1
|
Osborne M, Fubara A, Ó Cinnéide E, Coughlan AY, Wolfe KH. WHO elements - A new category of selfish genetic elements at the borderline between homing elements and transposable elements. Semin Cell Dev Biol 2024; 163:2-13. [PMID: 38664119 DOI: 10.1016/j.semcdb.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 05/26/2024]
Abstract
Homing genetic elements are a form of selfish DNA that inserts into a specific target site in the genome and spreads through the population by a process of biased inheritance. Two well-known types of homing element, called inteins and homing introns, were discovered decades ago. In this review we describe WHO elements, a newly discovered type of homing element that constitutes a distinct third category but is rare, having been found only in a few yeast species so far. WHO elements are inferred to spread using the same molecular homing mechanism as inteins and introns: they encode a site-specific endonuclease that cleaves the genome at the target site, making a DNA break that is subsequently repaired by copying the element. For most WHO elements, the target site is in the glycolytic gene FBA1. WHO elements differ from inteins and homing introns in two fundamental ways: they do not interrupt their host gene (FBA1), and they occur in clusters. The clusters were formed by successive integrations of different WHO elements into the FBA1 locus, the result of an 'arms race' between the endonuclease and its target site. We also describe one family of WHO elements (WHO10) that is no longer specifically associated with the FBA1 locus and instead appears to have become transposable, inserting at random genomic sites in Torulaspora globosa with up to 26 copies per strain. The WHO family of elements is therefore at the borderline between homing genetic elements and transposable elements.
Collapse
Affiliation(s)
- Matthieu Osborne
- Conway Institute and School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Athaliah Fubara
- Conway Institute and School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Eoin Ó Cinnéide
- Conway Institute and School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Aisling Y Coughlan
- Conway Institute and School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Kenneth H Wolfe
- Conway Institute and School of Medicine, University College Dublin, Dublin 4, Ireland.
| |
Collapse
|
2
|
Macreadie IG. My Early Years of Yeast Mitochondrial Genetics. Microorganisms 2024; 12:2077. [PMID: 39458386 PMCID: PMC11509975 DOI: 10.3390/microorganisms12102077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
There have been massive technological advances in molecular biology and genetics over the past five decades. I have personally experienced these advances and here I reflect on those origins, from my perspective, studying yeast mitochondrial genetics leading up to deciphering the functions of the mitochondrial genome. The yeast contributions commenced in the middle of the last century with pure genetics, correlating mutants with phenotypes, in order to discover genes, just like the early explorations to discover new lands. The quest was to explore the mitochondrial genome and find its genes and their products. It was most fortunate that DNA sequencing technologies became available in the late 1970s, and laboratories were restructured enormously to keep pace with the emerging technologies. There were considerable costs in equipping laboratories, purchasing ultracentrifuges and restriction endonucleases, and undertaking DNA sequencing; additionally, workers required special safety gear.
Collapse
Affiliation(s)
- Ian G Macreadie
- School of Science, RMIT University, Bundoora, VIC 3083, Australia
| |
Collapse
|
3
|
Islam MD, Harrison BD, Li JJY, McLoughlin AG, Court DA. Do mitochondria use efflux pumps to protect their ribosomes from antibiotics? MICROBIOLOGY (READING, ENGLAND) 2023; 169:001272. [PMID: 36748523 PMCID: PMC9993110 DOI: 10.1099/mic.0.001272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Fungal environments are rich in natural and engineered antimicrobials, and this, combined with the fact that fungal genomes are rich in coding sequences for transporters, suggests that fungi are an intriguing group in which to search for evidence of antimicrobial efflux pumps in mitochondria. Herein, the range of protective mechanisms used by fungi against antimicrobials is introduced, and it is hypothesized, based on the susceptibility of mitochondrial and bacterial ribosomes to the same antibiotics, that mitochondria might also contain pumps that efflux antibiotics from these organelles. Preliminary evidence of ethidium bromide efflux is presented and several candidate efflux pumps are identified in fungal mitochondrial proteomes.
Collapse
Affiliation(s)
- Md Deen Islam
- Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Brian D Harrison
- Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Judy J-Y Li
- Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Austein G McLoughlin
- Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | | |
Collapse
|
4
|
Prince S, Munoz C, Filion-Bienvenue F, Rioux P, Sarrasin M, Lang BF. Refining Mitochondrial Intron Classification With ERPIN: Identification Based on Conservation of Sequence Plus Secondary Structure Motifs. Front Microbiol 2022; 13:866187. [PMID: 35369492 PMCID: PMC8971849 DOI: 10.3389/fmicb.2022.866187] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 02/28/2022] [Indexed: 12/02/2022] Open
Abstract
Mitochondrial genomes—in particular those of fungi—often encode genes with a large number of Group I and Group II introns that are conserved at both the sequence and the RNA structure level. They provide a rich resource for the investigation of intron and gene structure, self- and protein-guided splicing mechanisms, and intron evolution. Yet, the degree of sequence conservation of introns is limited, and the primary sequence differs considerably among the distinct intron sub-groups. It makes intron identification, classification, structural modeling, and the inference of gene models a most challenging and error-prone task—frequently passed on to an “expert” for manual intervention. To reduce the need for manual curation of intron structures and mitochondrial gene models, computational methods using ERPIN sequence profiles were initially developed in 2007. Here we present a refinement of search models and alignments using the now abundant publicly available fungal mtDNA sequences. In addition, we have tested in how far members of the originally proposed sub-groups are clearly distinguished and validated by our computational approach. We confirm clearly distinct mitochondrial Group I sub-groups IA1, IA3, IB3, IC1, IC2, and ID. Yet, IB1, IB2, and IB4 ERPIN models are overlapping substantially in predictions, and are therefore combined and reported as IB. We have further explored the conversion of our ERPIN profiles into covariance models (CM). Current limitations and prospects of the CM approach will be discussed.
Collapse
|
5
|
Bágeľová Poláková S, Lichtner Ž, Szemes T, Smolejová M, Sulo P. Mitochondrial DNA duplication, recombination, and introgression during interspecific hybridization. Sci Rep 2021; 11:12726. [PMID: 34135414 PMCID: PMC8209160 DOI: 10.1038/s41598-021-92125-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 06/03/2021] [Indexed: 02/05/2023] Open
Abstract
mtDNA recombination events in yeasts are known, but altered mitochondrial genomes were not completed. Therefore, we analyzed recombined mtDNAs in six Saccharomyces cerevisiae × Saccharomyces paradoxus hybrids in detail. Assembled molecules contain mostly segments with variable length introgressed to other mtDNA. All recombination sites are in the vicinity of the mobile elements, introns in cox1, cob genes and free standing ORF1, ORF4. The transplaced regions involve co-converted proximal exon regions. Thus, these selfish elements are beneficial to the host if the mother molecule is challenged with another molecule for transmission to the progeny. They trigger mtDNA recombination ensuring the transfer of adjacent regions, into the progeny of recombinant molecules. The recombination of the large segments may result in mitotically stable duplication of several genes.
Collapse
Affiliation(s)
- Silvia Bágeľová Poláková
- grid.7634.60000000109409708Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, Bratislava, 842 15 Slovakia ,grid.419303.c0000 0001 2180 9405Present Address: Department of Membrane Biochemistry, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, 84005 Slovakia
| | - Žaneta Lichtner
- grid.7634.60000000109409708Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, Bratislava, 842 15 Slovakia
| | - Tomáš Szemes
- grid.7634.60000000109409708Comenius University Science Park, Bratislava, 841 04 Slovakia ,grid.7634.60000000109409708Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Bratislava, 842 15 Slovakia ,Geneton s.r.o., Galvaniho 7, Bratislava, 821 04 Slovakia
| | - Martina Smolejová
- grid.7634.60000000109409708Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, Bratislava, 842 15 Slovakia
| | - Pavol Sulo
- grid.7634.60000000109409708Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, Bratislava, 842 15 Slovakia
| |
Collapse
|
6
|
Dujon B. Mitochondrial genetics revisited. Yeast 2020; 37:191-205. [DOI: 10.1002/yea.3445] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 10/05/2019] [Accepted: 10/08/2019] [Indexed: 12/17/2022] Open
Affiliation(s)
- Bernard Dujon
- Department Genomes and GeneticsInstitut Pasteur Paris France
| |
Collapse
|
7
|
Wu B, Hao W. Mitochondrial‐encoded endonucleases drive recombination of protein‐coding genes in yeast. Environ Microbiol 2019; 21:4233-4240. [DOI: 10.1111/1462-2920.14783] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/18/2019] [Indexed: 01/15/2023]
Affiliation(s)
- Baojun Wu
- Department of Biological Sciences Wayne State University Detroit MI USA
| | - Weilong Hao
- Department of Biological Sciences Wayne State University Detroit MI USA
| |
Collapse
|
8
|
Dujon B. My route to the intimacy of genomes. FEMS Yeast Res 2019; 19:5371124. [PMID: 30844063 DOI: 10.1093/femsyr/foz023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 03/06/2019] [Indexed: 11/12/2022] Open
Abstract
Being invited by a prestigious journal to write the retrospective of one's life is first a great honor, and then a chore when starting to do it. These feelings did not spare me. But trying to recall my past to the best of my memory, I learned how lucky I was to have been born to a generation that witnessed so many scientific discoveries. There is little in common between the genetic courses I taught recently and those that I received more than 50 years ago. Thinking that a tiny bit of this fantastic evolution might come from my accidental encountering with yeasts is a stunning experience. I wish the same for the new generation.
Collapse
Affiliation(s)
- Bernard Dujon
- Department Genomes and Genetics, Institut Pasteur, CNRS (UMR3525) and Sorbonne Université (UFR927), 25 rue du Docteur Roux, Paris F-78724 , France
| |
Collapse
|
9
|
Melnikov SV, Khabibullina NF, Mairhofer E, Vargas-Rodriguez O, Reynolds NM, Micura R, Söll D, Polikanov YS. Mechanistic insights into the slow peptide bond formation with D-amino acids in the ribosomal active site. Nucleic Acids Res 2019; 47:2089-2100. [PMID: 30520988 PMCID: PMC6393236 DOI: 10.1093/nar/gky1211] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/14/2018] [Accepted: 11/20/2018] [Indexed: 12/24/2022] Open
Abstract
During protein synthesis, ribosomes discriminate chirality of amino acids and prevent incorporation of D-amino acids into nascent proteins by slowing down the rate of peptide bond formation. Despite this phenomenon being known for nearly forty years, no structures have ever been reported that would explain the poor reactivity of D-amino acids. Here we report a 3.7Å-resolution crystal structure of a bacterial ribosome in complex with a D-aminoacyl-tRNA analog bound to the A site. Although at this resolution we could not observe individual chemical groups, we could unambiguously define the positions of the D-amino acid side chain and the amino group based on chemical restraints. The structure reveals that similarly to L-amino acids, the D-amino acid binds the ribosome by inserting its side chain into the ribosomal A-site cleft. This binding mode does not allow optimal nucleophilic attack of the peptidyl-tRNA by the reactive α-amino group of a D-amino acid. Also, our structure suggests that the D-amino acid cannot participate in hydrogen-bonding with the P-site tRNA that is required for the efficient proton transfer during peptide bond formation. Overall, our work provides the first mechanistic insight into the ancient mechanism that helps living cells ensure the stereochemistry of protein synthesis.
Collapse
Affiliation(s)
- Sergey V Melnikov
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Nelli F Khabibullina
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Elisabeth Mairhofer
- Institute of Organic Chemistry at Leopold Franzens University, A-6020 Innsbruck, Austria
| | - Oscar Vargas-Rodriguez
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Noah M Reynolds
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Ronald Micura
- Institute of Organic Chemistry at Leopold Franzens University, A-6020 Innsbruck, Austria
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | - Yury S Polikanov
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
10
|
Rudan M, Bou Dib P, Musa M, Kanunnikau M, Sobočanec S, Rueda D, Warnecke T, Kriško A. Normal mitochondrial function in Saccharomyces cerevisiae has become dependent on inefficient splicing. eLife 2018; 7:35330. [PMID: 29570052 PMCID: PMC5898908 DOI: 10.7554/elife.35330] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/19/2018] [Indexed: 11/28/2022] Open
Abstract
Self-splicing introns are mobile elements that have invaded a number of highly conserved genes in prokaryotic and organellar genomes. Here, we show that deletion of these selfish elements from the Saccharomyces cerevisiae mitochondrial genome is stressful to the host. A strain without mitochondrial introns displays hallmarks of the retrograde response, with altered mitochondrial morphology, gene expression and metabolism impacting growth and lifespan. Deletion of the complete suite of mitochondrial introns is phenocopied by overexpression of the splicing factor Mss116. We show that, in both cases, abnormally efficient transcript maturation results in excess levels of mature cob and cox1 host mRNA. Thus, inefficient splicing has become an integral part of normal mitochondrial gene expression. We propose that the persistence of S. cerevisiae self-splicing introns has been facilitated by an evolutionary lock-in event, where the host genome adapted to primordial invasion in a way that incidentally rendered subsequent intron loss deleterious.
Collapse
Affiliation(s)
- Marina Rudan
- Mediterranean Institute for Life Sciences, Split, Croatia
| | - Peter Bou Dib
- Institut für Zellbiochemie, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Marina Musa
- Mediterranean Institute for Life Sciences, Split, Croatia
| | | | - Sandra Sobočanec
- Division of Molecular Medicine, Rudjer Boškovic Institute, Bijenička, Zagreb, Croatia
| | - David Rueda
- MRC London Institute of Medical Sciences, London, United Kingdom.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom.,Molecular Virology, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Tobias Warnecke
- MRC London Institute of Medical Sciences, London, United Kingdom.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Anita Kriško
- Mediterranean Institute for Life Sciences, Split, Croatia
| |
Collapse
|
11
|
Gomes C, Martínez-Puchol S, Ruiz-Roldán L, Pons MJ, Del Valle Mendoza J, Ruiz J. Development and characterisation of highly antibiotic resistant Bartonella bacilliformis mutants. Sci Rep 2016; 6:33584. [PMID: 27667026 PMCID: PMC5035977 DOI: 10.1038/srep33584] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/31/2016] [Indexed: 01/31/2023] Open
Abstract
The objective was to develop and characterise in vitro Bartonella bacilliformis antibiotic resistant mutants. Three B. bacilliformis strains were plated 35 or 40 times with azithromycin, chloramphenicol, ciprofloxacin or rifampicin discs. Resistance-stability was assessed performing 5 serial passages without antibiotic pressure. MICs were determined with/without Phe-Arg-β-Napthylamide and artesunate. Target alterations were screened in the 23S rRNA, rplD, rplV, gyrA, gyrB, parC, parE and rpoB genes. Chloramphenicol and ciprofloxacin resistance were the most difficult and easiest (>37.3 and 10.6 passages) to be selected, respectively. All mutants but one selected with chloramphenicol achieved high resistance levels. All rifampicin, one azithromycin and one ciprofloxacin mutants did not totally revert when cultured without antibiotic pressure. Azithromycin resistance was related to L4 substitutions Gln-66 → Lys or Gly-70 → Arg; L4 deletion Δ62–65 (Lys-Met-Tyr-Lys) or L22 insertion 83::Val-Ser-Glu-Ala-His-Val-Gly-Lys-Ser; in two chloramphenicol-resistant mutants the 23S rRNA mutation G2372A was detected. GyrA Ala-91 → Val and Asp-95 → Gly and GyrB Glu474 → Lys were detected in ciprofloxacin-resistant mutants. RpoB substitutions Gln-527 → Arg, His-540 → Tyr and Ser-545 → Phe plus Ser-588 → Tyr were detected in rifampicin-resistant mutants. In 5 mutants the effect of efflux pumps on resistance was observed. Antibiotic resistance was mainly related to target mutations and overexpression of efflux pumps, which might underlie microbiological failures during treatments.
Collapse
Affiliation(s)
- Cláudia Gomes
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Sandra Martínez-Puchol
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Lidia Ruiz-Roldán
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Maria J Pons
- School of Medicine, Research Center and Innovation of the Health Sciences Faculty, Universidad Peruana de Ciencias Aplicadas (UPC), Lima, Peru
| | - Juana Del Valle Mendoza
- School of Medicine, Research Center and Innovation of the Health Sciences Faculty, Universidad Peruana de Ciencias Aplicadas (UPC), Lima, Peru.,Instituto de Investigación Nutricional, Lima, Peru
| | - Joaquim Ruiz
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
12
|
Zumkeller SM, Knoop V, Knie N. Convergent Evolution of Fern-Specific Mitochondrial Group II Intron atp1i361g2 and Its Ancient Source Paralogue rps3i249g2 and Independent Losses of Intron and RNA Editing among Pteridaceae. Genome Biol Evol 2016; 8:2505-19. [PMID: 27492234 PMCID: PMC5010907 DOI: 10.1093/gbe/evw173] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2016] [Indexed: 01/01/2023] Open
Abstract
Mitochondrial intron patterns are highly divergent between the major land plant clades. An intron in the atp1 gene, atp1i361g2, is an example for a group II intron specific to monilophytes (ferns). Here, we report that atp1i361g2 is lost independently at least 4 times in the fern family Pteridaceae. Such plant organelle intron losses have previously been found to be accompanied by loss of RNA editing sites in the flanking exon regions as a consequence of genomic recombination of mature cDNA. Instead, we now observe that RNA editing events in both directions of pyrimidine exchange (C-to-U and U-to-C) are retained in atp1 exons after loss of the intron in Pteris argyraea/biaurita and in Actiniopteris and Onychium We find that atp1i361g2 has significant similarity with intron rps3i249g2 present in lycophytes and gymnosperms, which we now also find highly conserved in ferns. We conclude that atp1i361g2 may have originated from the more ancestral rps3i249g2 paralogue by a reverse splicing copy event early in the evolution of monilophytes. Secondary structure elements of the two introns, most characteristically their domains III, show strikingly convergent evolution in the monilophytes. Moreover, the intron paralogue rps3i249g2 reveals relaxed evolution in taxa where the atp1i361g2 paralogue is lost. Our findings may reflect convergent evolution of the two related mitochondrial introns exerted by co-evolution with an intron-binding protein simultaneously acting on the two paralogues.
Collapse
Affiliation(s)
- Simon Maria Zumkeller
- Abteilung Molekulare Evolution, IZMB-Institut Für Zelluläre Und Molekulare Botanik, Universität Bonn, Kirschallee 1, D-53115 Bonn, Germany
| | - Volker Knoop
- Abteilung Molekulare Evolution, IZMB-Institut Für Zelluläre Und Molekulare Botanik, Universität Bonn, Kirschallee 1, D-53115 Bonn, Germany
| | - Nils Knie
- Abteilung Molekulare Evolution, IZMB-Institut Für Zelluläre Und Molekulare Botanik, Universität Bonn, Kirschallee 1, D-53115 Bonn, Germany
| |
Collapse
|
13
|
Alanio A, Gits-Muselli M, Mercier-Delarue S, Dromer F, Bretagne S. Diversity of Pneumocystis jirovecii during Infection Revealed by Ultra-Deep Pyrosequencing. Front Microbiol 2016; 7:733. [PMID: 27252684 PMCID: PMC4877386 DOI: 10.3389/fmicb.2016.00733] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/02/2016] [Indexed: 01/05/2023] Open
Abstract
Pneumocystis jirovecii is an uncultivable fungal pathogen responsible for Pneumocystis pneumonia (PCP) in immunocompromised patients, the physiopathology of which is only partially understood. The diversity of the Pneumocystis strains associated with acute infection has mainly been studied by Sanger sequencing techniques precluding any identification of rare genetic events (< 20% frequency). We used next-generation sequencing to detect minority variants causing infection, and analyzed the complexity of the genomes of infection-causing P. jirovecii. Ultra-deep pyrosequencing (UDPS) of PCR amplicons of two nuclear target region [internal transcribed spacer 2 (ITS2) and dihydrofolate reductase (DHFR)] and one mitochondrial DNA target region [the mitochondrial ribosomal RNA large subunit gene (mtLSU)] was performed on 31 samples from 25 patients. UDPS revealed that almost all patients (n = 23/25, 92%) were infected with mixtures of strains. An analysis of repeated samples from six patients showed that the proportion of each variant change significantly (by up to 30%) over time on treatment in three of these patients. A comparison of mitochondrial and nuclear UDPS data revealed heteroplasmy in P. jirovecii. The recognition site for the homing endonuclease I-SceI was recovered from the mtLSU gene, whereas its two conserved motifs of the enzyme were not. This suggests that heteroplasmy may result from recombination induced by unidentified homing endonucleases. This study sheds new light on the biology of P. jirovecii during infection. PCP results from infection not with a single microorganism, but with a complex mixture of different genotypes, the proportions of which change over time due to intricate selection and reinfection mechanisms that may differ between patients, treatments, and predisposing diseases.
Collapse
Affiliation(s)
- Alexandre Alanio
- Laboratoire de Parasitologie-Mycologie, Groupe Hospitalier Saint-Louis-Lariboisière-Fernand-Widal, Assistance Publique Hôpitaux de Paris, Hôpital Saint-LouisParis, France; Université Paris Diderot, Sorbonne Paris CitéParis, France; Unité de Mycologie Moléculaire, Département de Mycologie, Centre National de Référence Mycoses Invasives et Antifongiques, Institut PasteurParis, France; Centre National de la Recherche Scientifique CNRS URA3012Paris, France
| | - Maud Gits-Muselli
- Laboratoire de Parasitologie-Mycologie, Groupe Hospitalier Saint-Louis-Lariboisière-Fernand-Widal, Assistance Publique Hôpitaux de Paris, Hôpital Saint-LouisParis, France; Université Paris Diderot, Sorbonne Paris CitéParis, France
| | - Séverine Mercier-Delarue
- Laboratoire de Microbiologie, Groupe Hospitalier Saint-Louis-Lariboisière-Fernand-Widal, Assistance Publique Hôpitaux de Paris, Hôpital Saint-Louis Paris, France
| | - Françoise Dromer
- Unité de Mycologie Moléculaire, Département de Mycologie, Centre National de Référence Mycoses Invasives et Antifongiques, Institut PasteurParis, France; Centre National de la Recherche Scientifique CNRS URA3012Paris, France
| | - Stéphane Bretagne
- Laboratoire de Parasitologie-Mycologie, Groupe Hospitalier Saint-Louis-Lariboisière-Fernand-Widal, Assistance Publique Hôpitaux de Paris, Hôpital Saint-LouisParis, France; Université Paris Diderot, Sorbonne Paris CitéParis, France; Unité de Mycologie Moléculaire, Département de Mycologie, Centre National de Référence Mycoses Invasives et Antifongiques, Institut PasteurParis, France; Centre National de la Recherche Scientifique CNRS URA3012Paris, France
| |
Collapse
|
14
|
The ribosome as a missing link in prebiotic evolution II: Ribosomes encode ribosomal proteins that bind to common regions of their own mRNAs and rRNAs. J Theor Biol 2016; 397:115-27. [DOI: 10.1016/j.jtbi.2016.02.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 02/16/2016] [Accepted: 02/19/2016] [Indexed: 11/18/2022]
|
15
|
Wolters JF, Chiu K, Fiumera HL. Population structure of mitochondrial genomes in Saccharomyces cerevisiae. BMC Genomics 2015; 16:451. [PMID: 26062918 PMCID: PMC4464245 DOI: 10.1186/s12864-015-1664-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 05/29/2015] [Indexed: 12/13/2022] Open
Abstract
Background Rigorous study of mitochondrial functions and cell biology in the budding yeast, Saccharomyces cerevisiae has advanced our understanding of mitochondrial genetics. This yeast is now a powerful model for population genetics, owing to large genetic diversity and highly structured populations among wild isolates. Comparative mitochondrial genomic analyses between yeast species have revealed broad evolutionary changes in genome organization and architecture. A fine-scale view of recent evolutionary changes within S. cerevisiae has not been possible due to low numbers of complete mitochondrial sequences. Results To address challenges of sequencing AT-rich and repetitive mitochondrial DNAs (mtDNAs), we sequenced two divergent S. cerevisiae mtDNAs using a single-molecule sequencing platform (PacBio RS). Using de novo assemblies, we generated highly accurate complete mtDNA sequences. These mtDNA sequences were compared with 98 additional mtDNA sequences gathered from various published collections. Phylogenies based on mitochondrial coding sequences and intron profiles revealed that intraspecific diversity in mitochondrial genomes generally recapitulated the population structure of nuclear genomes. Analysis of intergenic sequence indicated a recent expansion of mobile elements in certain populations. Additionally, our analyses revealed that certain populations lacked introns previously believed conserved throughout the species, as well as the presence of introns never before reported in S. cerevisiae. Conclusions Our results revealed that the extensive variation in S. cerevisiae mtDNAs is often population specific, thus offering a window into the recent evolutionary processes shaping these genomes. In addition, we offer an effective strategy for sequencing these challenging AT-rich mitochondrial genomes for small scale projects. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1664-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- John F Wolters
- Department of Biological Sciences, Binghamton University, Binghamton, NY, USA.
| | - Kenneth Chiu
- Computer Science Department, Binghamton University, Binghamton, NY, USA.
| | - Heather L Fiumera
- Department of Biological Sciences, Binghamton University, Binghamton, NY, USA.
| |
Collapse
|
16
|
Wu B, Buljic A, Hao W. Extensive Horizontal Transfer and Homologous Recombination Generate Highly Chimeric Mitochondrial Genomes in Yeast. Mol Biol Evol 2015; 32:2559-70. [PMID: 26018571 DOI: 10.1093/molbev/msv127] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The frequency of horizontal gene transfer (HGT) in mitochondrial DNA varies substantially. In plants, HGT is relatively common, whereas in animals it appears to be quite rare. It is of considerable importance to understand mitochondrial HGT across the major groups of eukaryotes at a genome-wide level, but so far this has been well studied only in plants. In this study, we generated ten new mitochondrial genome sequences and analyzed 40 mitochondrial genomes from the Saccharomycetaceae to assess the magnitude and nature of mitochondrial HGT in yeasts. We provide evidence for extensive, homologous-recombination-mediated, mitochondrial-to-mitochondrial HGT occurring throughout yeast mitochondrial genomes, leading to genomes that are highly chimeric evolutionarily. This HGT has led to substantial intraspecific polymorphism in both sequence content and sequence divergence, which to our knowledge has not been previously documented in any mitochondrial genome. The unexpectedly high frequency of mitochondrial HGT in yeast may be driven by frequent mitochondrial fusion, relatively low mitochondrial substitution rates and pseudohyphal fusion to produce heterokaryons. These findings suggest that mitochondrial HGT may play an important role in genome evolution of a much broader spectrum of eukaryotes than previously appreciated and that there is a critical need to systematically study the frequency, extent, and importance of mitochondrial HGT across eukaryotes.
Collapse
Affiliation(s)
- Baojun Wu
- Department of Biological Sciences, Wayne State University
| | - Adnan Buljic
- Department of Biological Sciences, Wayne State University
| | - Weilong Hao
- Department of Biological Sciences, Wayne State University
| |
Collapse
|
17
|
Nicholson SA, Moyo B, Arbuthnot PB. Progress and prospects of engineered sequence-specific DNA modulating technologies for the management of liver diseases. World J Hepatol 2015; 7:859-873. [PMID: 25937863 PMCID: PMC4411528 DOI: 10.4254/wjh.v7.i6.859] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 12/16/2014] [Accepted: 01/20/2015] [Indexed: 02/06/2023] Open
Abstract
Liver diseases are one of the leading causes of mortality in the world. The hepatic illnesses, which include inherited metabolic disorders, hemophilias and viral hepatitides, are complex and currently difficult to treat. The maturation of gene therapy has heralded new avenues for developing effective intervention for these diseases. DNA modification using gene therapy is now possible and available technology may be exploited to achieve long term therapeutic benefit. The ability to edit DNA sequences specifically is of paramount importance to advance gene therapy for application to liver diseases. Recent development of technologies that allow for this has resulted in rapid advancement of gene therapy to treat several chronic illnesses. Improvements in application of derivatives of zinc finger proteins (ZFPs), transcription activator-like effectors (TALEs), homing endonucleases (HEs) and clustered regularly interspaced palindromic repeats (CRISPR) and CRISPR associated (Cas) systems have been particularly important. These sequence-specific technologies may be used to modify genes permanently and also to alter gene transcription for therapeutic purposes. This review describes progress in development of ZFPs, TALEs, HEs and CRISPR/Cas for application to treating liver diseases.
Collapse
|
18
|
Hausner G, Hafez M, Edgell DR. Bacterial group I introns: mobile RNA catalysts. Mob DNA 2014; 5:8. [PMID: 24612670 PMCID: PMC3984707 DOI: 10.1186/1759-8753-5-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 02/24/2014] [Indexed: 12/02/2022] Open
Abstract
Group I introns are intervening sequences that have invaded tRNA, rRNA and protein coding genes in bacteria and their phages. The ability of group I introns to self-splice from their host transcripts, by acting as ribozymes, potentially renders their insertion into genes phenotypically neutral. Some group I introns are mobile genetic elements due to encoded homing endonuclease genes that function in DNA-based mobility pathways to promote spread to intronless alleles. Group I introns have a limited distribution among bacteria and the current assumption is that they are benign selfish elements, although some introns and homing endonucleases are a source of genetic novelty as they have been co-opted by host genomes to provide regulatory functions. Questions regarding the origin and maintenance of group I introns among the bacteria and phages are also addressed.
Collapse
Affiliation(s)
- Georg Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2 N2, Canada
| | - Mohamed Hafez
- Department of Biochemistry, Faculty of Medicine, University of Montreal, Montréal, QC H3C 3 J7, Canada
- Department of Botany, Faculty of Science, Suez University, Suez, Egypt
| | - David R Edgell
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| |
Collapse
|
19
|
Stoddard BL. Homing endonucleases from mobile group I introns: discovery to genome engineering. Mob DNA 2014; 5:7. [PMID: 24589358 PMCID: PMC3943268 DOI: 10.1186/1759-8753-5-7] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 02/13/2014] [Indexed: 12/20/2022] Open
Abstract
Homing endonucleases are highly specific DNA cleaving enzymes that are encoded within genomes of all forms of microbial life including phage and eukaryotic organelles. These proteins drive the mobility and persistence of their own reading frames. The genes that encode homing endonucleases are often embedded within self-splicing elements such as group I introns, group II introns and inteins. This combination of molecular functions is mutually advantageous: the endonuclease activity allows surrounding introns and inteins to act as invasive DNA elements, while the splicing activity allows the endonuclease gene to invade a coding sequence without disrupting its product. Crystallographic analyses of representatives from all known homing endonuclease families have illustrated both their mechanisms of action and their evolutionary relationships to a wide range of host proteins. Several homing endonucleases have been completely redesigned and used for a variety of genome engineering applications. Recent efforts to augment homing endonucleases with auxiliary DNA recognition elements and/or nucleic acid processing factors has further accelerated their use for applications that demand exceptionally high specificity and activity.
Collapse
Affiliation(s)
- Barry L Stoddard
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave, N, A3-025, Seattle, WA 98109, USA.
| |
Collapse
|
20
|
Ruff P, Koh KD, Keskin H, Pai RB, Storici F. Aptamer-guided gene targeting in yeast and human cells. Nucleic Acids Res 2014; 42:e61. [PMID: 24500205 PMCID: PMC3985672 DOI: 10.1093/nar/gku101] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Gene targeting is a genetic technique to modify an endogenous DNA sequence in its genomic location via homologous recombination (HR) and is useful both for functional analysis and gene therapy applications. HR is inefficient in most organisms and cell types, including mammalian cells, often limiting the effectiveness of gene targeting. Therefore, increasing HR efficiency remains a major challenge to DNA editing. Here, we present a new concept for gene correction based on the development of DNA aptamers capable of binding to a site-specific DNA binding protein to facilitate the exchange of homologous genetic information between a donor molecule and the desired target locus (aptamer-guided gene targeting). We selected DNA aptamers to the I-SceI endonuclease. Bifunctional oligonucleotides containing an I-SceI aptamer sequence were designed as part of a longer single-stranded DNA molecule that contained a region with homology to repair an I-SceI generated double-strand break and correct a disrupted gene. The I-SceI aptamer-containing oligonucleotides stimulated gene targeting up to 32-fold in yeast Saccharomyces cerevisiae and up to 16-fold in human cells. This work provides a novel concept and research direction to increase gene targeting efficiency and lays the groundwork for future studies using aptamers for gene targeting.
Collapse
Affiliation(s)
- Patrick Ruff
- School of Biology, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | | | | | | | | |
Collapse
|
21
|
Michel F. A maturase-like coding sequence downstream of the OXI2 gene of yeast mitochondrial DNA is interrupted by two GC clusters and a putative end-of-messenger signal. Curr Genet 2013; 8:307-17. [PMID: 24177800 DOI: 10.1007/bf00419729] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/1984] [Indexed: 11/29/2022]
Abstract
By completing and correcting the sequence of a 1.8 kb DNA segment downstream of the oxi2 gene of Saccharomyces cerevisiae, a long, potentially coding sequence ("RF2") has been identified. The sequence is rather closely related to the RF1 open reading frame, downstream of the oxil gene, and, further, to the major family of intronic open reading frames. The RF2 open reading frame is not continuous, however, for it is interrupted by two GC clusters, both of which ultimately result in a -1 frameshift. Comparison with RF1 reveals a third insertion. This is centered on an oligo nucleotide, AATAATATTCTTA, which is found (sometimes in a slightly modified form) downstream of ten proven or suspected protein coding genes, including RF1 and RF2, and is known to terminate the apocytochrome b messenger RNA. It is suggested from the known distribution of this putative "end-of-messenger" signal, that it could play an essential part in controlling the expression of several minor proteins, both intronic and non-intronic. The possibility of the RF2 sequence being functional in spite of its interruptions is also discussed.
Collapse
Affiliation(s)
- F Michel
- Centre de Génétique Moléculaire, Laboratoire Propre du Centre National de la Recherche Scientifique, Associé à l'Université Pierre et Marie Curie, 91190, Gif-sur-Yvette, France
| |
Collapse
|
22
|
Mitochondrial DNA from Podospora anserina : IV. The large ribosomal RNA gene contains two long intervening sequences. Curr Genet 2013; 7:151-7. [PMID: 24173158 DOI: 10.1007/bf00365641] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/1982] [Indexed: 10/26/2022]
Abstract
We have examined the structure of the rRNA genes from the mitochondrial genome of Podospora anserina. Using R-loop analysis, nuclease protection experiments, and Southern blot hybridization analysis we have observed two intervening sequences (IVS) in the large rRNA gene, and none in the small rRNA gene. the IVS sequences are 1.65 kbp and 2.73 kbp long, and the larger of the two is in the position of the conserved IVS found in the mitochondrial genomes of other fungi. We have detected precursor transcripts for the large rRNA, and these data support the observation of two IVS in this gene. We also note that the large and small rRNA genes are separated by approximately 6 kbp of DNA.
Collapse
|
23
|
Tools for characterizing bacterial protein synthesis inhibitors. Antimicrob Agents Chemother 2013; 57:5994-6004. [PMID: 24041905 DOI: 10.1128/aac.01673-13] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Many antibiotics inhibit the growth of sensitive bacteria by interfering with ribosome function. However, discovery of new protein synthesis inhibitors is curbed by the lack of facile techniques capable of readily identifying antibiotic target sites and modes of action. Furthermore, the frequent rediscovery of known antibiotic scaffolds, especially in natural product extracts, is time-consuming and expensive and diverts resources that could be used toward the isolation of novel lead molecules. In order to avoid these pitfalls and improve the process of dereplication of chemically complex extracts, we designed a two-pronged approach for the characterization of inhibitors of protein synthesis (ChIPS) that is suitable for the rapid identification of the site and mode of action on the bacterial ribosome. First, we engineered antibiotic-hypersensitive Escherichia coli strains that contain only one rRNA operon. These strains are used for the rapid isolation of resistance mutants in which rRNA mutations identify the site of the antibiotic action. Second, we show that patterns of drug-induced ribosome stalling on mRNA, monitored by primer extension, can be used to elucidate the mode of antibiotic action. These analyses can be performed within a few days and provide a rapid and efficient approach for identifying the site and mode of action of translation inhibitors targeting the bacterial ribosome. Both techniques were validated using a bacterial strain whose culture extract, composed of unknown metabolites, exhibited protein synthesis inhibitory activity; we were able to rapidly detect the presence of the antibiotic chloramphenicol.
Collapse
|
24
|
Beaudet D, Nadimi M, Iffis B, Hijri M. Rapid mitochondrial genome evolution through invasion of mobile elements in two closely related species of arbuscular mycorrhizal fungi. PLoS One 2013; 8:e60768. [PMID: 23637766 PMCID: PMC3630166 DOI: 10.1371/journal.pone.0060768] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 03/02/2013] [Indexed: 11/19/2022] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) are common and important plant symbionts. They have coenocytic hyphae and form multinucleated spores. The nuclear genome of AMF is polymorphic and its organization is not well understood, which makes the development of reliable molecular markers challenging. In stark contrast, their mitochondrial genome (mtDNA) is homogeneous. To assess the intra- and inter-specific mitochondrial variability in closely related Glomus species, we performed 454 sequencing on total genomic DNA of Glomus sp. isolate DAOM-229456 and we compared its mtDNA with two G. irregulare isolates. We found that the mtDNA of Glomus sp. is homogeneous, identical in gene order and, with respect to the sequences of coding regions, almost identical to G. irregulare. However, certain genomic regions vary substantially, due to insertions/deletions of elements such as introns, mitochondrial plasmid-like DNA polymerase genes and mobile open reading frames. We found no evidence of mitochondrial or cytoplasmic plasmids in Glomus species, and mobile ORFs in Glomus are responsible for the formation of four gene hybrids in atp6, atp9, cox2, and nad3, which are most probably the result of horizontal gene transfer and are expressed at the mRNA level. We found evidence for substantial sequence variation in defined regions of mtDNA, even among closely related isolates with otherwise identical coding gene sequences. This variation makes it possible to design reliable intra- and inter-specific markers.
Collapse
Affiliation(s)
- Denis Beaudet
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, Québec, Canada
| | - Maryam Nadimi
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, Québec, Canada
| | - Bachir Iffis
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, Québec, Canada
| | - Mohamed Hijri
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
25
|
Ishibashi S, Love NR, Amaya E. A simple method of transgenesis using I-SceI meganuclease in Xenopus. Methods Mol Biol 2012; 917:205-218. [PMID: 22956090 DOI: 10.1007/978-1-61779-992-1_12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Here we present a protocol for generating transgenic embryos in Xenopus using I-SceI meganuclease. This method relies on integration of DNA constructs, containing one or two I-SceI meganuclease sites. It is a simpler method than the REMI method of transgenesis, and it is ideally suited for generating transgenic lines in Xenopus laevis and Xenopus tropicalis. In addition to it being simpler than the REMI method, this protocol also results in single copy integration events rather than tandem concatemers. Although the protocol we describe is for X. tropicalis, the method can also be used to generate transgenic lines in X. laevis. We also describe a convenient method for designing and generating complex constructs for transgenesis, named pTransgenesis, based on the Multisite Gateway(®) cloning, which include I-SceI sites and Tol2 elements to facilitate genome integration.
Collapse
Affiliation(s)
- Shoko Ishibashi
- The Healing Foundation Centre, The Faculty of Life Sciences, University of Manchester, Manchester, England, UK
| | | | | |
Collapse
|
26
|
Mullineux ST, Willows K, Hausner G. Evolutionary dynamics of the mS952 intron: a novel mitochondrial group II intron encoding a LAGLIDADG homing endonuclease gene. J Mol Evol 2011; 72:433-49. [PMID: 21479820 DOI: 10.1007/s00239-011-9442-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Accepted: 03/22/2011] [Indexed: 12/21/2022]
Abstract
Examination of the mitochondrial small subunit ribosomal RNA (rns) gene of five species of the fungal genus Leptographium revealed that the gene has been invaded at least once at position 952 by a group II intron encoding a LAGLIDADG homing endonuclease gene. Phylogenetic analyses of the intron and homing endonuclease sequences indicated that each element in Leptographium species forms a single clade and is closely related to the group II intron/homing endonuclease gene composite element previously reported at position 952 of the mitochondrial rns gene of Cordyceps species and of Cryphonectria parasitica. The results of an intron survey of the mt rns gene of Leptographium species superimposed onto the phylogenetic analysis of the host organisms suggest that the composite element was transmitted vertically in Leptographium lundbergii. However, its stochastic distribution among strains of L. wingfieldii, L. terebrantis, and L. truncatum suggests that it has been horizontally transmitted by lateral gene transfer among these species, although the random presence of the intron may reflect multiple random loss events. A model is proposed describing the initial invasion of the group II intron in the rns gene of L. lundbergii by a LAGLIDADG homing endonuclease gene and subsequent evolution of this gene to recognize a novel DNA target site, which may now promote the mobility of the intron and homing endonuclease gene as a composite element.
Collapse
|
27
|
Mullineux ST, Costa M, Bassi GS, Michel F, Hausner G. A group II intron encodes a functional LAGLIDADG homing endonuclease and self-splices under moderate temperature and ionic conditions. RNA (NEW YORK, N.Y.) 2010; 16:1818-1831. [PMID: 20656798 PMCID: PMC2924541 DOI: 10.1261/rna.2184010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 06/16/2010] [Indexed: 05/29/2023]
Abstract
A group II intron encoding a protein belonging to the LAGLIDADG family of homing endonucleases was identified in the mitochondrial rns gene of the filamentous fungus Leptographium truncatum, and the catalytic activities of both the intron and its encoded protein were characterized. A model of the RNA secondary structure indicates that the intron is a member of the IIB1 subclass and the open reading frame is inserted in ribozyme domain III. In vitro assays carried out with two versions of the intron, one in which the open reading frame was removed and the other in which it was present, demonstrate that both versions of the intron readily self-splice at 37 degrees C and at a concentration of MgCl(2) as low as 6 mM. The open reading frame encodes a functional LAGLIDADG homing endonuclease that cleaves 2 (top strand) and 6 (bottom strand) nucleotides (nt) upstream of the intron insertion site, generating 4 nt 3' OH overhangs. In vitro splicing assays carried out in the absence and presence of the intron-encoded protein indicate that the protein does not enhance intron splicing, and RNA-binding assays show that the protein does not appear to bind to the intron RNA precursor transcript. These findings raise intriguing questions concerning the functional and evolutionary relationships of the two components of this unique composite element.
Collapse
|
28
|
Iams KP, Sinclair JH. Mapping the mitochondrial DNA of Zea mays: Ribosomal gene localization. Proc Natl Acad Sci U S A 2010; 79:5926-9. [PMID: 16593234 PMCID: PMC347023 DOI: 10.1073/pnas.79.19.5926] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have located the 18S and 26S ribosomal genes on a 32.2-kilobase pair (kb) restriction map of Zea mays mitochondrial DNA. In a BamHI restriction digest of mitochondrial DNA, band 4 carries all of the 26S gene whereas band 2 carries the 18S gene sequence. We have cloned and mapped bands 2 and 4 and show that they are contiguous in the genome. The 26S sequence is at one end of the 13.7-kb fragment 4, immediately adjacent to the junction with fragment 2. The 18S sequence is located at the far end of the 17.5-kb fragment 2, about 15 kb away from the 26S gene. A second region of 18S sequence homology is found on band 40. This region contains sequences that cross-hybridize with those in band 2. The nature of this apparent sequence repetition is unclear.
Collapse
Affiliation(s)
- K P Iams
- Biology Department, Indiana University, Bloomington, Indiana 47405
| | | |
Collapse
|
29
|
Kerscher S, Durstewitz G, Casaregola S, Gaillardin C, Brandt U. The complete mitochondrial genome of yarrowia lipolytica. Comp Funct Genomics 2010; 2:80-90. [PMID: 18628906 PMCID: PMC2447202 DOI: 10.1002/cfg.72] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2001] [Accepted: 02/10/2001] [Indexed: 11/16/2022] Open
Abstract
We here report the complete nucleotide sequence of the 47.9 kb mitochondrial (mt) genome
from the obligate aerobic yeast Yarrowia lipolytica. It encodes, all on the same strand,
seven subunits of NADH: ubiquinone oxidoreductase (ND1-6, ND4L), apocytochrome
b (COB), three subunits of cytochrome oxidase (COX1, 2, 3), three subunits of ATP
synthetase (ATP6, 8 and 9), small and large ribosomal RNAs and an incomplete set of
tRNAs. The Y. lipolytica mt genome is very similar to the Hansenula wingei mt genome,
as judged from blocks of conserved gene order and from sequence homology. The extra
DNA in the Y. lipolytica mt genome consists of 17 group 1 introns and stretches of A+Trich
sequence, interspersed with potentially transposable GC clusters. The usual mould mt
genetic code is used. Interestingly, there is no tRNA able to read CGN (arginine) codons.
CGN codons could not be found in exonic open reading frames, whereas they do occur in
intronic open reading frames. However, several of the intronic open reading frames have
accumulated mutations and must be regarded as pseudogenes. We propose that this may
have been triggered by the presence of untranslatable CGN codons. This sequence is
available under EMBL Accession No. AJ307410.
Collapse
Affiliation(s)
- S Kerscher
- Universitätsklinikum Frankfurt, Institut für Biochemie I, Zentrum der Biologischen Chemie, Frankfurt am Main D-60590, Germany.
| | | | | | | | | |
Collapse
|
30
|
Sethuraman J, Majer A, Iranpour M, Hausner G. Molecular Evolution of the mtDNA Encoded rps3 Gene Among Filamentous Ascomycetes Fungi with an Emphasis on the Ophiostomatoid Fungi. J Mol Evol 2009; 69:372-85. [DOI: 10.1007/s00239-009-9291-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Accepted: 09/23/2009] [Indexed: 01/28/2023]
|
31
|
Bouchier C, Ma L, Créno S, Dujon B, Fairhead C. Complete mitochondrial genome sequences of three Nakaseomyces species reveal invasion by palindromic GC clusters and considerable size expansion. FEMS Yeast Res 2009; 9:1283-92. [PMID: 19758332 DOI: 10.1111/j.1567-1364.2009.00551.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Here we report the sequence of three mitochondrial genomes from yeasts of the Nakaseomyces clade that includes the pathogenic yeast Candida glabrata, namely, that of Kluyveromyces delphensis, Candida castellii and Kluyveromyces bacillisporus. The gene content is equivalent to that of C. glabrata, but reveals the existence of new group I introns in COX1 and CYTB and new potential intronic endonucleases. Gene order is highly rearranged in these genomes, which contain numerous palindromic GC clusters. The more GC nucleotides these elements contain, the longer and more AT-rich are the intergenes containing them, leading to a direct relationship between the number of Gs and Cs within the elements and the size of the genomes. Thus, there is a fivefold difference in size between the smallest and the largest mitochondrial genome, with the largest being the most AT-rich overall. Sequences are available under EMBL accession numbers FM995164, FM995165, and FM995166.
Collapse
|
32
|
Affiliation(s)
- D Bhattacharya
- University of Iowa, Department of Biological Sciences, Biology Building, Iowa City, Iowa 52242-1324, USA
| |
Collapse
|
33
|
Lippow SM, Aha PM, Parker MH, Blake WJ, Baynes BM, Lipovsek D. Creation of a type IIS restriction endonuclease with a long recognition sequence. Nucleic Acids Res 2009; 37:3061-73. [PMID: 19304757 PMCID: PMC2685105 DOI: 10.1093/nar/gkp182] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 02/27/2009] [Accepted: 03/05/2009] [Indexed: 12/19/2022] Open
Abstract
Type IIS restriction endonucleases cleave DNA outside their recognition sequences, and are therefore particularly useful in the assembly of DNA from smaller fragments. A limitation of type IIS restriction endonucleases in assembly of long DNA sequences is the relative abundance of their target sites. To facilitate ligation-based assembly of extremely long pieces of DNA, we have engineered a new type IIS restriction endonuclease that combines the specificity of the homing endonuclease I-SceI with the type IIS cleavage pattern of FokI. We linked a non-cleaving mutant of I-SceI, which conveys to the chimeric enzyme its specificity for an 18-bp DNA sequence, to the catalytic domain of FokI, which cuts DNA at a defined site outside the target site. Whereas previously described chimeric endonucleases do not produce type IIS-like precise DNA overhangs suitable for ligation, our chimeric endonuclease cleaves double-stranded DNA exactly 2 and 6 nt from the target site to generate homogeneous, 5', four-base overhangs, which can be ligated with 90% fidelity. We anticipate that these enzymes will be particularly useful in manipulation of DNA fragments larger than a thousand bases, which are very likely to contain target sites for all natural type IIS restriction endonucleases.
Collapse
|
34
|
Nomura N, Nomura Y, Sussman D, Klein D, Stoddard BL. Recognition of a common rDNA target site in archaea and eukarya by analogous LAGLIDADG and His-Cys box homing endonucleases. Nucleic Acids Res 2008; 36:6988-98. [PMID: 18984620 PMCID: PMC2602781 DOI: 10.1093/nar/gkn846] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The presence of a homing endonuclease gene (HEG) within a microbial intron or intein empowers the entire element with the ability to invade genomic targets. The persistence of a homing endonuclease lineage depends in part on conservation of its DNA target site. One such rDNA sequence has been invaded both in archaea and in eukarya, by LAGLIDADG and His–Cys box homing endonucleases, respectively. The bases encoded by this target include a universally conserved ribosomal structure, termed helix 69 (H69) in the large ribosomal subunit. This region forms the ‘B2a’ intersubunit bridge to the small ribosomal subunit, contacts bound tRNA in the A- and P-sites, and acts as a trigger for ribosome disassembly through its interactions with ribosome recycling factor. We have determined the DNA-bound structure and specificity profile of an archaeal LAGLIDADG homing endonuclease (I-Vdi141I) that recognizes this target site, and compared its specificity with the analogous eukaryal His–Cys box endonuclease I-PpoI. These homodimeric endonuclease scaffolds have arrived at similar specificity profiles across their common biological target and analogous solutions to the problem of accommodating conserved asymmetries within the DNA sequence, but with differences at individual base pairs that are fine-tuned to the sequence conservation of archaeal versus eukaryal ribosomes.
Collapse
Affiliation(s)
- Norimichi Nomura
- Iwata Human Receptor Crystallography Project, ERATO, Japan Science and Technology Agency, Kyoto, Japan
| | | | | | | | | |
Collapse
|
35
|
Johansen SD, Haugen P, Nielsen H. Expression of protein-coding genes embedded in ribosomal DNA. Biol Chem 2007; 388:679-86. [PMID: 17570819 DOI: 10.1515/bc.2007.089] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Ribosomal DNA (rDNA) is a specialised chromosomal location that is dedicated to high-level transcription of ribosomal RNA genes. Interestingly, rDNAs are frequently interrupted by parasitic elements, some of which carry protein genes. These are non-LTR retrotransposons and group II introns that encode reverse transcriptase-like genes, and group I introns and archaeal introns that encode homing endonuclease genes (HEGs). Although rDNA-embedded protein genes are widespread in nuclei, organelles and bacteria, there is surprisingly little information available on how these genes are expressed. Exceptions include a handful of HEGs from group I introns. Recent studies have revealed unusual and essential roles of group I and group I-like ribozymes in the endogenous expression of HEGs. Here we discuss general aspects of rDNA-embedded protein genes and focus on HEG expression from group I introns in the nucleolus.
Collapse
Affiliation(s)
- Steinar D Johansen
- Department of Molecular Biotechnology, Institute of Medical Biology, University of Tromsø, Tromsø, Norway.
| | | | | |
Collapse
|
36
|
Montero CI, Johnson MR, Chou CJ, Conners SB, Geouge SG, Tachdjian S, Nichols JD, Kelly RM. Responses of wild-type and resistant strains of the hyperthermophilic bacterium Thermotoga maritima to chloramphenicol challenge. Appl Environ Microbiol 2007; 73:5058-65. [PMID: 17557852 PMCID: PMC1951032 DOI: 10.1128/aem.00453-07] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcriptomes and growth physiologies of the hyperthermophile Thermotoga maritima and an antibiotic-resistant spontaneous mutant were compared prior to and following exposure to chloramphenicol. While the wild-type response was similar to that of mesophilic bacteria, reduced susceptibility of the mutant was attributed to five mutations in 23S rRNA and phenotypic preconditioning to chloramphenicol.
Collapse
Affiliation(s)
- Clemente I Montero
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Bonnefoy N, Remacle C, Fox TD. Genetic transformation of Saccharomyces cerevisiae and Chlamydomonas reinhardtii mitochondria. Methods Cell Biol 2007; 80:525-48. [PMID: 17445712 DOI: 10.1016/s0091-679x(06)80026-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Nathalie Bonnefoy
- Centre de Génétique Moléculaire, CNRS UPR2167, Avenue de la Terrasse, 91198 Gif-sur-Yvette cedex, France
| | | | | |
Collapse
|
38
|
Abstract
Oxidative phosphorylation (OXPHOS) is the only mammalian biochemical pathway dependent on the coordinated assembly of protein subunits encoded by both nuclear and mitochondrial DNA (mtDNA) genes. Cytoplasmic hybrid cells, cybrids, are created by introducing mtDNAs of interest into cells depleted of endogenous mtDNAs, and have been a central tool in unraveling effects of disease-linked mtDNA mutations. In this way, the nuclear genetic complement is held constant so that observed effects on OXPHOS can be linked to the introduced mtDNA. Cybrid studies have confirmed such linkage for many defined, disease-associated mutations. In general, a threshold principle is evident where OXPHOS defects are expressed when the proportion of mutant mtDNA in a heteroplasmic cell is high. Cybrids have also been used where mtDNA mutations are not known, but are suspected, and have produced some support for mtDNA involvement in more common neurodegenerative diseases. Mouse modeling of mtDNA transmission and disease has recently taken advantage of cybrid approaches. By using cultured cells as intermediate carriers of mtDNAs, ES cell cybrids have been produced in several laboratories by pretreatment of the cells with rhodamine 6G before cytoplast fusion. Both homoplasmic and heteroplasmic mice have been produced, allowing modeling of mtDNA transmission through the mouse germ line. We also briefly review and compare other transgenic approaches to modeling mtDNA dynamics, including mitochondrial injection into oocytes or zygotes, and embryonic karyoplast transfer. When breakthrough technology for mtDNA transformation arrives, cybrids will remain valuable for allowing exchange of engineered mtDNAs between cells.
Collapse
Affiliation(s)
- Ian A Trounce
- Center for Neuroscience, University of Melbourne, Victoria 3010, Australia
| | | |
Collapse
|
39
|
Gregory ST, Carr JF, Rodriguez-Correa D, Dahlberg AE. Mutational analysis of 16S and 23S rRNA genes of Thermus thermophilus. J Bacteriol 2005; 187:4804-12. [PMID: 15995195 PMCID: PMC1169515 DOI: 10.1128/jb.187.14.4804-4812.2005] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Structural studies of the ribosome have benefited greatly from the use of organisms adapted to extreme environments. However, little is known about the mechanisms by which ribosomes or other ribonucleoprotein complexes have adapted to functioning under extreme conditions, and it is unclear to what degree mutant phenotypes of extremophiles will resemble those of their counterparts adapted to more moderate environments. It is conceivable that phenotypes of mutations affecting thermophilic ribosomes, for instance, will be influenced by structural adaptations specific to a thermophilic existence. This consideration is particularly important when using crystal structures of thermophilic ribosomes to interpret genetic results from nonextremophilic species. To address this issue, we have conducted a survey of spontaneously arising antibiotic-resistant mutants of the extremely thermophilic bacterium Thermus thermophilus, a species which has featured prominently in ribosome structural studies. We have accumulated over 20 single-base substitutions in T. thermophilus 16S and 23S rRNA, in the decoding site and in the peptidyltransferase active site of the ribosome. These mutations produce phenotypes that are largely identical to those of corresponding mutants of mesophilic organisms encompassing a broad phylogenetic range, suggesting that T. thermophilus may be an ideal model system for the study of ribosome structure and function.
Collapse
Affiliation(s)
- Steven T Gregory
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | | | | | | |
Collapse
|
40
|
Pringle M, Poehlsgaard J, Vester B, Long KS. Mutations in ribosomal protein L3 and 23S ribosomal RNA at the peptidyl transferase centre are associated with reduced susceptibility to tiamulin in Brachyspira spp. isolates. Mol Microbiol 2005; 54:1295-306. [PMID: 15554969 DOI: 10.1111/j.1365-2958.2004.04373.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The pleuromutilin antibiotic tiamulin binds to the ribosomal peptidyl transferase centre. Three groups of Brachyspira spp. isolates with reduced tiamulin susceptibility were analysed to define resistance mechanisms to the drug. Mutations were identified in genes encoding ribosomal protein L3 and 23S rRNA at positions proximal to the peptidyl transferase centre. In two groups of laboratory-selected mutants, mutations were found at nucleotide positions 2032, 2055, 2447, 2499, 2504 and 2572 of 23S rRNA (Escherichia coli numbering) and at amino acid positions 148 and 149 of ribosomal protein L3 (Brachyspira pilosicoli numbering). In a third group of clinical B. hyodysenteriae isolates, only a single mutation at amino acid 148 of ribosomal protein L3 was detected. Chemical footprinting experiments show a reduced binding of tiamulin to ribosomal subunits from mutants with decreased susceptibility to the drug. This reduction in drug binding is likely the resistance mechanism for these strains. Hence, the identified mutations located near the tiamulin binding site are predicted to be responsible for the resistance phenotype. The positions of the mutated residues relative to the bound drug advocate a model where the mutations affect tiamulin binding indirectly through perturbation of nucleotide U2504.
Collapse
Affiliation(s)
- Märit Pringle
- Department of Antibiotics, National Veterinary Institute, SE-75189 Uppsala, Sweden
| | | | | | | |
Collapse
|
41
|
Talla E, Anthouard V, Bouchier C, Frangeul L, Dujon B. The complete mitochondrial genome of the yeast Kluyveromyces thermotolerans. FEBS Lett 2005; 579:30-40. [PMID: 15620687 DOI: 10.1016/j.febslet.2004.10.106] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2004] [Revised: 10/25/2004] [Accepted: 10/28/2004] [Indexed: 10/26/2022]
Abstract
We report here the complete nucleotide sequence of the 23.5-kb mitochondrial genome from the yeast Kluyveromyces thermotolerans. It encodes, all on the same DNA strand, three subunits of cytochrome oxidase (COX1, COX2 and COX3), three subunits of ATP synthetase (ATP6, ATP8 and ATP9), the apocytochrome b (COB), the ribosomal protein VAR1, 24 tRNAs, the small and large ribosomal RNAs, and the RNA subunit of RNase P. Three intronic ORFs are present within the COX1 gene group I introns. The K. thermotolerans mitochondrial genome is very similar to the Candida glabrata mitochondrial genome, as judged from clusters of gene order, gene transcription units and sequence similarities. Interestingly, the predicted secondary structure of the abnormal tRNAThr1 contains 10 nucleotides in its anticodon loop. This sequence is available under EMBL Accession No. AJ634268.
Collapse
Affiliation(s)
- Emmanuel Talla
- Unité de Génétique Moléculaire des Levures (URA 2171 CNRS, UFR 927 Université PM Curie), Institut Pasteur, 25 rue du Docteur Roux, F-75724 Paris Cedex 15, France.
| | | | | | | | | |
Collapse
|
42
|
|
43
|
de Piédoue G, Maurisse R, Kuzniak I, Lopez B, Perrin A, Nègre O, Leboulch P, Feugeas JP. Improving gene replacement by intracellular formation of linear homologous DNA. J Gene Med 2005; 7:649-56. [PMID: 15641108 DOI: 10.1002/jgm.706] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Gene targeting is a potential tool for gene therapy but is limited by the low rate of homologous recombination. Using highly homologous linear DNA improves gene targeting frequency but requires microinjection into nuclear cells to be effective. Because transfection of circular DNA is more efficient than transfection of linear DNA and adaptable to viral vectors, we developed a system for the intracellular release of linear fragments from circular plasmids. METHODS Only one cutting site inside the "donor" DNA was not convenient because it led to integration of exogenous sequences into the target. So we constructed several "donor" plasmids containing the homologous sequences flanked by two I-Sce I recognition sites. Expression of I-Sce I allowed intracellular delivery of "ends-out" (replacement) vectors. We compared the efficiency of different constructions to correct a mutated gfp target. RESULTS Co-transfection of "donor" plasmids and an I-Sce I expression vector into CHO cells enhanced the correction of an extrachromosomal mutated gfp target by at least 10 times. Maximum correction was observed with the greatest homology size and maximum effect of I-Sce I was obtained when the long hemi-sites of the duplicated I-Sce I sites were contiguous to the homologous sequence. Unexpectedly, the reverse orientation of I-Sce I sites provided little or no effect, probably due to the asymmetrical activity of the I-Sce I meganuclease. CONCLUSIONS Releasing homologous DNA fragments with I-Sce I enhances gene replacement. This work provides the basis for the future design of viral vectors for gene replacement.
Collapse
Affiliation(s)
- G de Piédoue
- INSERM emi 0111, laboratoire de Thérapie Génique Hématopoïétique, Institut Universitaire d'Hématologie, Hôpital Saint-Louis, 1 Av. C. Vellefaux, 75010 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
44
|
|
45
|
Long KS, Porse BT. A conserved chloramphenicol binding site at the entrance to the ribosomal peptide exit tunnel. Nucleic Acids Res 2003; 31:7208-15. [PMID: 14654696 PMCID: PMC291879 DOI: 10.1093/nar/gkg945] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2003] [Revised: 10/22/2003] [Accepted: 10/30/2003] [Indexed: 11/14/2022] Open
Abstract
The antibiotic chloramphenicol produces modifications in 23S rRNA when bound to ribosomes from the bacterium Escherichia coli and the archaeon Halobacterium halobium and irradiated with 365 nm light. The modifications map to nucleotides m(5)U747 and C2611/C2612, in domains II and V, respectively, of E.coli 23S rRNA and G2084 (2058 in E.coli numbering) in domain V of H.halobium 23S rRNA. The modification sites overlap with a portion of the macrolide binding site and cluster at the entrance to the peptide exit tunnel. The data correlate with the recently reported chloramphenicol binding site on an archaeal ribosome and suggest that a similar binding site is present on the E.coli ribosome.
Collapse
Affiliation(s)
- Katherine S Long
- Department of Biological Chemistry, Institute of Molecular Biology, University of Copenhagen, Sølvgade 83H, DK-1307 Copenhagen K, Denmark.
| | | |
Collapse
|
46
|
Hansen JL, Moore PB, Steitz TA. Structures of five antibiotics bound at the peptidyl transferase center of the large ribosomal subunit. J Mol Biol 2003; 330:1061-75. [PMID: 12860128 DOI: 10.1016/s0022-2836(03)00668-5] [Citation(s) in RCA: 309] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Structures of anisomycin, chloramphenicol, sparsomycin, blasticidin S, and virginiamycin M bound to the large ribosomal subunit of Haloarcula marismortui have been determined at 3.0A resolution. Most of these antibiotics bind to sites that overlap those of either peptidyl-tRNA or aminoacyl-tRNA, consistent with their functioning as competitive inhibitors of peptide bond formation. Two hydrophobic crevices, one at the peptidyl transferase center and the other at the entrance to the peptide exit tunnel play roles in binding these antibiotics. Midway between these crevices, nucleotide A2103 of H.marismortui (2062 Escherichia coli) varies in its conformation and thereby contacts antibiotics bound at either crevice. The aromatic ring of anisomycin binds to the active-site hydrophobic crevice, as does the aromatic ring of puromycin, while the aromatic ring of chloramphenicol binds to the exit tunnel hydrophobic crevice. Sparsomycin contacts primarily a P-site bound substrate, but also extends into the active-site hydrophobic crevice. Virginiamycin M occupies portions of both the A and P-site, and induces a conformational change in the ribosome. Blasticidin S base-pairs with the P-loop and thereby mimics C74 and C75 of a P-site bound tRNA.
Collapse
Affiliation(s)
- Jeffrey L Hansen
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520-8114, USA
| | | | | |
Collapse
|
47
|
Gregory ST, Bayfield MA, O'Connor M, Thompson J, Dahlberg AE. Probing ribosome structure and function by mutagenesis. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 66:101-8. [PMID: 12762012 DOI: 10.1101/sqb.2001.66.101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- S T Gregory
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | | | | | | | | |
Collapse
|
48
|
Kim DF, Semrad K, Green R. Analysis of the active site of the ribosome by site-directed mutagenesis. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 66:119-26. [PMID: 12762014 DOI: 10.1101/sqb.2001.66.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- D F Kim
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
49
|
Langkjaer RB, Casaregola S, Ussery DW, Gaillardin C, Piskur J. Sequence analysis of three mitochondrial DNA molecules reveals interesting differences among Saccharomyces yeasts. Nucleic Acids Res 2003; 31:3081-91. [PMID: 12799436 PMCID: PMC162263 DOI: 10.1093/nar/gkg423] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2003] [Revised: 04/11/2003] [Accepted: 04/11/2003] [Indexed: 11/13/2022] Open
Abstract
The complete sequences of mitochondrial DNA (mtDNA) from the two budding yeasts Saccharomyces castellii and Saccharomyces servazzii, consisting of 25 753 and 30 782 bp, respectively, were analysed and compared to Saccharomyces cerevisiae mtDNA. While some of the traits are very similar among Saccharomyces yeasts, others have highly diverged. The two mtDNAs are much more compact than that of S.cerevisiae and contain fewer introns and intergenic sequences, although they have almost the same coding potential. A few genes contain group I introns, but group II introns, otherwise found in S.cerevisiae mtDNA, are not present. Surprisingly, four genes (ATP6, COX2, COX3 and COB) in the mtDNA of S.servazzii contain, in total, five +1 frameshifts. mtDNAs of S.castellii, S.servazzii and S.cerevisiae contain all genes on the same strand, except for one tRNA gene. On the other hand, the gene order is very different. Several gene rearrangements have taken place upon separation of the Saccharomyces lineages, and even a part of the transcription units have not been preserved. It seems that the mechanism(s) involved in the generation of the rearrangements has had to ensure that all genes stayed encoded by the same DNA strand.
Collapse
MESH Headings
- Base Sequence
- DNA, Intergenic
- DNA, Mitochondrial/chemistry
- DNA, Mitochondrial/genetics
- Endodeoxyribonucleases/metabolism
- Endoribonucleases/genetics
- Gene Order
- Genes, rRNA
- Introns
- Mitochondrial Proteins/genetics
- Molecular Sequence Data
- Open Reading Frames
- RNA/chemistry
- RNA/metabolism
- RNA, Catalytic/genetics
- RNA, Mitochondrial
- RNA, Transfer/genetics
- Repetitive Sequences, Nucleic Acid
- Ribonuclease P
- Saccharomyces/genetics
- Saccharomyces cerevisiae/genetics
- Sequence Analysis, DNA
- Species Specificity
- Transcription Initiation Site
- Transcription, Genetic
Collapse
Affiliation(s)
- R B Langkjaer
- BioCentrum-DTU, Technical University of Denmark, Building 301, DK-2800 Kgl. Lyngby, Denmark
| | | | | | | | | |
Collapse
|
50
|
|