1
|
Ramisetty BCM, Sudhakari PA. Bacterial 'Grounded' Prophages: Hotspots for Genetic Renovation and Innovation. Front Genet 2019; 10:65. [PMID: 30809245 PMCID: PMC6379469 DOI: 10.3389/fgene.2019.00065] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 01/24/2019] [Indexed: 01/07/2023] Open
Abstract
Bacterial genomes are highly plastic allowing the generation of variants through mutations and acquisition of genetic information. The fittest variants are then selected by the econiche thereby allowing the bacterial adaptation and colonization of the habitat. Larger genomes, however, may impose metabolic burden and hence bacterial genomes are optimized by the loss of frivolous genetic information. The activity of temperate bacteriophages has acute consequences on the bacterial population as well as the bacterial genome through lytic and lysogenic cycles. Lysogeny is a selective advantage as the prophage provides immunity to the lysogen against secondary phage attack. Since the non-lysogens are eliminated by the lytic phages, lysogens multiply and colonize the habitat. Nevertheless, all lysogens have an imminent risk of lytic cycle activation and cell lysis. However, a mutation in the attachment sites or in the genes that encode the specific recombinase responsible for prophage excision could result in 'grounding' of the prophage. Since the lysogens with grounded prophage are immune to respective phage infection as well as dodge the induction of lytic cycle, we hypothesize that the selection of these mutant lysogens is favored relative to their normal lysogenic counterparts. These grounded prophages offer several advantages to the bacterial genome evolution through propensity for genetic variations including inversions, deletions, and insertions via horizontal gene transfer. We propose that the grounded prophages expedite bacterial genome evolution by acting as 'genetic buffer zones' thereby increasing the frequency as well as the diversity of variations on which natural selection favors the beneficial variants. The grounded prophages are also hotspots for horizontal gene transfer wherein several ecologically significant genes such as those involved in stress tolerance, antimicrobial resistance, and novel metabolic pathways, are integrated. Moreover, the high frequency of genetic changes within prophages also allows proportionate probability for the de novo genesis of genetic information. Through sequence analyses of well-characterized E. coli prophages we exemplify various roles of grounded prophages in E. coli ecology and evolution. Therefore, the temperate prophages are one of the most significant drivers of bacterial genome evolution and sites of biogenesis of genetic information.
Collapse
Affiliation(s)
- Bhaskar Chandra Mohan Ramisetty
- Laboratory of Molecular Biology and Evolution, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Pavithra Anantharaman Sudhakari
- Laboratory of Molecular Biology and Evolution, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| |
Collapse
|
2
|
Kolakowski AJ, Gardner JF. The N-terminus of IntDOT forms hydrophobic interactions during Holliday Junction resolution. Plasmid 2016; 87-88:10-16. [PMID: 27422335 DOI: 10.1016/j.plasmid.2016.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 07/08/2016] [Accepted: 07/11/2016] [Indexed: 11/17/2022]
Abstract
DOT Integrase (IntDOT) is a member of the tyrosine recombinase family. It catalyzes the integration and excision reactions of an integrative and conjugative element (ICE) called CTnDOT. Like other tyrosine recombinases, the integration reaction proceeds by two sets of strand exchanges between the attDOT site on CTnDOT and an attB site in the host chromosome. The strand exchanges occur seven bases apart and define an overlap region. After the first strand exchanges a Holliday Junction (HJ) intermediate is formed. Previous work showed that a valine (V95) in a predicted alpha helix in the N-terminus of IntDOT is required for resolution of HJs to substrates and products. We have identified two additional hydrophobic residues in the helix (A92 and F99) that are involved in resolution of HJs. IntDOT proteins with substitutions at these residues form aberrant complexes in an electrophoretic mobility shift assay. We propose that these three residues participate in hydrophobic interactions that are involved in forming higher-order complexes and resolution of HJs.
Collapse
Affiliation(s)
- Adam J Kolakowski
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| | - Jeffrey F Gardner
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
3
|
Abstract
Bacteroides species are one of the most prevalent groups of bacteria present in the human colon. Many strains carry large, integrated elements including integrative and conjugative elements (ICEs). One such ICE is CTnDOT, which is 65 kb in size and encodes resistances to tetracycline and erythromycin. CTnDOT has been increasing in prevalence in Bacteroides spp., and is now found in greater than 80% of natural isolates. In recent years, CTnDOT has been implicated in the spread of antibiotic resistance among gut microbiota. Interestingly, the excision and transfer of CTnDOT is stimulated in the presence of tetracycline. The tyrosine recombinase IntDOT catalyzes the integration and excision reactions of CTnDOT. Unlike the well-characterized lambda Int, IntDOT tolerates heterology in the overlap region between the sites of cleavage and strand exchange. IntDOT also appears to have a different arrangement of active site catalytic residues. It is missing one of the arginine residues that is conserved in other tyrosine recombinases. The excision reaction of CTnDOT is complex, involving excision proteins Xis2c, Xis2d, and Exc, as well as IntDOT and a Bacteroides host factor. Xis2c and Xis2d are small, basic proteins like other recombination directionality factors (RDFs). Exc is a topoisomerase; however, the topoisomerase function is not required for the excision reaction. Exc has been shown to stimulate excision frequencies when there are mismatches in the overlap regions, suggesting that it may play a role in resolving Holliday junctions (HJs) containing heterology. Work is currently under way to elucidate the complex interactions involved with the formation of the CTnDOT excisive intasomes.
Collapse
|
4
|
Abstract
NBU1 is a mobilizable transposon found in Bacteroides spp. Mobilizable transposons require gene products from coresident conjugative transposons for excision and transfer to recipient cells. The integration of NBU1 requires IntN1, which has been identified as a tyrosine recombinase, as well as Bacteroides host factor BHFa. Excision of NBU1 is a more complicated process, involving five element-encoded proteins (IntN1, Orf2, Orf2x, Orf3, and PrmN1) as well as a Bacteroides host factor and a cis-acting DNA sequence. Little has been known about what role the proteins play in excision, although IntN1 and Orf2x have been shown to be the only proteins absolutely required for detectable excision. To determine where IntN1 and Orf2x bind during the excision of NBU1, both proteins were partially purified and tested in DNase I footprinting experiments with the excisive attachment sites attL and attR. The results demonstrate that IntN1 binds to four core-type sites that flank the region of cleavage and strand exchange, as well as six arm-type sites. A unique feature of the system is the location of DR2a and DR2b arm-type sites immediately downstream of the attL core. The DR1a, DR1b, DR3a, and DR3b arm-type sites were shown to be required for in vitro integration of NBU1. In addition, we have identified one Orf2x binding site (O1) on attL as well as a dA+dT-rich upstream element that is required for Orf2x interactions with O1.
Collapse
|
5
|
Abstract
Integrative and conjugative elements (ICEs), formerly called conjugative transposons, have been implicated in the proliferation of antibiotic resistance genes. CTnDOT is an extensively studied ICE found in Bacteroides spp. In addition to carrying resistance genes to both erythromycin and tetracycline, CTnDOT carries a gene that encodes a tyrosine recombinase called IntDOT that catalyzes integration into and excision out of the bacterial host chromosome. CTnDOT integrates into one of several known attB sites in the bacterial chromosome that consists of a pair of inverted repeat core sites called B and B' in attB. The attDOT site contains the core sites and D and D'. These sites flank the overlap regions where strand exchanges occur. A notable feature of all known attB sites is the conservation of the B core site sequence, which is also found in the D core site of attDOT. In this study, we used a mutational analysis to establish the importance of this conserved sequence for integration and characterize the interaction of IntDOT with individual base pairs. We identified important T-A base pairs at position -5 in the B and D core sites and position +5 in the poorly conserved B' core site that are important for integrative recombination. Base analog studies suggest that IntDOT may make specific contacts with the A residues in the major groove at positions -5 and +5. IntDOT interaction with the A at position -5 in the B core site is required for the first strand exchange.
Collapse
|
6
|
Resolution of Holliday junction recombination intermediates by wild-type and mutant IntDOT proteins. J Bacteriol 2011; 193:1351-8. [PMID: 21216992 DOI: 10.1128/jb.01465-10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CTnDOT encodes an integrase that is a member of the tyrosine recombinase family. The recombination reaction proceeds by sequential sets of genetic exchanges between the attDOT site in CTnDOT and an attB site in the chromosome. The exchanges are separated by 7 base pairs in each site. Unlike most tyrosine recombinases, IntDOT exchanges sites that contain different DNA sequences between the exchange sites to generate Holliday junctions (HJs) that contain mismatched bases. We demonstrate that IntDOT resolves synthetic HJs in vitro. Holliday junctions that contain identical sequences between the exchange sites are resolved into both substrates and products, while HJs that contain mismatches are resolved only to substrates. This result implies that resolution of HJs to products requires the formation of a higher-order nucleoprotein complex with natural sites containing IntDOT. We also found that proteins with substitutions of residues (V95, K94, and K96) in a putative alpha helix at the junction of the N and CB domains (coupler region) were defective in resolving HJs. Mutational analysis of charged residues in the coupler and the N terminus of the protein did not provide evidence for a charge interaction between the regions of the protein. V95 may participate in a hydrophobic interaction with another region of IntDOT.
Collapse
|
7
|
Panis G, Duverger Y, Courvoisier-Dezord E, Champ S, Talla E, Ansaldi M. Tight regulation of the intS gene of the KplE1 prophage: a new paradigm for integrase gene regulation. PLoS Genet 2010; 6. [PMID: 20949106 PMCID: PMC2951348 DOI: 10.1371/journal.pgen.1001149] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Accepted: 09/02/2010] [Indexed: 11/18/2022] Open
Abstract
Temperate phages have the ability to maintain their genome in their host, a process called lysogeny. For most, passive replication of the phage genome relies on integration into the host's chromosome and becoming a prophage. Prophages remain silent in the absence of stress and replicate passively within their host genome. However, when stressful conditions occur, a prophage excises itself and resumes the viral cycle. Integration and excision of phage genomes are mediated by regulated site-specific recombination catalyzed by tyrosine and serine recombinases. In the KplE1 prophage, site-specific recombination is mediated by the IntS integrase and the TorI recombination directionality factor (RDF). We previously described a sub-family of temperate phages that is characterized by an unusual organization of the recombination module. Consequently, the attL recombination region overlaps with the integrase promoter, and the integrase and RDF genes do not share a common activated promoter upon lytic induction as in the lambda prophage. In this study, we show that the intS gene is tightly regulated by its own product as well as by the TorI RDF protein. In silico analysis revealed that overlap of the attL region with the integrase promoter is widely encountered in prophages present in prokaryotic genomes, suggesting a general occurrence of negatively autoregulated integrase genes. The prediction that these integrase genes are negatively autoregulated was biologically assessed by studying the regulation of several integrase genes from two different Escherichia coli strains. Our results suggest that the majority of tRNA-associated integrase genes in prokaryotic genomes could be autoregulated and that this might be correlated with the recombination efficiency as in KplE1. The consequences of this unprecedented regulation for excessive recombination are discussed.
Collapse
Affiliation(s)
- Gaël Panis
- Laboratoire de Chimie Bactérienne, CNRS UPR9043, Institut de Microbiologie de la Méditerranée, Marseille, France
- Aix-Marseille Université, Marseille, France
| | - Yohann Duverger
- Laboratoire de Chimie Bactérienne, CNRS UPR9043, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Elise Courvoisier-Dezord
- Laboratoire de Chimie Bactérienne, CNRS UPR9043, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Stéphanie Champ
- Laboratoire de Chimie Bactérienne, CNRS UPR9043, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Emmanuel Talla
- Laboratoire de Chimie Bactérienne, CNRS UPR9043, Institut de Microbiologie de la Méditerranée, Marseille, France
- Aix-Marseille Université, Marseille, France
- * E-mail: (MA); (ET)
| | - Mireille Ansaldi
- Laboratoire de Chimie Bactérienne, CNRS UPR9043, Institut de Microbiologie de la Méditerranée, Marseille, France
- Aix-Marseille Université, Marseille, France
- * E-mail: (MA); (ET)
| |
Collapse
|
8
|
CTnDOT integrase interactions with attachment site DNA and control of directionality of the recombination reaction. J Bacteriol 2010; 192:3934-43. [PMID: 20511494 DOI: 10.1128/jb.00351-10] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
IntDOT is a tyrosine recombinase encoded by the conjugative transposon CTnDOT. The core binding (CB) and catalytic (CAT) domains of IntDOT interact with core-type sites adjacent to the regions of strand exchange, while the N-terminal arm binding (N) domain interacts with arm-type sites distal to the core. Previous footprinting experiments identified five arm-type sites, but how the arm-type sites participate in the integration and excision of CTnDOT was not known. In vitro integration assays with substrates containing arm-type site mutants demonstrated that attDOT sequences containing mutations in the L1 arm-type site or in the R1 and R2 or R1 and R2' arm-type sites were dramatically defective in integration. Substrates containing mutations in the L1 and R1 arm-type sites showed a 10- to 20-fold decrease in detectable in vitro excision, but introduction of multiple arm-type site mutations in attR did not have an effect on the excision frequency. A sixth arm-type site, the R1' site, was also identified and shown to be required for integration and important for efficient excision. These results suggest that intramolecular IntDOT interactions are required for integration, while the actions of accessory factors are more important for excision. Gel shift assays performed in the presence of core- and arm-type site DNAs showed that IntDOT affinity for the attDOT core was enhanced when IntDOT was simultaneously bound to arm-type site DNA.
Collapse
|
9
|
Fadeev EA, Sam MD, Clubb RT. NMR structure of the amino-terminal domain of the lambda integrase protein in complex with DNA: immobilization of a flexible tail facilitates beta-sheet recognition of the major groove. J Mol Biol 2009; 388:682-90. [PMID: 19324050 DOI: 10.1016/j.jmb.2009.03.041] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Revised: 03/12/2009] [Accepted: 03/13/2009] [Indexed: 10/21/2022]
Abstract
The integrase protein (Int) from bacteriophage lambda is the archetypal member of the tyrosine recombinase family, a large group of enzymes that rearrange DNA in all domains of life. Int catalyzes the insertion and excision of the viral genome into and out of the Escherichia coli chromosome. Recombination transpires within higher-order nucleoprotein complexes that form when its amino-terminal domain binds to arm-type DNA sequences that are located distal to the site of strand exchange. Arm-site binding by Int is essential for catalysis, as it promotes Int-mediated bridge structures that stabilize the recombination machinery. We have elucidated how Int is able to sequence specifically recognize the arm-type site sequence by determining the solution structure of its amino-terminal domain (Int(N), residues Met1 to Leu64) in complex with its P'2 DNA binding site. Previous studies have shown that Int(N) adopts a rare monomeric DNA binding fold that consists of a three-stranded antiparallel beta-sheet that is packed against a carboxy-terminal alpha helix. A low-resolution crystal structure of the full-length protein also revealed that the sheet is inserted into the major groove of the arm-type site. The solution structure presented here reveals how Int(N) specifically recognizes the arm-type site sequence. A novel feature of the new solution structure is the use of an 11-residue tail that is located at the amino terminus. DNA binding induces the folding of a 3(10) helix in the tail that projects the amino terminus of the protein deep into the minor groove for stabilizing DNA contacts. This finding reveals the structural basis for the observation that the "unstructured" amino terminus is required for recombination.
Collapse
Affiliation(s)
- Evgeny A Fadeev
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-1570, USA
| | | | | |
Collapse
|
10
|
Dichiara JM, Mattis AN, Gardner JF. IntDOT interactions with core- and arm-type sites of the conjugative transposon CTnDOT. J Bacteriol 2007; 189:2692-701. [PMID: 17277054 PMCID: PMC1855790 DOI: 10.1128/jb.01796-06] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CTnDOT is a Bacteroides conjugative transposon (CTn) that has facilitated the spread of antibiotic resistances among bacteria in the human gut in recent years. Although the integrase encoded by CTnDOT (IntDOT) carries the C-terminal set of conserved amino acids that is characteristic of the tyrosine family of recombinases, the reaction it catalyzes involves a novel step that creates a short region of heterology at the joined ends of the element during recombination. Also, in contrast to tyrosine recombinases, IntDOT catalyzes a reaction that is not site specific. To determine what types of contacts IntDOT makes with the DNA during excision and integration, we first developed an agarose gel-based assay for CTnDOT recombination, which facilitated the purification of the native IntDOT protein. The partially purified IntDOT was then used for DNase I footprinting analysis of the integration site attDOT and the excision sites attL and attR. Our results indicate that CTnDOT has five or six arm sites that are likely to be involved in forming higher-order nucleoprotein complexes necessary for synapsis. In addition, there are four core sites that flank the sites of strand exchange during recombination. Thus, despite the fact that the reaction catalyzed by IntDOT appears to be different from that typically catalyzed by tyrosine recombinases, the protein-DNA interactions required for higher-order structures and recombination appear to be similar.
Collapse
Affiliation(s)
- Jeanne M Dichiara
- Department of Microbiology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave., Urbana, IL 61801, USA
| | | | | |
Collapse
|
11
|
Edgar R, Biek D, Yarmolinsky M. P1 plasmid partition: in vivo evidence for the ParA- and ParB-mediated formation of an anchored parS complex in the absence of a partner parS. Mol Microbiol 2006; 59:276-87. [PMID: 16359334 DOI: 10.1111/j.1365-2958.2005.04933.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ParA and ParB proteins and cis-acting site, parS, are required to partition plasmid P1 faithfully to daughter cells. The process may initiate from plasmids paired by ParB at which recruited ParA then acts to effect the separation. We previously reported evidence for ParB-mediated pairing of parS sites on plasmids in the absence of ParA. In DNA gyrase-inhibited cells, the pairing prevented diffusion of transcription-generated positive supercoils. This supercoil trapping was almost entirely in plasmid dimers, where the location of the parS sites in cis facilitated their pairing. Here we show that the addition of ParA blocked supercoil diffusion also in plasmid monomers. The possibility that this result is attributed to an enhancement by ParA of ParB-mediated pairing in trans is consistent with our finding that ParA appeared to partially suppress the pairing defect of two mutant ParB proteins. However, enhanced pairing alone could not account for the diffusion barrier in plasmid monomers; it was manifest in monomers even when they were largely devoid of partners in the same cell. Apparently, ParA altered the ParB-parS complex such that it could no longer swivel, most likely by anchoring it, a reaction of probable relevance to partition.
Collapse
Affiliation(s)
- Rotem Edgar
- Laboratory of Biochemistry, National Cancer Institute, NIH 37 Convent Drive, Bethesda, MD 20892-4255, USA
| | | | | |
Collapse
|
12
|
Biswas T, Aihara H, Radman-Livaja M, Filman D, Landy A, Ellenberger T. A structural basis for allosteric control of DNA recombination by lambda integrase. Nature 2005; 435:1059-66. [PMID: 15973401 PMCID: PMC1809751 DOI: 10.1038/nature03657] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2004] [Accepted: 04/15/2005] [Indexed: 11/09/2022]
Abstract
Site-specific DNA recombination is important for basic cellular functions including viral integration, control of gene expression, production of genetic diversity and segregation of newly replicated chromosomes, and is used by bacteriophage lambda to integrate or excise its genome into and out of the host chromosome. lambda recombination is carried out by the bacteriophage-encoded integrase protein (lambda-int) together with accessory DNA sites and associated bending proteins that allow regulation in response to cell physiology. Here we report the crystal structures of lambda-int in higher-order complexes with substrates and regulatory DNAs representing different intermediates along the reaction pathway. The structures show how the simultaneous binding of two separate domains of lambda-int to DNA facilitates synapsis and can specify the order of DNA strand cleavage and exchange. An intertwined layer of amino-terminal domains bound to accessory (arm) DNAs shapes the recombination complex in a way that suggests how arm binding shifts the reaction equilibrium in favour of recombinant products.
Collapse
Affiliation(s)
- Tapan Biswas
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
13
|
Lindenbaum M, Perkins E, Csonka E, Fleming E, Garcia L, Greene A, Gung L, Hadlaczky G, Lee E, Leung J, MacDonald N, Maxwell A, Mills K, Monteith D, Perez CF, Shellard J, Stewart S, Stodola T, Vandenborre D, Vanderbyl S, Ledebur HC. A mammalian artificial chromosome engineering system (ACE System) applicable to biopharmaceutical protein production, transgenesis and gene-based cell therapy. Nucleic Acids Res 2004; 32:e172. [PMID: 15585659 PMCID: PMC535698 DOI: 10.1093/nar/gnh169] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mammalian artificial chromosomes (MACs) provide a means to introduce large payloads of genetic information into the cell in an autonomously replicating, non-integrating format. Unique among MACs, the mammalian satellite DNA-based Artificial Chromosome Expression (ACE) can be reproducibly generated de novo in cell lines of different species and readily purified from the host cells' chromosomes. Purified mammalian ACEs can then be re-introduced into a variety of recipient cell lines where they have been stably maintained for extended periods in the absence of selective pressure. In order to extend the utility of ACEs, we have established the ACE System, a versatile and flexible platform for the reliable engineering of ACEs. The ACE System includes a Platform ACE, containing >50 recombination acceptor sites, that can carry single or multiple copies of genes of interest using specially designed targeting vectors (ATV) and a site-specific integrase (ACE Integrase). Using this approach, specific loading of one or two gene targets has been achieved in LMTK(-) and CHO cells. The use of the ACE System for biological engineering of eukaryotic cells, including mammalian cells, with applications in biopharmaceutical production, transgenesis and gene-based cell therapy is discussed.
Collapse
Affiliation(s)
- Michael Lindenbaum
- Chromos Molecular Systems, Inc., 8081 Lougheed Highway, Burnaby, BC, Canada V5A 1W9
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Phage integrases are enzymes that mediate unidirectional site-specific recombination between two DNA recognition sequences, the phage attachment site, attP, and the bacterial attachment site, attB. Integrases may be grouped into two major families, the tyrosine recombinases and the serine recombinases, based on their mode of catalysis. Tyrosine family integrases, such as lambda integrase, utilize a catalytic tyrosine to mediate strand cleavage, tend to recognize longer attP sequences, and require other proteins encoded by the phage or the host bacteria. Phage integrases from the serine family are larger, use a catalytic serine for strand cleavage, recognize shorter attP sequences, and do not require host cofactors. Phage integrases mediate efficient site-specific recombination between two different sequences that are relatively short, yet long enough to be specific on a genomic scale. These properties give phage integrases growing importance for the genetic manipulation of living eukaryotic cells, especially those with large genomes such as mammals and most plants, for which there are few tools for precise manipulation of the genome. Integrases of the serine family have been shown to work efficiently in mammalian cells, mediating efficient integration at introduced att sites or native sequences that have partial identity to att sites. This reaction has applications in areas such as gene therapy, construction of transgenic organisms, and manipulation of cell lines. Directed evolution can be used to increase further the affinity of an integrase for a particular native sequence, opening up additional applications for genomic modification.
Collapse
Affiliation(s)
- Amy C Groth
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305-5120, USA
| | | |
Collapse
|
15
|
Aihara H, Kwon HJ, Nunes-Düby SE, Landy A, Ellenberger T. A conformational switch controls the DNA cleavage activity of lambda integrase. Mol Cell 2003; 12:187-98. [PMID: 12887904 DOI: 10.1016/s1097-2765(03)00268-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The bacteriophage lambda integrase protein (lambda Int) belongs to a family of tyrosine recombinases that catalyze DNA rearrangements. We have determined a crystal structure of lambda Int complexed with a cleaved DNA substrate through a covalent phosphotyrosine bond. In comparison to an earlier unliganded structure, we observe a drastic conformational change in DNA-bound lambda Int that brings Tyr342 into the active site for cleavage of the DNA in cis. A flexible linker connects the central and the catalytic domains, allowing the protein to encircle the DNA. Binding specificity is achieved through direct interactions with the DNA and indirect readout of the flexibility of the att site. The conformational switch that activates lambda Int for DNA cleavage exposes the C-terminal 8 residues for interactions with a neighboring Int molecule. The protein interactions mediated by lambda Int's C-terminal tail offer a mechanism for the allosteric control of cleavage activity in higher order lambda Int complexes.
Collapse
Affiliation(s)
- Hideki Aihara
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
16
|
Gyohda A, Furuya N, Kogure N, Komano T. Sequence-specific and non-specific binding of the Rci protein to the asymmetric recombination sites of the R64 shufflon. J Mol Biol 2002; 318:975-83. [PMID: 12054795 DOI: 10.1016/s0022-2836(02)00195-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Specific cleavages within the shufflon-specific recombination site of plasmid R64 were detected by primer extension when a DNA fragment carrying the recombination site was incubated with the shufflon-specific Rci recombinase. Rci-dependent cleavages occurred in the form of a 5' protruding 7 bp staggered cut, suggesting that DNA cleavage and rejoining in the shufflon system take place at these positions. As a result, shufflon crossover sites were designated as sfx sequences consisting of a central 7 bp spacer sequence, and left and right 12 bp arms. R64 sfx sequences are unique among various site-specific recombination sites, since only the spacer sequence and the right arm sequence are conserved among various R64 sfxs, whereas the left arm sequence is not conserved and is not related to the right arm sequence. From nuclease protection analyses, Rci protein was shown to bind to entire R64 and artificial sfx sequences, suggesting that one Rci molecule binds to the conserved sfx right arm in a sequence-specific manner and the second to the sfx left arm in a non-specific manner. The sfx left arm sequences as well as the right arm sequences were shown to determine affinity to Rci and subsequently inversion frequency. Asymmetry of the sfx sequence may be the reason why Rci protein acts only on the inverted sfx sequences.
Collapse
Affiliation(s)
- Atsuko Gyohda
- Department of Biology, Tokyo Metropolitan University, Minamiohsawa, Hachioji, 192-0397, Japan
| | | | | | | |
Collapse
|
17
|
Sarkar D, Radman-Livaja M, Landy A. The small DNA binding domain of lambda integrase is a context-sensitive modulator of recombinase functions. EMBO J 2001; 20:1203-12. [PMID: 11230143 PMCID: PMC145476 DOI: 10.1093/emboj/20.5.1203] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
lambda Integrase (Int) has the distinctive ability to bridge two different and well separated DNA sequences. This heterobivalent DNA binding is facilitated by accessory DNA bending proteins that bring flanking Int sites into proximity. The regulation of lambda recombination has long been perceived as a structural phenomenon based upon the accessory protein-dependent Int bridges between high-affinity arm-type (bound by the small N-terminal domain) and low-affinity core-type DNA sites (bound by the large C-terminal domain). We show here that the N-terminal domain is not merely a guide for the proper positioning of Int protomers, but is also a context-sensitive modulator of recombinase functions. In full-length Int, it inhibits C-terminal domain binding and cleavage at the core sites. Surprisingly, its presence as a separate molecule stimulates the C-terminal domain functions. The inhibition in full-length Int is reversed or overcome in the presence of arm-type oligonucleotides, which form specific complexes with Int and core-type DNA. We consider how these results might influence models and experiments pertaining to the large family of heterobivalent recombinases.
Collapse
MESH Headings
- Bacteriophage lambda/enzymology
- Binding Sites
- DNA Topoisomerases, Type I/chemistry
- DNA Topoisomerases, Type I/metabolism
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Bacterial/metabolism
- DNA, Superhelical/chemistry
- DNA, Superhelical/genetics
- DNA, Superhelical/metabolism
- DNA-Binding Proteins/antagonists & inhibitors
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/metabolism
- Electrophoresis, Agar Gel
- Integrases/chemistry
- Integrases/metabolism
- Nucleic Acid Conformation
- Oligodeoxyribonucleotides
- Peptide Fragments
- Protein Binding
- Protein Structure, Tertiary
- Recombinant Proteins
- Recombination, Genetic
- Substrate Specificity
- Topoisomerase I Inhibitors
Collapse
Affiliation(s)
| | | | - Arthur Landy
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Box G-J360, Providence, RI 02912, USA
Corresponding author e-mail:
| |
Collapse
|
18
|
Weisberg RA, Gottesmann ME, Hendrix RW, Little JW. Family values in the age of genomics: comparative analyses of temperate bacteriophage HK022. Annu Rev Genet 2000; 33:565-602. [PMID: 10690418 DOI: 10.1146/annurev.genet.33.1.565] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
HK022 is a temperate coliphage related to phage lambda. Its chromosome has been completely sequenced, and several aspects of its life cycle have been intensively studied. In the overall arrangement, expression, and function of most of its genes, HK022 broadly resembles lambda and other members of the lambda family. Upon closer view, significant differences emerge. The differences reveal alternative strategies used by related phages to cope with similar problems and illuminate previously unknown regulatory and structural motifs. HK022 prophages protect lysogens from superinfection by producing a sequence-specific RNA binding protein that prematurely terminates nascent transcripts of infecting phage. It uses a novel RNA-based mechanism to antiterminate its own early transcription. The HK022 protein shell is strengthened by a complex pattern of covalent subunit interlinking to form a unitary structure that resembles chain-mail armour. Its integrase and repressor proteins are similar to those of lambda, but the differences provide insights into the evolution of biological specificity and the elements needed for construction of a stable genetic switch.
Collapse
Affiliation(s)
- R A Weisberg
- Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-2785, USA.
| | | | | | | |
Collapse
|
19
|
Tirumalai RS, Kwon HJ, Cardente EH, Ellenberger T, Landy A. Recognition of core-type DNA sites by lambda integrase. J Mol Biol 1998; 279:513-27. [PMID: 9641975 DOI: 10.1006/jmbi.1998.1786] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Escherichia coli phage lambda integrase (Int) is a 40 kilodalton, 356 amino acid residue protein, which belongs to the lambda Int family of site-specific recombinases. The amino-terminal domain (residues 1 to 64) of Int binds to "arm-type" DNA sites, distant from the sites of DNA cleavage. The carboxy-terminal fragment, termed C65 (residues 65 to 356), binds "core-type" DNA sites and catalyzes cleavage and ligation at these sites. It has been further divided into two smaller domains, encompassing residues 65 to 169 and 170 to 356, respectively. The latter has been characterized and its crystal structure has been determined. Although this domain catalyzes the cleavage and rejoining of DNA strands it, unexpectedly, does not form electrophorectically stable complexes with core-type DNA. Here we have investigated the critical features of lambda Int binding to core-type DNA sites; especially, the role of the central 65 to 169 domain. To eliminate the complexities arising from lambda Int's heterobivalency we studied Int C65, which was shown to be as competent as Int, in binding to, and cleaving, core-type sites. Zero-length UV crosslinking was used to show that Ala125 and Ala126 make close contact with bases in the core-type DNA. Modification by pyridoxal 5'-phosphate was used to identify Lys103 at the protein-DNA interface. Since both of the identified loci are in the central domain, it was cloned and purified and found to bind to core-type DNA autonomously and specifically. The synergistic roles of the catalytic and the central, or core-binding (CB), domains in the interaction with core-type DNA are discussed for (Int and related DNA recombinases.
Collapse
Affiliation(s)
- R S Tirumalai
- Department of Biology and Medicine, Brown University Providence, RI 02912, USA
| | | | | | | | | |
Collapse
|
20
|
Dorgai L, Sloan S, Weisberg RA. Recognition of core binding sites by bacteriophage integrases. J Mol Biol 1998; 277:1059-70. [PMID: 9571022 DOI: 10.1006/jmbi.1998.1642] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bacteriophage integrases promote recombination between DNA molecules that carry attachment sites. They are members of a large and widely distributed family of site-specific recombinases with diverse biological roles. The integrases of phages lambda and HK022 are closely related members of this family, but neither protein efficiently recombines the attachment sites of the other phage. The nucleotides responsible for this specificity difference are located close to the points of recombinational strand exchange, within an integrase binding motif called the extended core binding site. There are four imperfectly repeated copies of this motif in each set of phage attachment sites, but only two, B' and C, contain major specificity determinants. When these specificity determinants were replaced by the corresponding nucleotides from a site with the alternative specificity, the resulting mutant was recombined by both integrases. Thus, the determinants act by impeding recombination promoted by the non-cognate integrase. We found that identical nucleotide substitutions within different core site copies had different effects on recombination, suggesting that integrase does not recognize each of the extended core binding sites in the same way. Finally, substitution at several positions in lambda integrase with the corresponding HK022-specific amino acids prevents recombination of lambda attachment sites, and this defect can be suppressed in an allele-specific manner by appropriate substitutions of HK022-specific nucleotides in the extended core binding sites.
Collapse
Affiliation(s)
- L Dorgai
- Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
21
|
Huan PT, Bastin DA, Whittle BL, Lindberg AA, Verma NK. Molecular characterization of the genes involved in O-antigen modification, attachment, integration and excision in Shigella flexneri bacteriophage SfV. Gene 1997; 195:217-27. [PMID: 9305767 DOI: 10.1016/s0378-1119(97)00143-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Bacteriophage SfV is a temperate phage of Shigella flexneri responsible for converting serotype Y (3,4) to serotype 5a (V; 3,4) through its glucosyl transferase gene. The glucosyl transferase (gtr) gene of SfV has been cloned and shown to partially convert S. flexneri serotype Y to serotype 5a. In this study, we found that the serotype-converting region of SfV was approximately 2.5 kb in length containing three continuous ORFs. The recombinant strain carrying the three complete ORFs expressed the type V and group antigen 3,4, both indistinguishable from that of S. flexneri 5a wild-type strain. The interruption of orf5 or orf6 gave partial conversion in the S. flexneri recombinant strain indicated by the incomplete replacement of group antigen 3,4. The region adjacent to the serotype-conversion genes was found to be identical to the attP-int-xis region of phage P22. Altogether, an approximately 2.2-kb sequence covering a portion of the serotype-conversion (approximately 500 nt)-attP-int-xis regions of SfV was remarkably similar to that of P22.
Collapse
Affiliation(s)
- P T Huan
- Division of Biochemistry and Molecular Biology, School of Life Sciences, The Australian National University, Canberra
| | | | | | | | | |
Collapse
|
22
|
Numrych TE, Gardner JF. Characterizing protein-nucleic acid interactions with challenge phages. ACTA ACUST UNITED AC 1995. [DOI: 10.1016/s1044-5773(05)80004-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
23
|
Benson N, Adams C, Youderian P. Genetic selection for mutations that impair the co-operative binding of lambda repressor. Mol Microbiol 1994; 11:567-79. [PMID: 8152379 DOI: 10.1111/j.1365-2958.1994.tb00337.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Bacteriophage lambda repressor binds co-operatively to adjacent pairs of DNA target sites. A novel combination of positive genetic selections, involving two different operon fusions derived from P22 challenge phages, was used to isolate mutant lambda repressors that have lost the ability to bind co-operatively to tandem sites yet retain the ability to bind a strong, single site. These cb (co-operative binding) mutations result in 10 different amino acid changes, which define eight residues in the carboxyl-terminus of repressor. Because challenge phage derivatives may be applied to study essentially any specific protein-DNA interaction, analogous combinations of genetic selections may be used to explore the ways that a variety of proteins interact to assemble regulatory complexes.
Collapse
Affiliation(s)
- N Benson
- Department of Biological Sciences, University of Southern California, Los Angeles 90089-1481
| | | | | |
Collapse
|
24
|
Bell-Pedersen D, Quirk SM, Bryk M, Belfort M. I-TevI, the endonuclease encoded by the mobile td intron, recognizes binding and cleavage domains on its DNA target. Proc Natl Acad Sci U S A 1991; 88:7719-23. [PMID: 1881913 PMCID: PMC52374 DOI: 10.1073/pnas.88.17.7719] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Mobility of the phage T4 td intron depends on activity of an intron-encoded endonuclease (I-TevI), which cleaves a homologous intronless (delta In) target gene. The double-strand break initiates a recombination event that leads to intron transfer. We found previously that I-TevI cleaves td delta In target DNA 23-26 nucleotides upstream of the intron insertion site. DNase I-footprinting experiments and gel-shift assays indicate that I-TevI makes primary contacts around the intron insertion site. A synthetic DNA duplex spanning the insertion site but lacking the cleavage site was shown to bind I-TevI specifically, and when cloned, to direct cleavage into vector sequences. The behavior of the cloned duplex and that of deletion and insertion mutants support a primary role for sequences surrounding the insertion site in directing I-TevI binding, conferring cleavage ability, and determining cleavage polarity. On the other hand, sequences around the cleavage site were shown to influence cleavage efficiency and cut-site selection. The role of cleavage-site sequences in determining cleavage distance argues against a strict "ruler" mechanism for cleavage by I-TevI. The complex nature of the homing site recognized by this unusual type of endonuclease is considered in the context of intron spread.
Collapse
Affiliation(s)
- D Bell-Pedersen
- Molecular Genetics Program, Wadsworth Center for Laboratories and Research, New York State Department of Health, Albany 12201-0509
| | | | | | | |
Collapse
|
25
|
Heichman KA, Johnson RC. The Hin invertasome: protein-mediated joining of distant recombination sites at the enhancer. Science 1990; 249:511-7. [PMID: 2166334 DOI: 10.1126/science.2166334] [Citation(s) in RCA: 129] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The Hin protein binds to two cis-acting recombination sites and catalyzes a site-specific DNA inversion reaction that regulates the expression of flagellin genes in Salmonella. In addition to the Hin protein and the two recombination sites that flank the invertible segment, a third cis-acting recombinational enhancer sequence and the Fis protein, which binds to two sites within the enhancer, are required for efficient recombination. Intermediates of this reaction were trapped during DNA strand cleavage and analyzed by gel electrophoresis and electron microscopy in order to determine their structure and composition. The analyses demonstrate that the recombination sites are assembled at the enhancer into a complex nucleo-protein structure (termed the invertasome) with the looping of the three segments of intervening DNA. Antibody studies indicated that Fis physically interacts with Hin and that both proteins are intimately associated with the invertasome. In order to achieve this protein-protein interaction and assemble the invertasome, the substrate DNA must be supercoiled.
Collapse
Affiliation(s)
- K A Heichman
- Department of Biological Chemistry, UCLA School of Medicine
| | | |
Collapse
|
26
|
Numrych TE, Gumport RI, Gardner JF. A comparison of the effects of single-base and triple-base changes in the integrase arm-type binding sites on the site-specific recombination of bacteriophage lambda. Nucleic Acids Res 1990; 18:3953-9. [PMID: 2142765 PMCID: PMC331098 DOI: 10.1093/nar/18.13.3953] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Triple-base changes were made in each of the five Integrase (Int) arm-type binding sites of bacteriophage lambda. These triple changes, called ten mutants, were compared with single-base changes (hen mutants) for their effects on integrative and excisive recombination. The presence of ten or hen mutations in the P1, P'2, or P'3 sites inhibited integration, but the ten P'3 mutant was 10-fold more defective than the analogous hen mutant. The results with these mutants suggest that the P1, P'2, P'3, and possibly the P'1 sites are required for integration. In wild-type E. coli, the ten P'1 mutant reduced the frequency of excision 5-fold, whereas the hen P'1 mutant had no effect. The presence of ten mutations in the P2, P'1, or P'2 sites inhibited lambda excision in an E. coli strain deficient in the production of FIS, while hen mutations in the P2 and P'2 sites had little or no effect. The results with the ten mutants suggest that the P2, P'1, and P'2 sites are required for excision. The differences in the severity of the effects between the ten and hen mutations may be due to the inability of cooperative interactions among Int, IHF, Xis, and FIS to overcome the disruption of Int binding to sites with triple-base changes compared to sites with single-base changes.
Collapse
Affiliation(s)
- T E Numrych
- Department of Microbiology, University of Illinois, Urbana 61801
| | | | | |
Collapse
|
27
|
Sherman PA, Fyfe JA. Human immunodeficiency virus integration protein expressed in Escherichia coli possesses selective DNA cleaving activity. Proc Natl Acad Sci U S A 1990; 87:5119-23. [PMID: 2164223 PMCID: PMC54273 DOI: 10.1073/pnas.87.13.5119] [Citation(s) in RCA: 278] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The human immunodeficiency virus (HIV) integration protein, a potential target for selective antiviral therapy, was expressed in Escherichia coli. The purified protein, free of detectable contaminating endonucleases, selectively cleaved double-stranded DNA oligonucleotides that mimic the U3 and the U5 termini of linear HIV DNA. Two nucleotides were removed from the 3' ends of both the U5 plus strand and the U3 minus strand; in both cases, cleavage was adjacent to a conserved CA dinucleotide. The reaction was metal-ion dependent, with a preference for Mn2+ over Mg2+. Reaction selectivity was further demonstrated by the lack of cleavage of an HIV U5 substrate on the complementary (minus) strand, an analogous substrate that mimics the U3 terminus of an avian retrovirus, and an HIV U5 substrate in which the conserved CA dinucleotide was replaced with a TA dinucleotide. Such an integration protein-mediated cleavage reaction is expected to occur as part of the integration event in the retroviral life cycle, in which a double-stranded DNA copy of the viral RNA genome is inserted into the host cell DNA.
Collapse
Affiliation(s)
- P A Sherman
- Experimental Therapy, Wellcome Research Laboratories, Research Triangle Park, NC 27709
| | | |
Collapse
|
28
|
Dempsey WB, Fee BE. Integration host factor affects expression of two genes at the conjugal transfer origin of plasmid R100. Mol Microbiol 1990; 4:1019-28. [PMID: 2215210 DOI: 10.1111/j.1365-2958.1990.tb00674.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Integration host factor (IHF) binds to two sites near the origin of transfer of the conjugative antibiotic resistance plasmid, R100. DNase I footprinting shows that one site is immediately adjacent to oriT and the gene X promoter, and another is adjacent to the traM promoter. A third site, known only from retardation gels, is near the traJ promoter. The relative promoter activities of genes X, traJ and traM are reduced in himA mutants (IHF-), as measured by chloramphenicol-resistance assays. Transcript analyses by Northern blots showed a reduction in size of the principal gene X and traJ transcripts in the absence of IHF.
Collapse
Affiliation(s)
- W B Dempsey
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas
| | | |
Collapse
|
29
|
Abstract
An overview of the chemical and photochemical probes which over the past ten years have been used in studies of DNA/ligand complexes and of non-B-form DNA conformations is presented with emphasis on the chemical reactions of the probes with DNA and on their present 'use-profile'. The chemical probes include: dimethyl sulfate, ethyl nitroso urea, diethyl pyrocarbonate, osmium tetroxide, permanganate, aldehydes, methidiumpropyl-EDTA-Fell (MPE), phenanthroline metal complexes and EDTA/FeII. The photochemical probes that have been used include: psoralens, UVB, acridines and uranyl salts. The biological systems analysed by use of these probes are reviewed by tabulation.
Collapse
Affiliation(s)
- P E Nielsen
- Department of Biochemistry B, Panum Institute, University of Copenhagen, Denmark
| |
Collapse
|
30
|
Cowing DW, Gross CA. Interaction of Escherichia coli RNA polymerase holoenzyme containing sigma 32 with heat shock promoters. DNase I footprinting and methylation protection. J Mol Biol 1989; 210:513-20. [PMID: 2693736 DOI: 10.1016/0022-2836(89)90127-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The DNase I protection pattern of E sigma 32 was assayed on three heat shock promoters, the E sigma 32 promoter for the groESL operon, P2 of the dnaKJ operon, and rpoD PHS, the E sigma 32 promoter upstream from rpoD. E sigma 32 protected each of these promoters from DNase I digestion from around -60 to around +20. Protection from dimethyl sulfate methylation was assayed at the groE promoter. E sigma 32 binding altered the sensitivity to methylation of bases in the vicinity of both the -10 and -35 regions. The DNase I footprints for the E sigma 32 promoters were very similar to the DNase I footprint of E sigma 70 on the lacUV5 promoter. After analyzing the DNase I footprints by taking into account the contacts predicted to be made by DNase I, it appeared that E sigma 32, like E sigma 70, contacts the DNA primarily on one face of the helix in the -35 region and on both faces in the -10 region.
Collapse
Affiliation(s)
- D W Cowing
- Department of Bacteriology, University of Wisconsin-Madison 53706
| | | |
Collapse
|
31
|
Nucleotide sequences involved in the neolysogenic insertion of filamentous phage Cf16-v1 into theXanthomonas campestris pv.citri Chromosome. Virology 1988. [DOI: 10.1016/0042-6822(88)90124-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Travers AA, Klug A. The bending of DNA in nucleosomes and its wider implications. Philos Trans R Soc Lond B Biol Sci 1987; 317:537-61. [PMID: 2894688 DOI: 10.1098/rstb.1987.0080] [Citation(s) in RCA: 161] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The DNA of a nucleosome core particle is wrapped tightly around a histone octamer with approximately 80 base pairs per superhelical turn. Studies of both naturally occurring and reconstituted systems have shown that DNA sequences very often adopt well-defined locations with respect to the octamer. Recent work in this laboratory has provided a structural explanation for this sequence-dependent positioning in terms of the differential flexibility of different sequences and of departures from smooth bending. The 'rules' that are emerging for DNA bendability and, from the results of other workers, on intrinsically bent DNA, are likely to be useful in considering looping and bending of DNA in other processes in which it is thought to be wrapped around a protein core.
Collapse
Affiliation(s)
- A A Travers
- Medical Research Council Laboratory of Molecular Biology, Cambridge, U.K
| | | |
Collapse
|
33
|
Pierson LS, Kahn ML. Integration of satellite bacteriophage P4 in Escherichia coli. DNA sequences of the phage and host regions involved in site-specific recombination. J Mol Biol 1987; 196:487-96. [PMID: 3119856 DOI: 10.1016/0022-2836(87)90026-x] [Citation(s) in RCA: 99] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We determined the DNA sequences of regions essential for bacteriophage P4 integration. A 20 base-pair core sequence in both phage (P4attP) and host (P4attB) attachment regions contains the recombination site. In P4attP this sequence is flanked by five repeated sequences. A 1.3 x 10(3) base open reading frame codes for P4 integrase. Two possible promoters are upstream from P4int. One would be recognized by Escherichia coli RNA polymerase and may be repressed by integrase protein. The second would be recognized by RNA polymerase modified after infection by a P4 helper phage, P2. The P4attB core sequence is the 3' end of a leucine tRNA gene. Downstream from this tRNA in E. coli K-12 is a region homologous to P4int that may be part of a cryptic prophage.
Collapse
Affiliation(s)
- L S Pierson
- Department of Microbiology, Washington State University, Pullman 99164-4340
| | | |
Collapse
|
34
|
Gamas P, Chandler MG, Prentki P, Galas DJ. Escherichia coli integration host factor binds specifically to the ends of the insertion sequence IS1 and to its major insertion hot-spot in pBR322. J Mol Biol 1987; 195:261-72. [PMID: 2821273 DOI: 10.1016/0022-2836(87)90648-6] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We report here that the ends of IS1 are bound and protected in vitro by the heterodimeric protein integration host factor (IHF). Under identical conditions, RNA polymerase binds to one of these ends (IRL) and protects a region that includes the sequences protected by IHF. Other potential sites within IS1, identified by their homology to the apparent consensus sequence, are not protected. Footprinting analysis of deletion derivatives of the ends demonstrates a correspondence between the ability of the end sequence to bind IHF and its ability to function as an end in transposition. Nonetheless, some transposition occurs in IHF- cells, indicating that IHF is not an essential component of the transposition apparatus. IHF also binds and protects four closely spaced regions within the major hot-spot for insertion of IS1 in the plasmid pBR322. This striking correlation of hot-spot and IHF-binding sites suggests a possible role for IHF in IS1 insertion specificity.
Collapse
Affiliation(s)
- P Gamas
- Centre de Recherche de Biochimie et Génétique Cellulaire du C.N.R.S. Toulouse, France
| | | | | | | |
Collapse
|
35
|
Minter SJ, Clore GM, Gronenborn AM, Davies RW. Cooperative DNA binding by lambda integration protein--a key component of specificity. EUROPEAN JOURNAL OF BIOCHEMISTRY 1986; 161:727-31. [PMID: 3024982 DOI: 10.1111/j.1432-1033.1986.tb10500.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Quantitative analysis of nitrocellulose filter binding data by the method of Clore, Gronenborn and Davies [(1982) J. Mol. Biol. 155, 447-466] has been used to show that lambda integration protein (Int) exhibits cooperativity in binding to specific recognition sites within the attachment site region (lambda attP) of bacteriophage lambda DNA. Optimal values of the equilibrium constant obtained were 3.0(+/- 1.0) X 10(10) M-1 for the P' site using a model of three sites with equal affinity and 1.9(+/- 0.4) X 10(10) M-1 for the P1 site on a two-site model. The value of the cooperativity parameter alpha is 172(+106)(-66) in all cases. The occurrence of a consensus recognition sequence is necessary but not sufficient for strong binding; cooperative interaction between Int molecules binding to adjacent members of an array of binding sites is also essential. The occurrence of binding site arrays distinguishes lambda attP very clearly from other DNA sequences containing single recognition sites by chance.
Collapse
|
36
|
Bauer CE, Hesse SD, Gumport RI, Gardner JF. Mutational analysis of integrase arm-type binding sites of bacteriophage lambda. Integration and excision involve distinct interactions of integrase with arm-type sites. J Mol Biol 1986; 192:513-27. [PMID: 2951525 DOI: 10.1016/0022-2836(86)90273-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Integrative recombination between specific attachment (att) regions of the bacteriophage lambda genome (attP) and the Escherichia coli genome (attB) results in a prophage flanked by the hybrid recombinant sites attL and attR. Each att site contains sequences to which proteins involved in recombination bind. Using site-directed mutagenesis, we have constructed a related set of point mutations within each of the five Int "arm-type" binding sites located within attP, attL and attR. Footprint analyses of binding demonstrate that mutating the arm-type sites significantly disrupts the binding of Int. Recombination analyses of mutant att sites in vivo and in vitro demonstrate that only three wild-type arm-type sites within attP are required for efficient integrative recombination. Similar analyses demonstrate that efficient excision can occur with two other different sets of wild-type arm-type sites in attL and attR. These results demonstrate that integrative and excisive recombination may involve interactions of Int with distinct and different subsets of arm-type sites.
Collapse
|
37
|
Gronostajski RM. Analysis of nuclear factor I binding to DNA using degenerate oligonucleotides. Nucleic Acids Res 1986; 14:9117-32. [PMID: 3786147 PMCID: PMC311933 DOI: 10.1093/nar/14.22.9117] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Nuclear factor I (NFI) binds tightly to DNA containing the consensus sequence TGG(N)6-7GCCAA. To study the role of the spacing between the TGG and GCCAA motifs, oligonucleotides homologous to the NFI binding site FIB-2 were synthesized and used for binding assays in vitro. The wild-type site (FIB-2.6) has a 6bp spacer region and binds tightly to NFI. When the size of this spacer was altered by +/- 1 or 2bp the binding to NFI was abolished. To further assess the role of the spacer and bases flanking the motifs, two oligonucleotide libraries were synthesized. Each member of these libraries had intact TGG and GCCAA motifs, but the sequence of the spacer and the 3bp next to each motif was degenerate. The library with a 6bp spacer bound to NFI to 40-50% the level of FIB-2.6. The library with a 7bp spacer bound to NFI to only 4% the level of FIB-2.6 and some of this binding was weaker than that of FIB-2.6 DNA. This novel use of degenerate DNA libraries has shown that: 1) the structural requirements for FIB sites with a 7bp spacer are more stringent than for sites with a 6bp spacer and 2) a limited number of DNA structural features can prevent the binding of NFI to sites with intact motifs and a 6bp spacer region.
Collapse
|
38
|
Abstract
The rotational positioning of DNA about the histone octamer appears to be determined by certain sequence-dependent modulations of DNA structure. To establish the detailed nature of these interactions, we have analysed the sequences of 177 different DNA molecules from chicken erythrocyte core particles. All variations in the sequence content of these molecules, which may be attributed to sequence-dependent preferences for DNA bending, correlate well with the detailed path of the DNA as it wraps around the histone octamer in the crystal structure of the nucleosome core. The sequence-dependent preferences that correlate most closely with the rotational orientation of the DNA, relative to the surface of the protein, are of two kinds: ApApA/TpTpT and ApApT/ApTpT, the minor grooves of which face predominantly in towards the protein; and also GpGpC/GpCpC and ApGpC/GpCpT, whose minor grooves face outward. Fourier analysis has been used to obtain fractional variations in occurrence for all ten dinucleotide and all 32 trinucleotide arrangements. These sequence preferences should apply generally to many other cases of protein-DNA recognition, where the DNA wraps around a protein. In addition, it is observed that long runs of homopolymer (dA) X (dT) prefer to occupy the ends of core DNA, five to six turns away from the dyad. These same sequences are apparently excluded from the near-centre of core DNA, two to three turns from the dyad. Hence, the translational positioning of any single histone octamer along a DNA molecule of defined sequence may be strongly influenced by the placement of (dA) X (dT) sequences. It may also be influenced by any aversion of the protein for sequences in the "linker" region, the sequence content of which remains to be determined.
Collapse
|
39
|
Richet E, Abcarian P, Nash HA. The interaction of recombination proteins with supercoiled DNA: defining the role of supercoiling in lambda integrative recombination. Cell 1986; 46:1011-21. [PMID: 3019560 DOI: 10.1016/0092-8674(86)90700-2] [Citation(s) in RCA: 127] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Lambda integrative recombination depends on supercoiling of the phage attachment site, attP. Using dimethylsulfate protection and indirect end-labeling, the interaction of the recombination proteins Int and IHF with supercoiled and linear attP has been studied. Supercoiling enhances the binding of Int to attP, but not if a truncated attP site is employed or if IHF is omitted. We reason that the altered affinity reflects the formation of a higher-order nucleoprotein structure, an "attP intasome," that involves Int and IHF assembly of both arms of attP into a wrapped configuration. The good correlation between the degree and sign of supercoiling needed to promote recombination and that needed for the "attP intasome" indicates that the primary role of supercoiling is to drive the formation of the wrapped structure.
Collapse
|
40
|
Lee CY, Iandolo JJ. Integration of staphylococcal phage L54a occurs by site-specific recombination: structural analysis of the attachment sites. Proc Natl Acad Sci U S A 1986; 83:5474-8. [PMID: 2942938 PMCID: PMC386309 DOI: 10.1073/pnas.83.15.5474] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Lysogenization by staphylococcal phage L54a induces the loss of lipase (glycerol ester hydrolase) activity in its host Staphylococcus aureus. The attachment site of the bacterial chromosome (attB) for the phage is at the 3' end of the lipase gene, geh. The DNA fragment containing the attB (base pairs 2620-2637 inclusive) site has been sequenced. We have also cloned and determined the nucleotide sequence of the DNA fragments containing the other three attachment sites--i.e., the attP locus on the circularly permuted phage genome and the attL and attR loci at the left and right ends of the prophage in the lysogenized strain. These results reveal that an 18-base-pair core sequence is common to all four att sites. These data indicate that the crossover point must exist within the core sequence and, further, that integration is site- and orientation-specific. We also localized the viral recombinase gene to a 2.1-kilobase DNA segment extending rightward to the attP site. This region was found to be essential for integration of plasmids containing the attP site.
Collapse
|
41
|
Gamas P, Burger AC, Churchward G, Caro L, Galas D, Chandler M. Replication of pSC101: effects of mutations in the E. coli DNA binding protein IHF. MOLECULAR & GENERAL GENETICS : MGG 1986; 204:85-9. [PMID: 3528758 DOI: 10.1007/bf00330192] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We have shown that the plasmid pSC101 is unable to be maintained in strains of E. coli carrying deletions in the genes himA and hip which specify the pleitropic heterodimeric DNA binding protein, IHF. We show that this effect is not due to a modulation of the expression of the pSC101 RepA protein, required for replication of the plasmid. Inspection of the DNA sequence of the essential replication region of pSC101 reveals the presence of a site, located between the DnaA binding-site and that of RepA, which shows extensive homology with the consensus IHF binding site. The proximity of the sites suggests that these three proteins, IHF, DnaA, and RepA may interact in generating a specific DNA structure required for initiation of pSC101 replication.
Collapse
|
42
|
Leong JM, Nunes-Düby SE, Oser AB, Lesser CF, Youderian P, Susskind MM, Landy A. Structural and regulatory divergence among site-specific recombination genes of lambdoid phage. J Mol Biol 1986; 189:603-16. [PMID: 3491212 DOI: 10.1016/0022-2836(86)90491-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The lambdoid bacteriophage phi 80 and P22 have site-specific recombination systems similar to that of lambda. Each of the three phage has a different insertion specificity, but structural analysis of their attachment sites suggests that the three recombination pathways share similar features. In this study, we have identified and sequenced the int and xis genes of phi 80 and P22. phi 80 int and xis were identified using a plasmid recombination assay in vivo, and the P22 genes were mapped using Tn1 insertion mutations. In all three phage, the site-specific recombination genes are located directly adjacent to the phage attachment site. Interestingly, the transcriptional orientation of the phi 80 int gene is opposite to that of lambda and P22 int, resulting in convergent transcription of phi 80 int and xis. Because of its transcriptional orientation, phi 80 int cannot be expressed by the major leftward promoter, PL, and the regulatory strategy of phi 80 integration and excision must differ significantly from that of lambda. The deduced amino acid sequences of the recombination proteins of the three systems show surprisingly little homology. Sequences homologous to the lambda PI promoter are more conserved than the protein-coding sequences. Nevertheless, the Int proteins are locally related in the C-terminal sequences, particularly for a stretch of some 25 amino acid residues that lie approximately 50 residues from the C terminus. The Xis proteins can be aligned at their N termini.
Collapse
|
43
|
Cunin R, Jacobs A, Charlier D, Crabeel M, Hervé G, Glansdorff N, Piérard A. Structure-function relationship in allosteric aspartate carbamoyltransferase from Escherichia coli. I. Primary structure of a pyrI gene encoding a modified regulatory subunit. J Mol Biol 1985; 186:707-13. [PMID: 3912513 DOI: 10.1016/0022-2836(85)90390-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In a previous article, we have identified a lambda bacteriophage directing the synthesis of a modified aspartate carbamoyltransferase lacking substrate-co-operative interactions and insensitive to the feedback inhibitor CTP. These abnormal properties were ascribed to a mutation in the gene pyrI encoding the regulatory polypeptide chain of the enzyme. We now report the sequence of the mutated pyrI and show that, during the generation of this pyrBI-bearing phage, six codons from lambda DNA have been substituted for the eight terminal codons of the wild-type gene. A model is presented for the formation of this modified pyrI gene during the integrative recombination of the parental lambda phage with the Escherichia coli chromosome. An accompanying paper emphasizes the importance of the carboxy-terminal end of the regulatory chain for the homotropic and heterotropic interactions of aspartate carbamoyltransferase.
Collapse
|
44
|
Abstract
A DNase protection technique is described and applied to the interaction of three lac control proteins with supercoiled lac DNA. The technique uses end-labeled oligonucleotide primers to probe specific DNA regions as an alternative to protocols requiring restriction endonuclease cleavage or blotting. Thus DNA may be probed with high resolution in its native state. It is demonstrated that the introduction of supercoiling into DNA accelerates the rate of lac ps promoter binding by RNA polymerase but does not alter the positions at which polymerase, c-AMP-binding protein, or lac repressor bind to lac DNA.
Collapse
|
45
|
Andrews BJ, Proteau GA, Beatty LG, Sadowski PD. The FLP recombinase of the 2 micron circle DNA of yeast: interaction with its target sequences. Cell 1985; 40:795-803. [PMID: 3879971 DOI: 10.1016/0092-8674(85)90339-3] [Citation(s) in RCA: 174] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We have studied the interaction of purified FLP protein with restriction fragments from the substrate 2mu circle DNA of yeast. We find that FLP protects about 50 bp of DNA from nonspecific nuclease digestion. The protected site consists of two 13 bp inverted repeat sequences separated by an 8 bp spacer region. A third 13 bp element is also protected by binding of the FLP protein. We demonstrate that FLP introduces single- and double-strand breaks into the substrate DNA. This site-specific cleavage occurs at the margins of the spacer region, generating 8 bp 5' protruding ends with 5'-OH and 3'-protein-bound termini. Binding to mutant sites and half-sites demonstrates that the third symmetry element is not important for binding and cleavage by the FLP protein. The integrity of the core region is important for the cleavage activity of FLP.
Collapse
|
46
|
The phi 80 and P22 attachment sites. Primary structure and interaction with Escherichia coli integration host factor. J Biol Chem 1985. [DOI: 10.1016/s0021-9258(18)89288-2] [Citation(s) in RCA: 126] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
47
|
Mizuuchi M, Mizuuchi K. The extent of DNA sequence required for a functional bacterial attachment site of phage lambda. Nucleic Acids Res 1985; 13:1193-208. [PMID: 3158879 PMCID: PMC341066 DOI: 10.1093/nar/13.4.1193] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We have investigated the extent of DNA sequence required to form a bacterial attachment site (attB) that functions in bacteriophage lambda integration. A DNA fragment carrying attB of Escherichia coli was trimmed, recloned and tested for recombination proficiency. We found that the common core sequence plus the adjoining 4-bp sequences of both the B and B' arms are required for full activity, while plasmids with an even shorter attB sequence retain some capacity to function as attB in vivo. We also found that the nonspecific DNA that is joined to the required attachment site sequence does not significantly influence the rate of the recombination reaction.
Collapse
|
48
|
Yin S, Bushman W, Landy A. Interaction of the lambda site-specific recombination protein Xis with attachment site DNA. Proc Natl Acad Sci U S A 1985; 82:1040-4. [PMID: 3156374 PMCID: PMC397189 DOI: 10.1073/pnas.82.4.1040] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Nuclease protection experiments show that Xis protein of bacteriophage lambda specifically binds attachment (att) site DNA. The region of Xis binding, present in both the phage att site and the right prophage att site, extends from position -102 to position -62 in the P arm. The sequence of this region, the positions of purines protected by Xis against methylation, and the binding of Xis to a resected att site indicate the presence of two binding sites. The postulated recognition elements, contained in 13-base-pair direct repeats separated by 7 base pairs, are situated on the same face of the DNA helix. Protection experiments performed with DNase I suggest that the DNA wraps around (or along the surface of) the bound Xis protein. The Xis binding data presented here establishes that Xis, like the other two proteins involved in lambda site-specific recombination, interacts specifically with att DNA. This rules out that class of models in which the profound effects of Xis on the directionality of site-specific recombination are mediated solely through protein-protein interactions or modification of another protein. In addition, nuclease protection experiments with pairwise combinations of the proteins show that Xis and integration host factor (IHF), or Xis and Int, can bind simultaneously to either the phage or right prophage att sites, and the DNA sequences protected are the sum of those protected with each protein alone. It is therefore unlikely that the effect of Xis on the direction of recombination is exerted by directly blocking the binding of Int or IHF to one or more of their respective binding sites.
Collapse
|
49
|
Bauer CE, Gardner JF, Gumport RI. Extent of sequence homology required for bacteriophage lambda site-specific recombination. J Mol Biol 1985; 181:187-97. [PMID: 3157003 DOI: 10.1016/0022-2836(85)90084-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Bacteriophage lambda integration and excision occur by reciprocal recombination within a 15-base homologous core region present in the recombining attachment (att) sites. Strand exchange within the core occurs at precise nucleotide positions, which define an overlap region in which the products of recombination contain DNA strands derived from different parents. In order to define the role of sequence homology during recombination we have constructed point mutations within the core and assayed their effects in vivo and in vitro on site-specific recombination. Two of the mutations are located at position -3 of the core, which is one base-pair outside of the overlap region where strand exchange occurs. These mutations do not affect integrative or excisive recombination, thereby suggesting that homology outside the overlap region is not required for recombination. Two other mutations are located at position -2 of the core, which is one base-pair within the overlap region. These mutations show severely depressed integrative and excisive recombination activities in vitro and in vivo when recombined against wild-type att sites. However, the -2 mutations show normal recombination activity when recombined against att sites containing the homologous mutation, thereby suggesting that homology-dependent DNA interactions are required within the overlap region for effective recombination. In vitro recombination between homoduplex attP sites and heteroduplex attB sites demonstrated that the DNA interactions require only one strand of the attB overlap region to be homologous to attP in order to promote recombination.
Collapse
|
50
|
Abstract
E. coli integration host factor (IHF) both participates directly in phage lambda site-specific recombination and regulates the expression of phage and bacterial genes. Using protection from nuclease and chemical attack as an assay, we examined the interaction of IHF with DNA. We found that IHF is a specific DNA binding protein that interacts with three distinct segments of attP, the recombination site carried by phage lambda. We also found that specific IHF binding sites are located in non-att DNA. Several non-att IHF binding sites that we have identified are adjacent to genes whose expression is altered in IHF mutants. From comparison of the sequences protected by IHF, we suggest that the critical determinant in specific IHF-DNA interaction is contained in the sequence T.PyAA...PuTTGaT.A.PuTT...PyAACtA.
Collapse
|