our results show that 7SL RNA, a component of signal recognition particles, and hY1, hY3, hY4, hY5 RNAs were present in intracellular APO3G complexes and were packaged into HIV-1 particles lacking viral genomic RNA unlike APO3G, which was not packaged in significant amounts into genomic RNA-deficient particles. These results indicate that packaging of 7SL or hY RNAs is not sufficient for the packaging of APO3G into HIV-1 virions. We also tested the encapsidation of several other cellular RNAs including β-actin, GAPDH, α-tubulin, and small nuclear RNAs and determined their effect on the packaging of APO3G into nascent virions. Again, we were unable to observe any correlation between APO3G encapsidation and the packaging of any of these cellular RNAs. Conclusion The results from this study support our previous conclusion that viral genomic RNA is a critical determinant for APO3G incorporation into HIV-1 virions. While most cellular RNAs tested in this study were packaged into viruses or virus-like particles we failed to identify a correlation between APO3G encapsidation and the packaging of these cellular RNAs.
Collapse
Affiliation(s)
- Mohammad A Khan
- Laboratory of Molecular Microbiology, Viral Biochemistry Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Building 4, Room 310, 4 Center Drive, MSC 0460, Bethesda, MD 20892-0460, USA
| | - Ritu Goila-Gaur
- Laboratory of Molecular Microbiology, Viral Biochemistry Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Building 4, Room 310, 4 Center Drive, MSC 0460, Bethesda, MD 20892-0460, USA
| | - Sandrine Opi
- Laboratory of Molecular Microbiology, Viral Biochemistry Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Building 4, Room 310, 4 Center Drive, MSC 0460, Bethesda, MD 20892-0460, USA
| | - Eri Miyagi
- Laboratory of Molecular Microbiology, Viral Biochemistry Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Building 4, Room 310, 4 Center Drive, MSC 0460, Bethesda, MD 20892-0460, USA
| | - Hiroaki Takeuchi
- Laboratory of Molecular Microbiology, Viral Biochemistry Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Building 4, Room 310, 4 Center Drive, MSC 0460, Bethesda, MD 20892-0460, USA
| | - Sandra Kao
- Laboratory of Molecular Microbiology, Viral Biochemistry Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Building 4, Room 310, 4 Center Drive, MSC 0460, Bethesda, MD 20892-0460, USA
| | - Klaus Strebel
- Laboratory of Molecular Microbiology, Viral Biochemistry Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Building 4, Room 310, 4 Center Drive, MSC 0460, Bethesda, MD 20892-0460, USA
| |
Collapse
|
9
|
Rulli SJ, Hibbert CS, Mirro J, Pederson T, Biswal S, Rein A. Selective and nonselective packaging of cellular RNAs in retrovirus particles. J Virol 2007; 81:6623-31. [PMID: 17392359 PMCID: PMC1900105 DOI: 10.1128/jvi.02833-06] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Assembly of retrovirus particles normally entails the selective encapsidation of viral genomic RNA. However, in the absence of packageable viral RNA, assembly is still efficient, and the released virus-like particles (termed "Psi-" particles) still contain roughly normal amounts of RNA. We have proposed that cellular mRNAs replace the genome in Psi- particles. We have now analyzed the mRNA content of Psi- and Psi+ murine leukemia virus (MLV) particles using both microarray analysis and real-time reverse transcription-PCR. The majority of mRNA species present in the virus-producing cells were also detected in Psi- particles. Remarkably, nearly all of them were packaged nonselectively; that is, their representation in the particles was simply proportional to their representation in the cells. However, a small number of low-abundance mRNAs were greatly enriched in the particles. In fact, one mRNA species was enriched to the same degree as Psi+ genomic RNA. Similar results were obtained with particles formed from the human immunodeficiency virus type 1 (HIV-1) Gag protein, and the same mRNAs were enriched in MLV and HIV-1 particles. The levels of individual cellular mRNAs were approximately 5- to 10-fold higher in Psi- than in Psi+ MLV particles, in agreement with the idea that they are replacing viral RNA in the former. In contrast, signal recognition particle RNA was present at the same level in Psi- and Psi+ particles; a minor fraction of this RNA was weakly associated with genomic RNA in Psi+ MLV particles.
Collapse
Affiliation(s)
- Samuel J Rulli
- HIV Drug Resistance Program, National Cancer Institute-Frederick, P.O. Box B, Frederick, MD 21702-1201, USA
| | | | | | | | | | | |
Collapse
|
10
|
Ulbrich P, Haubova S, Nermut MV, Hunter E, Rumlova M, Ruml T. Distinct roles for nucleic acid in in vitro assembly of purified Mason-Pfizer monkey virus CANC proteins. J Virol 2006; 80:7089-99. [PMID: 16809314 PMCID: PMC1489063 DOI: 10.1128/jvi.02694-05] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In contrast to other retroviruses, Mason-Pfizer monkey virus (M-PMV) assembles immature capsids in the cytoplasm. We have compared the ability of minimal assembly-competent domains from M-PMV and human immunodeficiency virus type 1 (HIV-1) to assemble in vitro into virus-like particles in the presence and absence of nucleic acids. A fusion protein comprised of the capsid and nucleocapsid domains of Gag (CANC) and its N-terminally modified mutant (DeltaProCANC) were used to mimic the assembly of the viral core and immature particles, respectively. In contrast to HIV-1, where CANC assembled efficiently into cylindrical structures, the same domains of M-PMV were assembly incompetent. The addition of RNA or oligonucleotides did not complement this defect. In contrast, the M-PMV DeltaProCANC molecule was able to assemble into spherical particles, while that of HIV-1 formed both spheres and cylinders. For M-PMV, the addition of purified RNA increased the efficiency with which DeltaProCANC formed spherical particles both in terms of the overall amount and the numbers of completed spheres. The amount of RNA incorporated was determined, and for both rRNA and MS2-RNA, quantities similar to that of genomic RNA were encapsidated. Oligonucleotides also stimulated assembly; however, they were incorporated into DeltaProCANC spherical particles in trace amounts that could not serve as a stoichiometric structural component for assembly. Thus, oligonucleotides may, through a transient interaction, induce conformational changes that facilitate assembly, while longer RNAs appear to facilitate the complete assembly of spherical particles.
Collapse
Affiliation(s)
- Pavel Ulbrich
- Department of Biochemistry and Microbiology, Institute of Chemical Technology, Technicka 3, 166 28 Prague, Czech Republic
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
As retroviruses assemble in infected cells, two copies of their full-length, unspliced RNA genomes are selected for packaging from a cellular milieu that contains a substantial excess of non-viral and spliced viral RNAs. Understanding the molecular details of genome packaging is important for the development of new antiviral strategies and to enhance the efficacy of retroviral vectors used in human gene therapy. Recent studies of viral RNA structure in vitro and in vivo and high-resolution studies of RNA fragments and protein-RNA complexes are helping to unravel the mechanism of genome packaging and providing the first glimpses of the initial stages of retrovirus assembly.
Collapse
Affiliation(s)
- Victoria D'Souza
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, USA
| | | |
Collapse
|
12
|
Zhou J, McAllen JK, Tailor Y, Summers MF. High affinity nucleocapsid protein binding to the muPsi RNA packaging signal of Rous sarcoma virus. J Mol Biol 2005; 349:976-88. [PMID: 15907938 DOI: 10.1016/j.jmb.2005.04.046] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2005] [Revised: 04/15/2005] [Accepted: 04/20/2005] [Indexed: 11/21/2022]
Abstract
The genomes of all retroviruses contain sequences near their 5' ends that interact with the nucleocapsid domains (NC) of assembling Gag proteins and direct their packaging into virus particles. Retroviral packaging signals often occur in non-contiguous segments spanning several hundred nucleotides of the RNA genome, confounding structural and mechanistic studies of genome packaging. Recently, a relatively short, 82 nucleotide region of the Rous sarcoma virus (RSV) genome, called muPsi, was shown to be sufficient to direct efficient packaging of heterologous RNAs into RSV-like particles. We have developed a method for the preparation and purification of large quantities of recombinant RSV NC protein, and have studied its interactions with native and mutant forms of the muPsi encapsidation element. NC does not bind with significant affinity to truncated forms of muPsi, consistent with earlier packaging and mutagenesis studies. Surprisingly, NC binds to the native muPsi RNA with affinity that is approximately 100 times greater than that observed for other previously characterized retroviral NC-RNA complexes (extrapolated dissociation constant K(d)=1.9 nM). Tight binding with 1:1 NC-muPsi stoichiometry is dependent on a conserved UGCG tetraloop in one of three predicted stem loops, and an AUG initiation codon controvertibly implicated in genome packaging and translational control. Loop nucleotides of other stem loops do not contribute to NC binding. Our findings indicate that the structural determinants of RSV genome recognition and NC-RNA binding differ considerably from those observed for other retroviruses.
Collapse
Affiliation(s)
- Jing Zhou
- Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | | | | | | |
Collapse
|
13
|
Lever AML, Strappe PM, Zhao J. Lentiviral vectors. J Biomed Sci 2004; 11:439-49. [PMID: 15153778 DOI: 10.1007/bf02256092] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2004] [Accepted: 02/23/2004] [Indexed: 02/02/2023] Open
Abstract
Vectors based on lentiviruses have reached a state of development such that clinical studies using these agents as gene delivery vehicles have now begun. They have particular advantages for certain in vitro and in vivo applications especially the unique capability of integrating genetic material into the genome of non-dividing cells. Their rapid progress into clinical use reflects in part the huge body of knowledge which has accumulated about HIV in the last 20 years. Despite this, many aspects of viral assembly on which the success of these vectors depends are rather poorly understood. Sufficient is known however to be able to produce a safe and reproducible high titre vector preparation for effective transduction of growth-arrested tissues such as neural tissue, muscle and liver.
Collapse
Affiliation(s)
- Andrew M L Lever
- University of Cambridge, Department of Medicine, Addenbrooke's Hospital, Cambridge, UK.
| | | | | |
Collapse
|
14
|
LeBlanc JJ, Beemon KL. Unspliced Rous sarcoma virus genomic RNAs are translated and subjected to nonsense-mediated mRNA decay before packaging. J Virol 2004; 78:5139-46. [PMID: 15113896 PMCID: PMC400353 DOI: 10.1128/jvi.78.10.5139-5146.2004] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Retroviruses package full-length, unspliced RNAs into progeny virions as dimerized RNA genomes. They also use unspliced RNAs as mRNAs to produce the gag and pol gene products. We asked whether a single Rous sarcoma virus (RSV) RNA can be translated and subsequently packaged or whether genomic packaging requires a nontranslated population of RNAs. We addressed this issue by utilizing the translation-dependent nonsense-mediated mRNA decay (NMD) pathway. NMD is the selective destruction of mRNAs bearing premature termination codons (PTCs). The pathway has been shown to be associated with splicing in higher eukaryotes. Here, we demonstrate that both translation and the cellular factor Upf1 are required for the decay of unspliced, PTC-bearing RSV RNA by the NMD pathway. To address the relationship between RNA translation and packaging, we examined virus produced in cells cotransfected with PTC-bearing retroviral clones and wild-type viral clones. We observed that PTC-bearing transcripts are packaged into viral particles at levels three- to fivefold less than those of control RNAs. Since PTC-mediated degradation requires translation, we conclude that RSV can package progeny virion particles using previously translated RNAs.
Collapse
Affiliation(s)
- Jason J LeBlanc
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | | |
Collapse
|
15
|
Conklin KF, Coffin JM, Robinson HL, Groudine M, Eisenman R. Role of methylation in the induced and spontaneous expression of the avian endogenous virus ev-1: DNA structure and gene products. Mol Cell Biol 2003; 2:638-52. [PMID: 14582159 PMCID: PMC369840 DOI: 10.1128/mcb.2.6.638-652.1982] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The endogenous avian provirus ev-1 is widespread in white leghorn chickens. Although it has no major structural defects, ev-1 has not been associated with any phenotype and is ordinarily expressed at a very low level. In this report, we describe a chicken embryo (Number 1836) cell culture containing both ev-1 and ev-6 which spontaneously expressed the ev-1 provirus. This culture released a high level of noninfectious virions containing a full complement of virion structural (gag) proteins but devoid of reverse transcriptase activity or antigen. These virions contained 70S RNA closely related to the genome of Rous-associated virus type 0, but identifiable as the ev-1 genome by oligonucleotide mapping. A fraction of the RNA molecules in the 70S complex were unusual in that they were polyadenylated 100 to 200 nucleotides downstream of the usual polyadenylation site. Eight sibling embryo cultures did not share this unusual phenotype with 1836, indicating that it was not inherited. However, an identical phenotype was inducible in the sibling cultures by treatment with 5-azacytidine, an inhibitor of DNA methylation, and the induced expression was stable for more than 10 generations. Analysis of chromatin structure and DNA methylation of the ev-1 provirus in 1836 cells revealed the presence (in a fraction of the proviruses) of both DNase I hypersensitive sites in the long terminal repeats and in gag and a pattern of cleavage sites for methyl-sensitive restriction endonuclease not found in a nonexpressing sibling. These results lend strong support to the role of DNA methylation in the control of gene expression. Additionally, they explain the lack of phenotype associated with ev-1 as due to a combination of its low expression and defectiveness in pol and env.
Collapse
Affiliation(s)
- K F Conklin
- Department of Molecular Biology and Microbiology and Cancer Research Center, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | | | |
Collapse
|
16
|
Role of methylation in the induced and spontaneous expression of the avian endogenous virus ev-1: DNA structure and gene products. Mol Cell Biol 2003. [PMID: 14582159 DOI: 10.1128/mcb.2.6.638] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The endogenous avian provirus ev-1 is widespread in white leghorn chickens. Although it has no major structural defects, ev-1 has not been associated with any phenotype and is ordinarily expressed at a very low level. In this report, we describe a chicken embryo (Number 1836) cell culture containing both ev-1 and ev-6 which spontaneously expressed the ev-1 provirus. This culture released a high level of noninfectious virions containing a full complement of virion structural (gag) proteins but devoid of reverse transcriptase activity or antigen. These virions contained 70S RNA closely related to the genome of Rous-associated virus type 0, but identifiable as the ev-1 genome by oligonucleotide mapping. A fraction of the RNA molecules in the 70S complex were unusual in that they were polyadenylated 100 to 200 nucleotides downstream of the usual polyadenylation site. Eight sibling embryo cultures did not share this unusual phenotype with 1836, indicating that it was not inherited. However, an identical phenotype was inducible in the sibling cultures by treatment with 5-azacytidine, an inhibitor of DNA methylation, and the induced expression was stable for more than 10 generations. Analysis of chromatin structure and DNA methylation of the ev-1 provirus in 1836 cells revealed the presence (in a fraction of the proviruses) of both DNase I hypersensitive sites in the long terminal repeats and in gag and a pattern of cleavage sites for methyl-sensitive restriction endonuclease not found in a nonexpressing sibling. These results lend strong support to the role of DNA methylation in the control of gene expression. Additionally, they explain the lack of phenotype associated with ev-1 as due to a combination of its low expression and defectiveness in pol and env.
Collapse
|
17
|
Rainov NG, Kramm CM. Recombinant retrovirus vectors for treatment of malignant brain tumors. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2003; 55:185-203. [PMID: 12968537 DOI: 10.1016/s0074-7742(03)01008-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Affiliation(s)
- Nikolai G Rainov
- Department of Neurological Science, University of Liverpool, Walton Centre for Neurology and Neurosurgery NHS Trust, Liverpool L9 7LJ, United Kingdom
| | | |
Collapse
|
18
|
Strappe PM, Greatorex J, Thomas J, Biswas P, McCann E, Lever AML. The packaging signal of simian immunodeficiency virus is upstream of the major splice donor at a distance from the RNA cap site similar to that of human immunodeficiency virus types 1 and 2. J Gen Virol 2003; 84:2423-2430. [PMID: 12917463 DOI: 10.1099/vir.0.19185-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Deletion mutation of the RNA 5' leader sequence of simian immunodeficiency virus (SIV) was used to localize the virus packaging signal. Deletion of sequences upstream of the major splice donor (SD) site produced a phenotype most consistent with a packaging defect when analysed by both RNase protection assay and RT-PCR. Sequences downstream of the SD were deleted and produced varying effects but did not affect packaging: a large downstream deletion had little effect on function, whereas a nested deletion produced a profound replication defect characterized by reduced protein production. Secondary structure analysis provided a potential explanation for this. The major packaging signal of SIV appears to be upstream of the SD in a region similar to that of human immunodeficiency virus type 2 (HIV-2) but unlike that of HIV-1; however, the packaging signal of all three viruses are at a similar distance from their respective cap sites. This conserved positioning suggests that it is more important in the virus life cycle than the position of the signal relative to the SD.
Collapse
Affiliation(s)
- P M Strappe
- University of Cambridge Department of Medicine, Addenbrooke's Hospital, Cambridge CB2 2QQ, UK
| | - J Greatorex
- University of Cambridge Department of Medicine, Addenbrooke's Hospital, Cambridge CB2 2QQ, UK
| | - J Thomas
- University of Cambridge Department of Medicine, Addenbrooke's Hospital, Cambridge CB2 2QQ, UK
| | - P Biswas
- University of Cambridge Department of Medicine, Addenbrooke's Hospital, Cambridge CB2 2QQ, UK
| | - E McCann
- University of Cambridge Department of Medicine, Addenbrooke's Hospital, Cambridge CB2 2QQ, UK
| | - A M L Lever
- University of Cambridge Department of Medicine, Addenbrooke's Hospital, Cambridge CB2 2QQ, UK
| |
Collapse
|
19
|
Virus-based vectors for gene expression in mammalian cells: Retrovirus. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s0167-7306(03)38014-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
20
|
Abstract
SINEs and LINEs are short and long interspersed retrotransposable elements, respectively, that invade new genomic sites using RNA intermediates. SINEs and LINEs are found in almost all eukaryotes (although not in Saccharomyces cerevisiae) and together account for at least 34% of the human genome. The noncoding SINEs depend on reverse transcriptase and endonuclease functions encoded by partner LINEs. With the completion of many genome sequences, including our own, the database of SINEs and LINEs has taken a great leap forward. The new data pose new questions that can only be answered by detailed studies of the mechanism of retroposition. Current work ranges from the biochemistry of reverse transcription and integration invitro, target site selection in vivo, nucleocytoplasmic transport of the RNA and ribonucleoprotein intermediates, and mechanisms of genomic turnover. Two particularly exciting new ideas are that SINEs may help cells survive physiological stress, and that the evolution of SINEs and LINEs has been shaped by the forces of RNA interference. Taken together, these studies promise to explain the birth and death of SINEs and LINEs, and the contribution of these repetitive sequence families to the evolution of genomes.
Collapse
Affiliation(s)
- Alan M Weiner
- Department of Biochemistry, HSB J417, University of Washington, Box 357350, Seattle, WA 98195-7350, USA.
| |
Collapse
|
21
|
Takeuchi Y, Pizzato M. Retrovirus vectors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2000; 465:23-35. [PMID: 10810612 DOI: 10.1007/0-306-46817-4_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Y Takeuchi
- Chester Beatty Laboratories, Institute of Cancer Research, London, England
| | | |
Collapse
|
22
|
Abstract
The role of the nucleocapsid protein of HIV-1 Gag in virus assembly was investigated using Gag truncation mutants, a nucleocapsid deletion mutant, and point mutations in the nucleocapsid region of Gag, in transfected COS cells, and in stable T-cell lines. Consistent with previous investigations, a truncation containing only the matrix and capsid regions of Gag was unable to assemble efficiently into particles; also, the pelletable material released was lighter than the density of wild-type HIV-1. A deletion mutant lacking p7 nucleocapsid but containing the C-terminal p6 protein was also inefficient in particle release and released lighter particles, while a truncation containing only the first zinc finger of p7 could assemble more efficiently into virions. These results clearly show that p7 is indispensable for virus assembly and release. Some point mutations in the N-terminal basic domain and in the basic linker region between the two zinc fingers, which had been previously shown to have reduced RNA binding in vitro [Schmalzbauer, E., Strack, B., Dannull, J., Guehmann, S., and Moelling, K. (1996). J. Virol. 70: 771-777], were shown to reduce virus assembly dramatically when expressed in full-length viral clones. A fusion protein consisting of matrix and capsid fused to a heterologous viral protein known to have nonspecific RNA binding activity [Ribas, J. C., Fujimura, T., and Wickner, R. B. (1994) J. Biol. Chem. 269: 28420-28428] released pelletable material slightly more efficiently than matrix and capsid alone, and these particles had density higher than matrix and capsid alone. These results demonstrate the essential role of HIV-1 nucleocapsid in the virus assembly process and show that the positively charged N terminus of p7 is critical for this role.
Collapse
Affiliation(s)
- L Dawson
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Hygiene and Public Health, Baltimore, Maryland, 21205, USA
| | | |
Collapse
|
23
|
Doria-Rose NA, Vogt VM. In vivo selection of Rous sarcoma virus mutants with randomized sequences in the packaging signal. J Virol 1998; 72:8073-82. [PMID: 9733847 PMCID: PMC110144 DOI: 10.1128/jvi.72.10.8073-8082.1998] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/1998] [Accepted: 06/15/1998] [Indexed: 11/20/2022] Open
Abstract
Retrovirus genomes contain a sequence at the 5' end which directs their packaging into virions. In Rous sarcoma virus, previous studies have identified important segments of the packaging signal, Psi, and support elements of a secondary-structure prediction. To further characterize this sequence, we used an in vivo selection strategy to test large collections of mutants. We generated pools of full-length viral DNA molecules with short stretches of random sequence in Psi and transfected each pool into avian cells. Resulting infectious virus was allowed to spread by multiple passages, so that sequences could compete and the best could be selected. This method provides information on the kinds of sequences allowed, as well as those that are most fit. Several predicted stem-loop structures in Psi were tested. A stem at the base of element O3 was highly favored; only sequences which maintained base pairing were selected. Two other stems, at the base and in the middle of element L3, were not conserved: neither base pairing nor sequence was maintained. A single mutation, G213U, was seen upstream of the randomized region in all selected L3 stem mutants; we interpret this to mean that it compensates for the defects in L3. Randomized mutations adjacent to G213 maintained the wild-type base composition but not its sequence. The kissing-loop sequence at end of L3, postulated to function in genome dimerization, was not required for infectivity but was selected for over time. Finally, a deletion of L3 was constructed and found to be poorly infectious.
Collapse
Affiliation(s)
- N A Doria-Rose
- Section of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
24
|
Campbell S, Vogt VM. In vitro assembly of virus-like particles with Rous sarcoma virus Gag deletion mutants: identification of the p10 domain as a morphological determinant in the formation of spherical particles. J Virol 1997; 71:4425-35. [PMID: 9151833 PMCID: PMC191661 DOI: 10.1128/jvi.71.6.4425-4435.1997] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Retroviruses are unusual in that expression of a single protein, Gag, leads to budding of virus-like particles into the extracellular space. We have developed conditions under which virus-like particles are formed spontaneously in vitro from fragments of Rous sarcoma virus (RSV) Gag protein purified after expression in Escherichia coli. The CA-NC fragment of Gag was shown previously to assemble into hollow cylinders (S. Campbell and V. M. Vogt, J. Virol. 69:6487-6497, 1995). We have now extended these studies to larger Gag proteins. In every case examined, assembly into regular structures required RNA. A nearly full-length Gag missing only the C-terminal PR domain, as well as similar proteins missing in addition the N-terminal half of MA, the C-terminal half of MA, the entire MA sequence, or the entire p2 sequence, all assembled into spherical particles resembling RSV in size. By contrast, proteins missing p10 assembled into cylindrical particles like those formed by CA-NC alone. Thin section electron microscopy showed that each of these Gag proteins formed in the expressing E. coli cells particles similar in shape to those seen in vitro. We conclude from these results that neither the sequences required for membrane binding in vivo, near the N terminus of Gag, nor the sequences required for a late step in budding, in the p2 portion of Gag, are essential for formation of virus-like particles in this system. Furthermore, we postulate the existence of a shape-determining sequence in p10, which provides or facilitates interactions required for the growing particle to be constrained to a spherical shape.
Collapse
Affiliation(s)
- S Campbell
- Section of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
25
|
Banks JD, Beemon KL, Linial ML. RNA Regulatory Elements in the Genomes of Simple Retroviruses. ACTA ACUST UNITED AC 1997. [DOI: 10.1006/smvy.1997.0122] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
Abstract
Unspliced cytoplasmic retroviral RNA in chronically infected cells either is encapsidated by Gag proteins in the manufacture of virus or is used to direct synthesis of Gag proteins. Several models have been suggested to explain the sorting of viral RNA for these two purposes. Here we present evidence supporting a simple biochemical mechanism that accounts for the routing of retroviral RNA. Our results indicate that ribosomes compete with the Gag proteins to determine the fate of nascent retroviral RNA. Although the integrity of the entire Rous sarcoma virus leader sequence is important for retroviral packaging and translation, the RNA structure around the third small open reading frame, which neighbors the psi site required for packaging of the RNA, is particularly critical for maintenance of the balance between translation and packaging. These results support the hypothesis that Gag proteins autogenously regulate their synthesis and encapsidation of retroviral RNA and that an equilibrium exists between RNA destined for translation and packaging that is based on the intracellular levels of Gag proteins and ribosomes. To test the model, mRNAs with natural or mutated 5' leader sequences from Rous sarcoma virus were expressed in avian cells in the presence and absence of Pr76gag. We demonstrate that Pr76gag acts as a translational repressor of these mRNAs in a dose-dependent manner, supporting the hypothesis that Pr76gag can sort retroviral RNA for translation and encapsidation.
Collapse
|
27
|
Poon DT, Wu J, Aldovini A. Charged amino acid residues of human immunodeficiency virus type 1 nucleocapsid p7 protein involved in RNA packaging and infectivity. J Virol 1996; 70:6607-16. [PMID: 8794295 PMCID: PMC190701 DOI: 10.1128/jvi.70.10.6607-6616.1996] [Citation(s) in RCA: 129] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Interaction of the human immunodeficiency virus type 1 (HIV-1) Gag precursor polyprotein (Pr55Gag) with the viral genomic RNA is required for retroviral replication. Mutations that reduce RNA packaging efficiency have been localized to the highly basic nucleocapsid (NC) p7 domain of Pr55Gag, but the importance of the basic amino acid residues in specific viral RNA encapsidation and infectivity has not been thoroughly investigated in vivo. We have systematically substituted the positively charged residues of the NC domain of Pr55Gag in an HIV-1 viral clone by using alanine scanning mutagenesis and have assayed the effects of these mutations on virus replication, particle formation, and RNA packaging in vivo. Analysis of viral clones with single substitutions revealed that certain charged amino acid residues are more critical for RNA packaging efficiency and infectivity than others. Analysis of viral clones with multiple substitutions indicates that the presence of positive charge in each of three independent domains--the zinc-binding domains, the basic region that links them, and the residues that Hank the two zinc-binding domains--is necessary for efficient HIV-1 RNA packaging. Finally, we note that some mutations affect virus replication more drastically than RNA incorporation, providing in vivo evidence for the hypothesis that NC p7 may be involved in aspects of the HIV life cycle in addition to RNA packaging.
Collapse
Affiliation(s)
- D T Poon
- Department of Medicine, Children's Hospital, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
28
|
Affiliation(s)
- R Berkowitz
- Gladstone Institute for Virus Research, University of California, San Francisco 94110-9100, USA
| | | | | |
Collapse
|
29
|
Paillart JC, Marquet R, Skripkin E, Ehresmann C, Ehresmann B. Dimerization of retroviral genomic RNAs: structural and functional implications. Biochimie 1996; 78:639-53. [PMID: 8955907 DOI: 10.1016/s0300-9084(96)80010-1] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Retroviruses are a family of widespread small animal viruses at the origin of a diversity of diseases. They share common structural and functional properties such as reverse transcription of their RNA genome and integration of the proviral DNA into the host genome, and have the particularity of packaging a diploid genome. The genome of all retroviruses is composed of two homologous RNA molecules that are non-covalently linked near their 5' end in a region called the dimer linkage structure (DLS). There is now considerable evidence that a specific site (or sites) in the 5' leader region of all retroviruses, located either upstream or/and downstream of the major splice donor site, is involved in the dimer linkage. For MoMuLV and especially HIV-1, it was shown that dimerization is initiated at a stem-loop structure named the dimerization initiation site (DIS). The DIS of HIV-1 and related regions in other retroviruses corresponds to a highly conserved structure with a self-complementary loop sequence, that is involved in a typical loop-loop 'kissing' complex which can be further stabilized by long distance interactions or by conformational rearrangements. RNA interactions involved in the viral RNA dimer were postulated to regulate several key steps in retroviral cycle, such as: i) translation and encapsidation: the arrest of gag translation imposed by the highly structured DLS-encapsidation signal would leave the RNA genome available for the encapsidation machinery; and ii) recombination during reverse transcription: the presence of two RNA molecules in particles would be necessary for variability and viability of virus progeny and the ordered structure imposed by the DLS would be required for efficient reverse transcription.
Collapse
Affiliation(s)
- J C Paillart
- UPR 9002 CNRS, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | | | | | | | | |
Collapse
|
30
|
Anderson DJ, Stone J, Lum R, Linial ML. The packaging phenotype of the SE21Q1b provirus is related to high proviral expression and not trans-acting factors. J Virol 1995; 69:7319-23. [PMID: 7474162 PMCID: PMC189662 DOI: 10.1128/jvi.69.11.7319-7323.1995] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The avian packaging cell line SE21Q1b produces particles which encapsidate cellular RNAs. Such RNAs can be reverse transcribed by endogenous polymerase and integrated into the genomes of newly infected cells (M. Linial, Cell 49:93-102, 1987). Genomic RNA is not packaged because the packaging (psi) region of the provirus is deleted. The provirus also lacks the negative-strand primer binding site, which prevents efficient reverse transcription of randomly packaged genomic RNA. Previous work from our laboratory suggested that the trans-acting defect which allows packaging of cellular mRNA mapped to the provirus but did not map to the nucleocapsid region of the gag gene (D.J. Anderson, P. Lee, K. L. Levine, J. Sang, S. A. Shah, O. O. Yang, P. R. Shank, and M. L. Linial, J. Virol. 66:204-216, 1992). We have found, using proviral recombinants between SE21Q1b and wild-type Rous sarcoma virus, that packaging of cellular RNAs does not map to the gag gene. Rather, the propensity of SE21Q1b particles to package cellular mRNA is a function of the high level of particle production in these cells and not of any specific viral structural proteins.
Collapse
Affiliation(s)
- D J Anderson
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98104, USA
| | | | | | | |
Collapse
|
31
|
Aguzzi A, Brandner S, Isenmann S, Steinbach JP, Sure U. Transgenic and gene disruption techniques in the study of neurocarcinogenesis. Glia 1995; 15:348-64. [PMID: 8586469 DOI: 10.1002/glia.440150314] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Transgenic technologies have come of age, and the field of carcinogenesis has profited extensively from the availability of these methods. Both the inappropriate expression of dominant oncogenes in specific tissues and the ability to "knock out" tumor suppressor genes in mammalian organisms have enabled substantial advancements of our understanding of development and progression of the neoplastic phenotype. In the first part of this article, we review the most popular techniques for modification of the mammalian genome in vivo, i.e. microinjection of fertilized eggs, retrovirus-mediated gene transfer, and targeted gene deletion through homologous recombination. Subsequently, we attempt a critical evaluation of the available models of neurocarcinogenesis, and discuss their impact and future potential for the study of cancer in the nervous system.
Collapse
Affiliation(s)
- A Aguzzi
- Institute of Neuropathology, University Hospital of Zürich, Switzerland
| | | | | | | | | |
Collapse
|
32
|
Campbell S, Vogt VM. Self-assembly in vitro of purified CA-NC proteins from Rous sarcoma virus and human immunodeficiency virus type 1. J Virol 1995; 69:6487-97. [PMID: 7666550 PMCID: PMC189550 DOI: 10.1128/jvi.69.10.6487-6497.1995] [Citation(s) in RCA: 313] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The internal structural proteins of retroviruses are proteolytically processed from the Gag polyprotein, which alone is able to assemble into virus-like particles when expressed in cells. All Gag proteins contain domains corresponding to the three structural proteins MA, CA, and NC. We have expressed the CA and NC domains together as a unit in Escherichia coli, both for Rous sarcoma virus (RSV) and for human immunodeficiency virus type 1 (HIV-1). We also expressed a similar HIV-1 protein carrying the C-terminal p6 domain. RSV CA-NC, HIV-1 CA-NC, and HIV-1 CA-NC-p6 were purified in native form by classic methods. After adjustment of the pH and salt concentration, each of these proteins was found to assemble at a low level of efficiency into structures that resembled circular sheets and roughly spherical particles. The presence of RNA dramatically increased the efficiency of assembly, and in this case all three proteins formed hollow, cylindrical particles whose lengths were determined by the size of the RNA. The optimal pH at which assembly occurred was 5.5 for the RSV protein and 8.0 for the HIV-1 proteins. The treatment of the RSV CA-NC cylindrical particles with nonionic detergent, with ribonuclease, or with viral protease caused disassembly. These results suggest that RNA plays an important structural role in the virion and that it may initiate and organize the assembly process. The in vitro system described should facilitate the dissection of assembly pathways in retroviruses.
Collapse
Affiliation(s)
- S Campbell
- Section of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
33
|
Berkowitz RD, Ohagen A, Höglund S, Goff SP. Retroviral nucleocapsid domains mediate the specific recognition of genomic viral RNAs by chimeric Gag polyproteins during RNA packaging in vivo. J Virol 1995; 69:6445-56. [PMID: 7666546 PMCID: PMC189545 DOI: 10.1128/jvi.69.10.6445-6456.1995] [Citation(s) in RCA: 169] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The retroviral nucleocapsid (NC) protein is necessary for the specific encapsidation of the viral genomic RNA by the assembling virion. However, it is unclear whether NC contains the determinants for the specific recognition of the viral RNA or instead contributes nonspecific RNA contacts to strengthen a specific contact made elsewhere in the Gag polyprotein. To discriminate between these two possibilities, we have swapped the NC domains of the human immunodeficiency virus type 1 (HIV-1) and Moloney murine leukemia virus (M-MuLV), generating an HIV-1 mutant containing the M-MuLV NC domain and an M-MuLV mutant containing the HIV-1 NC domain. These mutants, as well as several others, were characterized for their abilities to encapsidate HIV-1, M-MuLV, and nonviral RNAs and to preferentially package genomic viral RNAs over spliced viral RNAs. We found that the M-MuLV NC domain mediates the specific packaging of RNAs containing the M-MuLV psi packaging element, while the HIV-1 NC domain confers an ability to package the unspliced HIV-1 RNA over spliced HIV-1 RNAs. In addition, we found that the HIV-1 mutant containing the M-MuLV NC domain exhibited a 20-fold greater ability than wild-type HIV-1 to package a nonviral RNA. These results help confirm the notion that the NC domain specifically recognizes the retroviral genomic RNA during RNA encapsidation.
Collapse
Affiliation(s)
- R D Berkowitz
- Department of Microbiology, Columbia University, New York, New York 10032, USA
| | | | | | | |
Collapse
|
34
|
Kramm CM, Sena-Esteves M, Barnett FH, Rainov NG, Schuback DE, Yu JS, Pechan PA, Paulus W, Chiocca EA, Breakefield XO. Gene therapy for brain tumors. Brain Pathol 1995; 5:345-81. [PMID: 8974620 DOI: 10.1111/j.1750-3639.1995.tb00615.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Gene therapy has opened new doors for treatment of neoplastic diseases. This new approach seems very attractive, especially for glioblastomas, since treatment of these brain tumors has failed using conventional therapy regimens. Many different modes of gene therapy for brain tumors have been tested in culture and in vivo. Many of these approaches are based on previously established anti-neoplastic principles, like prodrug activating enzymes, inhibition of tumor neovascularization, and enhancement of the normally weak anti-tumor immune response. Delivery of genes to tumor cells has been mediated by a number of viral and synthetic vectors. The most widely used paradigm is based on the activation of ganciclovir to a cytotoxic compound by a viral enzyme, thymidine kinase, which is expressed by tumor cells, after the gene has been introduced by a retroviral vector. This paradigm has proven to be a potent therapy with minimal side effects in several rodent brain tumor models, and has proceeded to phase 1 clinical trials. In this review, current gene therapy strategies and vector systems for treatment of brain tumors will be described and discussed in light of further developments needed to make this new treatment modality clinically efficacious.
Collapse
Affiliation(s)
- C M Kramm
- Neuroscience Center, Massachusetts General Hospital, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
In this report, we describe a recombinant provirus generated during in vitro passage that contains a short region of adenosine-to-guanosine hypermutation. The hypermutated region is restricted to complementary sequences present in the recombinant provirus. We propose that a duplex was formed in the recombinant RNA prior to reverse transcription. This duplex was a substrate for double-stranded RNA adenosine deaminase, an activity found in all cells examined that deaminates A in double-stranded RNA, converting it to inosine, which is further converted to a guanosine by reverse transcription. It appears that cis viral sequences facilitated the A-->G transitions.
Collapse
Affiliation(s)
- A M Hajjar
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | |
Collapse
|
36
|
Abstract
We have analyzed the roles of Gag protein nucleocapsid (NC) domains in the packaging or encapsidation of retroviral RNAs into virus particles. We found that mutation of both zinc finger motifs of the human immunodeficiency virus (HIV) NC domain reduced but did not eliminate encapsidation of the HIV viral RNA. However, the NC mutations also resulted in a three- to fourfold reduction in the specificity of RNA encapsidation, as determined by comparison of virus-associated genomic and spliced RNA levels. As a complementary approach, we replaced the NC domain of Moloney murine leukemia virus (M-MuLV) with that of HIV. Chimeric virus particles assembled efficiently, were of wild-type M-MuLV density, and cross-linked at NC cysteines. In encapsidation studies, wild-type M-MuLV precursor Gag (PrGag) proteins packaged M-MuLV transcripts more efficiently than HIV RNAs. In contrast, chimeric PrGag proteins possessing the HIV-1 NC domain in the context of the M-MuLV MA (matrix), p12, and CA (capsid) domains encapsidated HIV transcripts to a greater extent than M-MuLV transcripts. Our results support the notion that retroviral NC domains contribute toward both the efficiency and specificity of viral genomic RNA packaging.
Collapse
Affiliation(s)
- Y Zhang
- Vollum Institute for Advanced Biomedical Research, Oregon Health Sciences University, Portland 97201-3098, USA
| | | |
Collapse
|
37
|
Lee PP, Linial ML. Efficient particle formation can occur if the matrix domain of human immunodeficiency virus type 1 Gag is substituted by a myristylation signal. J Virol 1994; 68:6644-54. [PMID: 7521919 PMCID: PMC237085 DOI: 10.1128/jvi.68.10.6644-6654.1994] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Lentiviruses, such as human immunodeficiency virus type 1 (HIV-1), assemble at and bud through the cytoplasmic membrane. Both the matrix (MA) domain of Gag and its amino-terminal myristylation have been implicated in these processes. We have created HIV-1 proviruses lacking the entire matrix domain of gag which either lack or contain an amino-terminal myristate addition sequence at the beginning of the capsid domain. Myristate- and matrix-deficient [myr(-)MA(-)] viruses produced after transient transfection are still able to assemble into particles, although the majority do not form at the plasma membrane or bud efficiently. Myristylation of the amino terminus of the truncated Gag precursor permits a much more efficient release of the mutant virions. While myr(-)MA(-) particles were inefficient in proteolytic processing of the Gag precursor, myristylation enabled efficient proteolysis of the mutant Gag. All matrix-deficient viruses are noninfectious. Particles produced by matrix-deficient mutants contain low levels of glycoproteins, indicating the importance of matrix in either incorporation or stable retention of Env. Since matrix-deficient viruses contain a normal complement of viral genomic RNA, a role for MA in genomic incorporation can be excluded. Contrary to previous reports, the HIV-1 genome does not require sequences between the 5' splice donor site and the gag start codon for efficient packaging.
Collapse
Affiliation(s)
- P P Lee
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98104
| | | |
Collapse
|
38
|
Sakalian M, Wills JW, Vogt VM. Efficiency and selectivity of RNA packaging by Rous sarcoma virus Gag deletion mutants. J Virol 1994; 68:5969-81. [PMID: 8057473 PMCID: PMC237002 DOI: 10.1128/jvi.68.9.5969-5981.1994] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
In all retrovirus systems studied, the leader region of the RNA contains a cis-acting sequence called psi that is required for packaging the viral RNA genome. Since the pol and env genes are dispensable for formation of RNA-containing particles, the gag gene product must have an RNA binding domain(s) capable of recognizing psi. To gain information about which portion(s) of Gag is required for RNA packaging in the avian sarcoma and leukemia virus system, we utilized a series of gag deletion mutants that retain the ability to assemble virus-like particles. COS cells were cotransfected with these mutant DNAs plus a tester DNA containing psi, and incorporation of RNA into particles were measured by RNase protection. The efficiency of packaging was determined by normalization of the amount of psi+ RNA to the amount of Gag protein released in virus-like particles. Specificity of packaging was determined by comparisons of psi+ and psi- RNA in particles and in cells. The results indicate that much of the MA domain, much of the p10 domain, half of the CA domain, and the entire PR domain of Gag are unnecessary for efficient packaging. In addition, none of these deleted regions is needed for specific selection of the psi RNA. Deletions within the NC domain, as expected, reduce or eliminate both the efficiency and the specificity of packaging. Among mutants that retain the ability to package, a deletion within the CA domain (which includes the major homology region) is the least efficient. We also examined particles of the well-known packaging mutant SE21Q1b. The data suggest that the random RNA packaging behavior of this mutant is not due to a specific defect but rather is the result of the cumulative effect of many point mutations throughout the gag gene.
Collapse
Affiliation(s)
- M Sakalian
- Section of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, New York 14850
| | | | | |
Collapse
|
39
|
Knight JB, Si ZH, Stoltzfus CM. A base-paired structure in the avian sarcoma virus 5' leader is required for efficient encapsidation of RNA. J Virol 1994; 68:4493-502. [PMID: 8207823 PMCID: PMC236375 DOI: 10.1128/jvi.68.7.4493-4502.1994] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Selective encapsidation of avian sarcoma-leukosis virus genomic RNA within virions requires recognition of a cis-acting signal (termed psi) located in the 5' leader of the RNA between the primer binding site and the splice donor site. Computer analyses indicate the potential for numerous secondary structure interactions within this region, including alternative conformations with similar free energy levels. We have constructed mutations designed to disrupt and restore potential secondary structure interactions within psi to investigate the role of these structures in RNA packaging. To test for the ability of psi mutants to package a heterologous reporter gene into virions, chimeric constructs bearing avian sarcoma virus 5' sequences fused to lacZ were transiently cotransfected with a nonpackageable helper construct into chicken embryo fibroblasts. lacZ virions produced from cotransfected cells were used to infect new cultures of chicken embryo fibroblasts, and then an in situ assay for individual cells expressing lacZ was done. Results obtained with this assay were confirmed in direct analyses of isolated virion RNA by RNase protection assays. Two mutations, predicted to disrupt a potential stem structure forming between elements located at nucleotides 160 to 167 and 227 to 234, severely inhibited packaging when either element was mutated. A construct in which these mutations were combined to restore potential base pairing between the two elements displayed a partially restored packaging phenotype. These results strongly suggest that the structure, referred to as the O3 stem, is required for efficient encapsidation of avian sarcoma virus RNA. Site-directed mutagenesis of additional sequence elements located in the O3 loop reduced packaging as measured by the indirect assay, suggesting that these sequences may also be components of the encapsidation signal. The possible implications of the O3 stem structure with regard to translation of avian sarcoma-leukosis virus short upstream open reading frames are discussed.
Collapse
Affiliation(s)
- J B Knight
- Department of Microbiology, University of Iowa, Iowa City 52242
| | | | | |
Collapse
|
40
|
Abstract
In retroviruses, the "Gag" or core polyprotein is capable of assembling into virus particles and packaging the genomic RNA of the virus. How this protein recognizes viral RNA is not understood. Gag polyproteins contain a zinc-finger domain; mutants with changes in this domain assemble into virions, but a large fraction of these particles lack viral RNA. Thus, one crucial element in the RNA packaging mechanism is the zinc-finger domain. RNA sequences required for packaging ("packing signals") have been studied both by deletion analysis and by measuring encapsidation of nonviral mRNAs containing limited insertions of viral sequence. These experiments show that all or part of the packaging signal in viral RNA is located near the 5 end of the genome. These signals appear to be quite large, i.e., hundreds of nucleotides. Each virus particle actually contains a dimer of two identical, + strand genomic RNA molecules. The nature of the dimeric linkage is not understood. In some experimental situations (including zinc-finger mutants), only a small fraction of the particles in a virus preparation contain genomic RNA. It is striking that the genomic RNA packaged in these situations is dimeric. Because of this important observation, it is speculated that only dimers are packaged, and that the dimeric structure is an element of the packaging signal. It is also suggested that the dimers undergo a conformational change ("RNA maturation") after the virus is released from the cell, and that this change may depend upon the cleavage of the Gag polyprotein, a post-assembly event catalyzed by the virus-coded protease.
Collapse
Affiliation(s)
- A Rein
- Laboratory of Molecular Virology and Carcinogenesis, NCI-Frederick Cancer Research and Development Center, Maryland
| |
Collapse
|
41
|
Abstract
Using a recently described system to generate recombinants between avian leukosis viruses (ALV) and cellular neo mRNA (A.M. Hajjar and M.L. Linial, J. Virol. 67:3845-3853, 1993), we isolated a recombinant containing 7S L sequences. Analysis of this recombinant revealed that it most likely arose during reverse transcription of three copackaged RNAs: 7S L RNA, neo RNA, and ALV genomic RNA. Reverse transcription appears to have initiated on the 7S L RNA. A model for the generation of this recombinant is described.
Collapse
Affiliation(s)
- A M Hajjar
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98104
| | | |
Collapse
|
42
|
Hopkins N. High titers of retrovirus (vesicular stomatitis virus) pseudotypes, at last. Proc Natl Acad Sci U S A 1993; 90:8759-60. [PMID: 8415602 PMCID: PMC47438 DOI: 10.1073/pnas.90.19.8759] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- N Hopkins
- Center for Cancer Research, Massachusetts Institute of Technology, Cambridge 02139
| |
Collapse
|
43
|
Weldon RA, Wills JW. Characterization of a small (25-kilodalton) derivative of the Rous sarcoma virus Gag protein competent for particle release. J Virol 1993; 67:5550-61. [PMID: 8394460 PMCID: PMC237958 DOI: 10.1128/jvi.67.9.5550-5561.1993] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Retroviral Gag proteins have the ability to induce budding and particle release from the plasma membrane when expressed in the absence of all of the other virus-encoded components; however, the locations of the functional domains within the Gag protein that are important for this process are poorly understood. It was shown previously that the protease sequence of the Rous sarcoma virus (RSV) Gag protein can be replaced with a foreign polypeptide, iso-1-cytochrome c from a yeast, without disrupting particle assembly (R. A. Weldon, Jr., C. R. Erdie, M. G. Oliver, and J. W. Wills, J. Virol. 64:4169-4179, 1990). An unexpected product of the chimeric gag gene is a small, Gag-related protein named p25C. This product was of interest because of its high efficiency of packaging into particles. The goal of the experiments described here was to determine the mechanism by which p25C is synthesized and packaged into particles. The results demonstrate that it is not the product of proteolytic processing of the Gag-cytochrome precursor but is derived from an unusual spliced mRNA. cDNA clones of the spliced mRNA were obtained, and each expressed a product of approximately 25 kDa, designated p25M1, which was released into the growth medium in membrane-enclosed particles that were much lighter than authentic retrovirions as measured in sucrose density gradients. DNA sequencing revealed that the clones encode the first 180 of the 701 amino acids of the RSV Gag protein and no residues from iso-1-cytochrome c. This suggested that a domain in the carboxy-terminal half of Gag is important for the packaging of Gag proteins into dense arrays within the particles. In support of this hypothesis, particles of the correct density were obtained when a small segment from the carboxy terminus of the RSV Gag protein (residues 417 to 584) was included on the end of p25.
Collapse
Affiliation(s)
- R A Weldon
- Department of Microbiology and Immunology, Pennsylvania State University School of Medicine, Milton S. Hershey Medical Center, Hershey 17033
| | | |
Collapse
|
44
|
Abstract
A current model for the generation of transforming retroviruses proposes that read-through RNAs, containing both viral and cellular sequences, are copackaged with viral genomic RNA. It is, however, possible that a cellular mRNA is occasionally encapsidated into a retroviral particle, even though viral packaging sequences are absent. We have generated recombinant proviruses following copackaging of an avian leukosis viral genomic RNA and a neo-containing RNA completely devoid of retroviral sequences. In these studies, we used the packaging cell line SE21Q1b, which has the unique ability to randomly package cellular mRNA into retroviral particles. We describe 10 recombinants obtained following copackaging of nonhomologous RNAs. Our data show that recombination is not occurring at the DNA level in the parental SE21Q1b cells but is occurring at the RNA level, during reverse transcription. These data further suggest that reverse transcriptase can preferentially jump between templates at short stretches of homology in otherwise unrelated RNAs. We conclude that retroviral sequences are not required for packaged mRNA to be reverse transcribed and to be included in integrated proviruses.
Collapse
Affiliation(s)
- A M Hajjar
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98104
| | | |
Collapse
|
45
|
Aronoff R, Hajjar AM, Linial ML. Avian retroviral RNA encapsidation: reexamination of functional 5' RNA sequences and the role of nucleocapsid Cys-His motifs. J Virol 1993; 67:178-88. [PMID: 8380070 PMCID: PMC237350 DOI: 10.1128/jvi.67.1.178-188.1993] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
RNA packaging signals (psi) from the 5' ends of murine and avian retroviral genomes have previously been shown to direct encapsidation of heterologous mRNA into the retroviral virion. The avian 5' packaging region has now been further characterized, and we have defined a 270-nucleotide sequence, A psi, which is sufficient to direct packaging of heterologous RNA. Identification of the A psi sequence suggests that several retroviral cis-acting sequences contained in psi+ (the primer binding site, the putative dimer linkage sequence, and the splice donor site) are dispensable for specific RNA encapsidation. Subgenomic env mRNA is not efficiently encapsidated into particles, even though the A psi sequence is present in this RNA. In contrast, spliced heterologous psi-containing RNA is packaged into virions as efficiently as unspliced species; thus splicing per se is not responsible for the failure of env mRNA to be encapsidated. We also found that an avian retroviral mutant deleted for both nucleocapsid Cys-His boxes retains the capacity to encapsidate RNA containing psi sequences, although this RNA is unstable and is thus difficult to detect in mature particles. Electron microscopy reveals that virions produced by this mutant lack a condensed core, which may allow the RNA to be accessible to nucleases.
Collapse
Affiliation(s)
- R Aronoff
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98104
| | | | | |
Collapse
|
46
|
Dunn MM, Olsen JC, Swanstrom R. Characterization of unintegrated retroviral DNA with long terminal repeat-associated cell-derived inserts. J Virol 1992; 66:5735-43. [PMID: 1382140 PMCID: PMC241448 DOI: 10.1128/jvi.66.10.5735-5743.1992] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We have used a replication-competent shuttle vector based on the genome of Rous sarcoma virus to characterize genomic rearrangements that occur during retrovirus replication. The strategy involved cloning circular DNA that was generated during an acute infection. While analyzing a class of retroviral DNA clones that are greater than full length, we found several clones which had acquired nonviral inserts in positions adjacent to the long terminal repeats (LTRs). There appear to be two distinct mechanisms leading to the incorporation of cellular sequences into these clones. Three of the molecules contain a cell-derived insert at the circle junction site between two LTR units. Two of these molecules appear to be the results of abortive integration attempts, because of which, in each case, one of the LTRs is missing 2 bases at its junction with the cell-derived insert. In the third clone, pNO220, the cellular sequences are flanked by an inappropriately placed copy of the tRNA primer-binding site on one side and a partial copy of the U3 sequence as part of the LTR on the other side. A fourth molecule we characterized, pMD96, has a single LTR with a U5-bounded deletion of viral sequences spanning gag and pol, with cell-derived sequences inserted at the site of the deletion; its origin may be related mechanistically to pNO220. Sequence analysis indicates that all of the cellular inserts were derived from the cell line used for the acute infection rather than from sequences carried into the cell as part of the virus particle. Northern (RNA) analysis of cellular RNA demonstrated that the cell-derived sequences of two clones, pNO220 and pMD96, were expressed as polyadenylated RNA in uninfected cells. One mechanism for the joining of viral and cellular sequences suggested by the structures of pNO220 and pMD96 is recombination occurring during viral DNA synthesis, with cellular RNA serving as the template for the acquisition of cellular sequences.
Collapse
Affiliation(s)
- M M Dunn
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill 27599-7295
| | | | | |
Collapse
|
47
|
Abstract
Site-directed mutagenesis has shown that the nucleocapsid (NC) protein of Rous sarcoma virus (RSV) is required for packaging and dimerization of viral RNA. However, it has not been possible to demonstrate, in vivo or in vitro, specific binding of viral RNA sequences by NC. To determine whether specific packaging of viral RNA is mediated by NC in vivo, we have constructed RSV mutants carrying sequences of Moloney murine leukemia virus (MoMuLV). Either the NC coding region alone, the psi RNA packaging sequence, or both the NC and psi sequences of MoMuLV were substituted for the corresponding regions of a full-length RSV clone to yield chimeric plasmid pAPrcMNC, pAPrc psi M, or pAPrcM psi M, respectively. In addition, a mutant of RSV in which the NC is completely deleted was tested as a control. Upon transfection, each of the chimeric mutants produced viral particles containing processed core proteins but were noninfectious. Thus, MoMuLV NC can replace RSV NC functionally in the assembly and release of mature virions but not in infectivity. Surprisingly, the full-deletion mutant showed a strong block in virus release, suggesting that NC is involved in virus assembly. Mutant PrcMNC packaged 50- to 100-fold less RSV RNA than did the wild type; in cotransfection experiments, MoMuLV RNA was preferentially packaged. This result suggests that the specific recognition of viral RNA during virus assembly involves, at least in part, the NC protein.
Collapse
Affiliation(s)
- P Dupraz
- Department of Molecular Biology, University of Geneva, Switzerland
| | | |
Collapse
|
48
|
Luban J, Alin KB, Bossolt KL, Humaran T, Goff SP. Genetic assay for multimerization of retroviral gag polyproteins. J Virol 1992; 66:5157-60. [PMID: 1629970 PMCID: PMC241396 DOI: 10.1128/jvi.66.8.5157-5160.1992] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We have established a genetic assay for the multimerization of retroviral gag polyproteins. This assay is based on the GAL4 two-hybrid system for studying protein-protein interactions (S. Fields and O. Song, Nature (London) 340:245-246, 1989). In our initial experiments, we generated Saccharomyces cerevisiae plasmids that separately express the GAL4 DNA-binding and GAL4 activation domains fused to the human immunodeficiency virus type 1 (HIV-1) gag polyprotein, Pr55gag. The coexpression of these two hybrid proteins in S. cerevisiae results in the association of the GAL4 domains and the potent activation of an integrated GAL4-responsive lacZ indicator gene. Similar results were obtained with plasmids encoding GAL4-Moloney murine leukemia virus (M-MuLV) gag polyprotein hybrid proteins. In contrast, the heterologous GAL4-HIV-1 gag and GAL4-M-MuLV gag fusion proteins were unable to interact with each other to induce lacZ expression. The results suggest that this yeast system provides a rapid and specific assay for the interactions of retroviral gag proteins that occur during virion assembly.
Collapse
Affiliation(s)
- J Luban
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York 10032
| | | | | | | | | |
Collapse
|
49
|
Harrison GP, Lever AM. The human immunodeficiency virus type 1 packaging signal and major splice donor region have a conserved stable secondary structure. J Virol 1992; 66:4144-53. [PMID: 1602537 PMCID: PMC241217 DOI: 10.1128/jvi.66.7.4144-4153.1992] [Citation(s) in RCA: 177] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Interaction of cis-acting RNA sequences with nucleocapsid proteins is one of the critical events leading to retroviral genomic RNA packaging. We have derived a potentially stable secondary structure for the packaging signal region of human immunodeficiency virus strain IIIB, using a combination of biochemical analysis and computer modelling. This region encompasses the major splice donor (SD), which is found in a highly structured conserved stem-loop. Comparison with other published human immunodeficiency virus type 1 sequences shows almost absolute nucleotide conservation in base-paired regions required to maintain this structure. Presently and previously described packaging-defective mutants would disrupt the structure. The structure depends on base pairing between nucleotide sequences 5' of the major SD which are common to both genomic and subgenomic RNAs and sequences 3' of SD which are unique to the unspliced RNA. This may explain how in retroviruses such as Rous sarcoma virus, mutations in regions common to genomic and subgenomic RNA might prevent packaging of the unspliced mRNA by disrupting a signal structure which can exist only in the genomic RNA species.
Collapse
Affiliation(s)
- G P Harrison
- University of Cambridge Department of Medicine, Addenbrooke's Hospital, Cambridge, United Kingdom
| | | |
Collapse
|
50
|
Anderson DJ, Lee P, Levine KL, Sang JS, Shah SA, Yang OO, Shank PR, Linial ML. Molecular cloning and characterization of the RNA packaging-defective retrovirus SE21Q1b. J Virol 1992; 66:204-16. [PMID: 1727484 PMCID: PMC238277 DOI: 10.1128/jvi.66.1.204-216.1992] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The nonconditional RNA packaging mutant SE21Q1b contains cis- and trans-acting defects which cause cellular mRNA, rather than viral genomic RNA, to be nonspecifically packaged into SE21Q1b viral particles. Using genomic libraries of the c-SE21Q1b quail cell line, we have been able to construct a molecular clone of the SE21Q1b provirus. Upon transfection into primary quail embryo fibroblasts, the SE21Q1b molecular clone is able to recapitulate the nonspecific RNA packaging phenotype of the c-SE21Q1b cell line. The RNA packaging phenotypes displayed by several SE21Q1b/avian sarcoma-leukemia virus hybrid provirus constructs have further indicated that sequences responsible for the altered RNA packaging phenotype of SE21Q1b are localized in the left third of the SE21Q1b proviral genome. DNA sequence analysis of this region has revealed that the 5' SE21Q1b deletion has removed 179 bp from the SE21Q1b left long terminal repeat and leader regions. Several differences were detected at the carboxyl terminus of the deduced SE21Q1b nucleocapsid protein sequence in comparison with that of Rous sarcoma virus PR-C. Results of site-directed oligonucleotide mutagenesis experiments indicate, however, that the presence of these residues in the nucleocapsid protein alone is not responsible for the decreased RNA packaging specificity of SE21Q1b.
Collapse
Affiliation(s)
- D J Anderson
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98104-2092
| | | | | | | | | | | | | | | |
Collapse
|