1
|
Boesler B, Meier D, Förstner KU, Friedrich M, Hammann C, Sharma CM, Nellen W. Argonaute proteins affect siRNA levels and accumulation of a novel extrachromosomal DNA from the Dictyostelium retrotransposon DIRS-1. J Biol Chem 2014; 289:35124-38. [PMID: 25352599 DOI: 10.1074/jbc.m114.612663] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The retrotransposon DIRS-1 is the most abundant retroelement in Dictyostelium discoideum and constitutes the pericentromeric heterochromatin of the six chromosomes in D. discoideum. The vast majority of cellular siRNAs is derived from DIRS-1, suggesting that the element is controlled by RNAi-related mechanisms. We investigated the role of two of the five Argonaute proteins of D. discoideum, AgnA and AgnB, in DIRS-1 silencing. Deletion of agnA resulted in the accumulation of DIRS-1 transcripts, the expression of DIRS-1-encoded proteins, and the loss of most DIRS-1-derived secondary siRNAs. Simultaneously, extrachromosomal single-stranded DIRS-1 DNA accumulated in the cytoplasm of agnA- strains. These DNA molecules appear to be products of reverse transcription and thus could represent intermediate structures before transposition. We further show that transitivity of endogenous siRNAs is impaired in agnA- strains. The deletion of agnB alone had no strong effect on DIRS-1 transposon regulation. However, in agnA-/agnB- double mutant strains strongly reduced accumulation of extrachromosomal DNA compared with the single agnA- strains was observed.
Collapse
Affiliation(s)
- Benjamin Boesler
- From the Department of Genetics, FB10, Kassel University, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| | - Doreen Meier
- From the Department of Genetics, FB10, Kassel University, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| | - Konrad U Förstner
- Research Center for Infectious Diseases (ZINF), University of Würzburg, Josef-Schneider-Strasse 2/Bau D15, 97080 Würzburg, Germany, and
| | - Michael Friedrich
- From the Department of Genetics, FB10, Kassel University, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| | - Christian Hammann
- Ribogenetics Biochemistry Laboratory, School of Engineering and Science, Molecular Life Sciences Research Center, Jacobs University, Campus Ring 1, DE-28759 Bremen, Germany
| | - Cynthia M Sharma
- Research Center for Infectious Diseases (ZINF), University of Würzburg, Josef-Schneider-Strasse 2/Bau D15, 97080 Würzburg, Germany, and
| | - Wolfgang Nellen
- From the Department of Genetics, FB10, Kassel University, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany,
| |
Collapse
|
2
|
Wiegand S, Meier D, Seehafer C, Malicki M, Hofmann P, Schmith A, Winckler T, Földesi B, Boesler B, Nellen W, Reimegård J, Käller M, Hällman J, Emanuelsson O, Avesson L, Söderbom F, Hammann C. The Dictyostelium discoideum RNA-dependent RNA polymerase RrpC silences the centromeric retrotransposon DIRS-1 post-transcriptionally and is required for the spreading of RNA silencing signals. Nucleic Acids Res 2013; 42:3330-45. [PMID: 24369430 PMCID: PMC3950715 DOI: 10.1093/nar/gkt1337] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Dictyostelium intermediate repeat sequence 1 (DIRS-1) is the founding member of a poorly characterized class of retrotransposable elements that contain inverse long terminal repeats and tyrosine recombinase instead of DDE-type integrase enzymes. In Dictyostelium discoideum, DIRS-1 forms clusters that adopt the function of centromeres, rendering tight retrotransposition control critical to maintaining chromosome integrity. We report that in deletion strains of the RNA-dependent RNA polymerase RrpC, full-length and shorter DIRS-1 messenger RNAs are strongly enriched. Shorter versions of a hitherto unknown long non-coding RNA in DIRS-1 antisense orientation are also enriched in rrpC– strains. Concurrent with the accumulation of long transcripts, the vast majority of small (21 mer) DIRS-1 RNAs vanish in rrpC– strains. RNASeq reveals an asymmetric distribution of the DIRS-1 small RNAs, both along DIRS-1 and with respect to sense and antisense orientation. We show that RrpC is required for post-transcriptional DIRS-1 silencing and also for spreading of RNA silencing signals. Finally, DIRS-1 mis-regulation in the absence of RrpC leads to retrotransposon mobilization. In summary, our data reveal RrpC as a key player in the silencing of centromeric retrotransposon DIRS-1. RrpC acts at the post-transcriptional level and is involved in spreading of RNA silencing signals, both in the 5′ and 3′ directions.
Collapse
Affiliation(s)
- Stephan Wiegand
- Ribogenetics@Biochemistry Lab, School of Engineering and Science, Molecular Life Sciences Research Center, Jacobs University Bremen, Campus Ring 1, DE-28759 Bremen, Germany, Abteilung Genetik, Universität Kassel, Heinrich-Plett-Strasse 40, DE-34132 Kassel, Germany, Friedrich-Schiller-Universität Jena, Institut für Pharmazie, Lehrstuhl für Pharmazeutische Biologie, Semmelweisstraße 10, DE-07743 Jena, Germany, Division of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory (SciLifeLab Stockholm), School of Biotechnology, SE-171 65 Solna, Sweden, Garvan Institute of Medical Research, 384 Victoria St Darlinghurst, NSW 2010, Australia, Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, PO Box 596, S-75124 Uppsala, Sweden and Science for Life Laboratory, SE-75124 Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Abstract
In 1950, Barbara McClintock published a Classic PNAS article, "The origin and behavior of mutable loci in maize," which summarized the evidence leading to her discovery of transposition. The article described a number of genome alterations revealed through her studies of the Dissociation locus, the first mobile genetic element she identified. McClintock described the suite of nuclear events, including transposon activation and various chromosome aberrations and rearrangements, that unfolded in the wake of genetic crosses that brought together two broken chromosomes 9. McClintock left future generations with the challenge of understanding how genomes respond to genetic and environmental stresses by mounting adaptive responses that frequently include genome restructuring.
Collapse
|
4
|
Hinas A, Reimegård J, Wagner EGH, Nellen W, Ambros VR, Söderbom F. The small RNA repertoire of Dictyostelium discoideum and its regulation by components of the RNAi pathway. Nucleic Acids Res 2007; 35:6714-26. [PMID: 17916577 PMCID: PMC2175303 DOI: 10.1093/nar/gkm707] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Small RNAs play crucial roles in regulation of gene expression in many eukaryotes. Here, we report the cloning and characterization of 18–26 nt RNAs in the social amoeba Dictyostelium discoideum. This survey uncovered developmentally regulated microRNA candidates whose biogenesis, at least in one case, is dependent on a Dicer homolog, DrnB. Furthermore, we identified a large number of 21 nt RNAs originating from the DIRS-1 retrotransposon, clusters of which have been suggested to constitute centromeres. Small RNAs from another retrotransposon, Skipper, were significantly up-regulated in strains depleted of the second Dicer-like protein, DrnA, and a putative RNA-dependent RNA polymerase, RrpC. In contrast, the expression of DIRS-1 small RNAs was not altered in any of the analyzed strains. This suggests the presence of multiple RNAi pathways in D. discoideum. In addition, we isolated several small RNAs with antisense complementarity to mRNAs. Three of these mRNAs are developmentally regulated. Interestingly, all three corresponding genes express longer antisense RNAs from which the small RNAs may originate. In at least one case, the longer antisense RNA is complementary to the spliced but not the unspliced pre-mRNA, indicating synthesis by an RNA-dependent RNA polymerase.
Collapse
Affiliation(s)
- Andrea Hinas
- Department of Molecular Biology, Biomedical Center, Swedish University of Agricultural Sciences, Box 590, SE-75124 Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
5
|
Kuhlmann M, Borisova BE, Kaller M, Larsson P, Stach D, Na J, Eichinger L, Lyko F, Ambros V, Söderbom F, Hammann C, Nellen W. Silencing of retrotransposons in Dictyostelium by DNA methylation and RNAi. Nucleic Acids Res 2005; 33:6405-17. [PMID: 16282589 PMCID: PMC1283529 DOI: 10.1093/nar/gki952] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have identified a DNA methyltransferase of the Dnmt2 family in Dictyostelium that was denominated DnmA. Expression of the dnmA gene is downregulated during the developmental cycle. Overall DNA methylation in Dictyostelium is ∼0.2% of the cytosine residues, which indicates its restriction to a limited set of genomic loci. Bisulfite sequencing of specific sites revealed that DnmA is responsible for methylation of mostly asymmetric C-residues in the retrotransposons DIRS-1 and Skipper. Disruption of the gene resulted in a loss of methylation and in increased transcription and mobilization of Skipper. Skipper transcription was also upregulated in strains that had genes encoding components of the RNA interference pathway disrupted. In contrast, DIRS-1 expression was not affected by a loss of DnmA but was strongly increased in strains that had the RNA-directed RNA polymerase gene rrpC disrupted. A large number of siRNAs were found that corresponded to the DIRS-1 sequence, suggesting concerted regulation of DIRS-1 expression by RNAi and DNA modification. No siRNAs corresponding to the standard Skipper element were found. The data show that DNA methylation plays a crucial role in epigenetic gene silencing in Dictyostelium but that different, partially overlapping mechanisms control transposon silencing.
Collapse
Affiliation(s)
| | | | | | - Pontus Larsson
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala UniversityBox 596, S-751 24 Uppsala, Sweden
| | - Dirk Stach
- Arbeitsgruppe Epigenetik, Deutsches KrebsforschungszentrumIm Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Jianbo Na
- Institut fuer Biochemie I, Medizinische Einrichtungen der Universitaet zu KoelnJoseph-Stelzmann-Str. 52, 50931 Koeln, Germany
| | - Ludwig Eichinger
- Institut fuer Biochemie I, Medizinische Einrichtungen der Universitaet zu KoelnJoseph-Stelzmann-Str. 52, 50931 Koeln, Germany
| | - Frank Lyko
- Arbeitsgruppe Epigenetik, Deutsches KrebsforschungszentrumIm Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Victor Ambros
- Department of Genetics, Dartmouth Medical SchoolHanover, NH 03755, USA
| | - Fredrik Söderbom
- Department of Molecular Biology, Biomedical Center, Swedish University of Agricultural SciencesBox 590, S-75124 Uppsala, Sweden
| | | | - Wolfgang Nellen
- To whom correspondence should be addressed. Tel: +49 561 8044805; Fax: +49 561 8044800;
| |
Collapse
|
6
|
Morales JF, Snow ET, Murnane JP. Environmental factors affecting transcription of the human L1 retrotransposon. II. Stressors. Mutagenesis 2003; 18:151-8. [PMID: 12621071 DOI: 10.1093/mutage/18.2.151] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Retrotransposons have clearly molded the structure of the human genome. The reverse transcriptase coded for by long interspersed nuclear elements (LINEs) accounts for 35% of the human genome, with 8-9 x 10(5) copies of the most common human LINE element, L1Hs. Retrotransposons cycle through an RNA intermediate with transcription as the rate limiting step. Because various retrotransposons have been demonstrated to be induced by environmental stimuli, we investigated the response of the L1Hs promoter to various agents. L1Hs promoter activity was analyzed by transfecting an L1Hs-expressing cell line with plasmids containing one of two L1Hs promoters fused to the LacZ reporter gene. L1Hs promoter activity was then monitored with a beta-galactosidase assay. Treatment with UV light and heat shock resulted in a small increase in beta-galactosidase activity from one promoter, while treatment with tetradecanoylphorbol 13-acetate resulted in small increases in beta-galactosidase activity from both promoters. No increase in beta-galactosidase activity was observed after exposure to X-rays or hydrogen peroxide.
Collapse
Affiliation(s)
- José F Morales
- Radiation Oncology Research Laboratory, University of California-San Francisco, 1855 Folsom Street, MCB 200, San Francisco, CA 94103, USA
| | | | | |
Collapse
|
7
|
Georgiev S, Dekova T, Bonchev G, Kitanova M. Plant Tansposable Elements. A Focal Point for Future Studies of the Plant Genomes. BIOTECHNOL BIOTEC EQ 2002. [DOI: 10.1080/13102818.2002.10819181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
8
|
Glöckner G, Szafranski K, Winckler T, Dingermann T, Quail MA, Cox E, Eichinger L, Noegel AA, Rosenthal A. The complex repeats of Dictyostelium discoideum. Genome Res 2001; 11:585-94. [PMID: 11282973 PMCID: PMC311061 DOI: 10.1101/gr.162201] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In the course of determining the sequence of the Dictyostelium discoideum genome we have characterized in detail the quantity and nature of interspersed repetitive elements present in this species. Several of the most abundant small complex repeats and transposons (DIRS-1; TRE3-A,B; TRE5-A; skipper; Tdd-4; H3R) have been described previously. In our analysis we have identified additional elements. Thus, we can now present a complete list of complex repetitive elements in D. discoideum. All elements add up to 10% of the genome. Some of the newly described elements belong to established classes (TRE3-C, D; TRE5-B,C; DGLT-A,P; Tdd-5). However, we have also defined two new classes of DNA transposable elements (DDT and thug) that have not been described thus far. Based on the nucleotide amount, we calculated the least copy number in each family. These vary between <10 up to >200 copies. Unique sequences adjacent to the element ends and truncation points in elements gave a measure for the fragmentation of the elements. Furthermore, we describe the diversity of single elements with regard to polymorphisms and conserved structures. All elements show insertion preference into loci in which other elements of the same family reside. The analysis of the complex repeats is a valuable data resource for the ongoing assembly of whole D. discoideum chromosomes.
Collapse
Affiliation(s)
- G Glöckner
- IMB Jena, Department of Genome Analysis, D-07745 Jena, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Williamson BD, Favis R, Brickey DA, Rutherford CL. Isolation and characterization of glycogen synthase in Dictyostelium discoideum. DEVELOPMENTAL GENETICS 2000; 19:350-64. [PMID: 9023987 DOI: 10.1002/(sici)1520-6408(1996)19:4<350::aid-dvg8>3.0.co;2-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have partially purified the protein and isolated the glcS gene for glycogen synthase in Dictyostelium. glcS mRNA is present throughout development and is the product of a single gene coding for 775 amino acids, with a predicted molecular mass of 87 kD. The sequence is highly similar to glycogen synthase from human muscle, yeast, and rat liver, diverging significantly only at the amino and carboxy termini. Phosphorylation and UDPG binding sites are conserved, with K(m) values for UDPG being comparable to those determined for other organisms, but in vitro phosphorylation failing to convert between the G6P-dependent (D) and -independent (I) forms. Enzyme activity is relatively constant throughout the life cycle: the I form of the enzyme isolates with the soluble fraction in amoebae, switches to the D form, becomes pellet-associated during early development, and finally reverts during late development to the I form, which again localizes to the soluble fraction. Deletion analysis of the promoter reveals a GC-rich element which, when deleted, abolishes expression of glcS.
Collapse
Affiliation(s)
- B D Williamson
- Department of Biology, virginia Polytechnic Institute and State University, Blacksburg 24061-0406, USA
| | | | | | | |
Collapse
|
10
|
Abstract
Although it is known today that transposons comprise a significant fraction of the genomes of many organisms, they eluded discovery through the first half century of genetic analysis and even once discovered, their ubiquity and abundance were not recognized for some time. This genetic invisibility of transposons focuses attention on the mechanisms that control not only transposition, but illegitimate recombination. The thesis is developed that the mechanisms that control transposition are a reflection of the more general capacity of eukaryotic organisms to detect, mark, and retain duplicated DNA through repressive chromatin structures.
Collapse
Affiliation(s)
- N Fedoroff
- The Pennsylvania State University, University Park, PA 16803, USA.
| |
Collapse
|
11
|
Wells DJ. Tdd-4, a DNA transposon of Dictyostelium that encodes proteins similar to LTR retroelement integrases. Nucleic Acids Res 1999; 27:2408-15. [PMID: 10325432 PMCID: PMC148809 DOI: 10.1093/nar/27.11.2408] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Tdd-4 is the first DNA transposon to be isolated from Dictyostelium discoideum. This element was isolated by insertion into a target plasmid. Two classes of elements were identified which include a 3.8 kb version and a 3.4 kb deleted version. Sequence analysis reveals that the 145 bp inverted terminal repeats contain the 5'-TGellipsisCA-3' conserved terminal dinucleotides found in prokaryotic transposons and integrated LTR retroelement DNA sequences. Tdd-4 open reading frames are assembled by removal of six introns. Introns 1-5 conform to the GT-AG rule, whereas intron 6 appears to be an AT-AA intron. Also, intron 6 undergoes an alternative 5' splicing reaction. The alternatively spliced region encodes 15 tandem SPXX repeats that are proposed to function as a DNA binding motif. By analogy to other transposons that encode two proteins from the same gene, the full-length Tdd-4 protein is the putative transposase and the truncated Tdd-4 protein is the putative transposition inhibitor. Protein database searches demonstrate Tdd-4 encoded proteins are unique for a DNA element by containing similarities to retroviral/retrotransposon integrases. The putative Tdd-4 transposase contains the same structural relationship as integrases by possessing an N-terminal HHCC motif, a central DDE motif and a C-terminal DNA-binding domain composed of the SPXX motif.
Collapse
Affiliation(s)
- D J Wells
- Program in Molecular Biology, Department of Biology, Utah State University, Logan, UT 84322, USA.
| |
Collapse
|
12
|
|
13
|
Thykjaer T, Stiller J, Handberg K, Jones J, Stougaard J. The maize transposable element Ac is mobile in the legume Lotus japonicus. PLANT MOLECULAR BIOLOGY 1995; 27:981-993. [PMID: 7766887 DOI: 10.1007/bf00037025] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
To evaluate the prospects for transposon mutagenesis in the autogamous diploid legume Lotus japonicus, the behaviour of the maize transposable element Ac was analysed in the progeny of 38 independent transgenic plants. The conditions for monitoring donor site excision using histochemical localization of beta-glucuronidase activity or the alternative spectinomycin resistance assay were established, and used to follow Ac mobility through two generations. Somatic excision was monitored as variegated cotyledons in the T2 generation and germinal excision events were scored in segregating T3 families as complete beta-glucuronidase-mediated staining of cotyledons or as a fully green spectinomycin-resistant phenotype. Using these assays an average germinal excision frequency of 12% was estimated in the T3 offspring from variegated plants. The fidelity of the excision assays was ascertained by comparing the frequency of germinal excision to the frequency of Ac reinsertion at new positions of the genome. Transposition of Ac in 42% of the plants and detection of the characteristic Ac insertion/excision footprints suggests that insertion mutagenesis with the autonomous maize Activator element is feasible in Lotus japonicus. Parameters influencing Ac behaviour, such as dosage, position effects and modification of the element itself, were also investigated comparing homozygous and hemizygous plants from the same family and by analysing different transformants.
Collapse
Affiliation(s)
- T Thykjaer
- Department of Molecular Biology, University of Aarhus, Denmark
| | | | | | | | | |
Collapse
|
14
|
Jeyaprakash A, Hoy MA. Complete sequence of a mariner transposable element from the predatory mite Metaseiulus occidentalis isolated by an inverse PCR approach. INSECT MOLECULAR BIOLOGY 1995; 4:31-39. [PMID: 7742974 DOI: 10.1111/j.1365-2583.1995.tb00005.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Degenerate primers designed and synthesized based on two conserved regions of the mariner transposase open reading frame were used to amplify a 454 bp DNA fragment from M. occidentalis. Two inverse primers were then synthesized and used to amplify flanking genomic DNA fragments from M. occidentalis by a ligation-mediated inverse PCR. The complete mariner element (Moc1) was 1284 bp long, including the imperfect 28 bp inverted terminal repeat sequences, and shared 59% similarity to an active 1286 bp long D. mauritiana mariner element (Mos1). Insertions, deletions and substitutions were observed in the Moc1 sequence at several positions. No intact open reading frame was detected and the Moc1 element is considered inactive. Stringent Southern blot hybridizations revealed at least twelve copies of mariner sequences similar to Moc1 in the colonies tested.
Collapse
Affiliation(s)
- A Jeyaprakash
- Department of Entomology and Nematology, University of Florida, Gainesville 36211-0620, USA
| | | |
Collapse
|
15
|
Fedoroff NV. DNA methylation and activity of the maize Spm transposable element. Curr Top Microbiol Immunol 1995; 197:143-64. [PMID: 7493489 DOI: 10.1007/978-3-642-79145-1_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
MESH Headings
- Base Sequence
- Biological Evolution
- Consensus Sequence
- DNA (Cytosine-5-)-Methyltransferases/metabolism
- DNA Nucleotidyltransferases/metabolism
- DNA Transposable Elements/genetics
- DNA, Plant/genetics
- DNA, Plant/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Epistasis, Genetic
- Gene Expression Regulation, Plant
- Genes, Plant
- Methylation
- Models, Genetic
- Molecular Sequence Data
- Mutagenesis, Insertional
- Plant Proteins/metabolism
- Plants, Genetically Modified
- Promoter Regions, Genetic
- Repetitive Sequences, Nucleic Acid
- Repressor Proteins/genetics
- Repressor Proteins/physiology
- Sequence Deletion
- Suppression, Genetic
- Transcription Factors/genetics
- Transcription Factors/physiology
- Transposases
- Zea mays/genetics
Collapse
Affiliation(s)
- N V Fedoroff
- Carnegie Institution of Washington, Department of Embryology, Baltimore, MD 21210, USA
| |
Collapse
|
16
|
Arnault C, Dufournel I. Genome and stresses: reactions against aggressions, behavior of transposable elements. Genetica 1994; 93:149-60. [PMID: 7813912 DOI: 10.1007/bf01435247] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The action of stresses on the genome can be considered as responses of cells or organisms to external aggressions. Stress factors are of environmental origin (climatic or trophic) or of genomic nature (introduction of foreign genetic material, for example). In both cases, important perturbations can occur and modify hereditary potentialities, creating new combinations compatible with survival; such a situation may increase the variability of the genome, and allow evolutive processes to take place. The behavior of transposable elements under stress conditions is thus of particular interest, since these sequences are sources of mutations and therefore of genetic variability; they may play an important role in population adaptation. The survey of the available experimental results suggest that, although some examples of mutations and transposable elements movements induced by external factors are clearly described, environmental injuries or introduction of foreign material into a genome are not systematically followed by drastic genomic changes.
Collapse
Affiliation(s)
- C Arnault
- Laboratoire de Biométrie, Génétique et Biologie des Populations, URA CNRS 243, Université Claude Bernard Lyon I, Villeurbanne, France
| | | |
Collapse
|
17
|
Rommens CM, Munyikwa TR, Overduin B, Nijkamp HJ, Hille J. Transposition pattern of a modified Ds element in tomato. PLANT MOLECULAR BIOLOGY 1993; 21:1109-1119. [PMID: 8098229 DOI: 10.1007/bf00023607] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Several aspects of transposition of an in vitro modified Ds element are described. This Ds element, designated Ds-r, is equipped with bacterial plasmid sequences and can, therefore, be rescued from the plant genome. Our results indicate that the Ds-r element has a 'late' timing of transposition from T-DNAs. This feature of the element might be advantageous for tagging experiments because it leads to independently transposed germinally transmitted elements. Furthermore, it is shown that Ds-r transposition generates clusters of insertions, indicating that 'genes to be tagged' should be located in genomic regions covered by insertions.
Collapse
Affiliation(s)
- C M Rommens
- Department of Genetics, Free University, Amsterdam, Netherlands
| | | | | | | | | |
Collapse
|
18
|
Altmann T, Schmidt R, Willmitzer L. Establishment of a gene tagging system in Arabidopsis thaliana based on the maize transposable element Ac. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1992; 84:371-383. [PMID: 24203197 DOI: 10.1007/bf00229496] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/1991] [Accepted: 11/29/1991] [Indexed: 06/02/2023]
Abstract
An Ac-derived, two-component transposable element system has been developed and analyzed with respect to its use in Arabidopsis thaliana. This system consists of an immobilized Ac element ("Ac clipped wing", Accl) as the source of transactivating transposase and a nonautonomous "Ds" element, DsA, which is inserted into a chimaeric neomycinphosphotransferase gene used as excision marker. After separate introduction of Acc1 and DsA into Arabidopsis thaliana, progeny analysis of crosses between five different Accl lines and seven different DsA lines shows that: (1) different Accl lines differ greatly in their capacity to transactivate DsA; (2) different DsA lines do not differ significantly with respect to DsA transactivation by one Accl line; (3) reintegration of excised DsA elements, both at (genetically) linked and unlinked sites, occurs in about 50% of the excision events; and (4) plants with a high rate of somatic excisions can be used as source of new DsA transpositions, allowing the creation of a large number of independent DsA insertions.
Collapse
Affiliation(s)
- T Altmann
- Institut für Genbiologische Forschung Berlin GmbH, Ihnestrasse 63, 33, Berlin, Germany
| | | | | |
Collapse
|
19
|
Structure of DRE, a retrotransposable element which integrates with position specificity upstream of Dictyostelium discoideum tRNA genes. Mol Cell Biol 1992. [PMID: 1309589 DOI: 10.1128/mcb.12.1.229] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Different Dictyostelium discoideum strains contain between 2 and 200 copies of a retrotransposable element termed DRE (Dictyostelium repetitive element). From the analysis of more than 50 elements, it can be concluded that DRE elements always occur 50 +/- 3 nucleotides upstream of tRNA genes. All analyzed clones contain DRE in a constant orientation relative to the tRNA gene, implying orientation specificity as well as position specificity. DRE contains two open reading frames which are flanked by nonidentical terminal repeats. Long terminal repeats (LTRs) are composed of three distinct modules, called A, B, and C. The tRNA gene-proximal LTR is characterized by one or multiple A modules followed by a single B module (AnB). With respect to the distal LTR, two different subforms of DRE have been isolated. The majority of isolated clones contains a distal LTR composed of a B module followed by a C module (BC), whereas the distal LTR of the other subform contains a consecutive array of a B module, a C module, a slightly altered A module, another B module, and another C module (BC.ABC). Full-length as well as smaller transcripts from DRE elements have been detected, but in comparison with the high copy number in D. discoideum strains derived from the wild-type strain NC4, transcription is rather poor.
Collapse
|
20
|
Marschalek R, Hofmann J, Schumann G, Gösseringer R, Dingermann T. Structure of DRE, a retrotransposable element which integrates with position specificity upstream of Dictyostelium discoideum tRNA genes. Mol Cell Biol 1992; 12:229-39. [PMID: 1309589 PMCID: PMC364087 DOI: 10.1128/mcb.12.1.229-239.1992] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Different Dictyostelium discoideum strains contain between 2 and 200 copies of a retrotransposable element termed DRE (Dictyostelium repetitive element). From the analysis of more than 50 elements, it can be concluded that DRE elements always occur 50 +/- 3 nucleotides upstream of tRNA genes. All analyzed clones contain DRE in a constant orientation relative to the tRNA gene, implying orientation specificity as well as position specificity. DRE contains two open reading frames which are flanked by nonidentical terminal repeats. Long terminal repeats (LTRs) are composed of three distinct modules, called A, B, and C. The tRNA gene-proximal LTR is characterized by one or multiple A modules followed by a single B module (AnB). With respect to the distal LTR, two different subforms of DRE have been isolated. The majority of isolated clones contains a distal LTR composed of a B module followed by a C module (BC), whereas the distal LTR of the other subform contains a consecutive array of a B module, a C module, a slightly altered A module, another B module, and another C module (BC.ABC). Full-length as well as smaller transcripts from DRE elements have been detected, but in comparison with the high copy number in D. discoideum strains derived from the wild-type strain NC4, transcription is rather poor.
Collapse
Affiliation(s)
- R Marschalek
- Institut für Biochemie der Medizinischen Fakultät, Universität Erlangen-Nürnberg, Germany
| | | | | | | | | |
Collapse
|
21
|
King CC. Modular transposition and the dynamical structure of eukaryote regulatory evolution. Genetica 1992; 86:127-42. [PMID: 1334905 DOI: 10.1007/bf00133716] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This paper examines a model in which transposable elements provide a modular architecture for the cellular genome, complemented by cellular recombinational transformations, arising in turn as a dynamical consequence of this modular structure. It is proposed that the ecology of transposable elements in a given organism is a function of recombinational protocols of the evolving cellular genome. In mammals this is proposed to involve coordinated meiosis-phased activation of LINEs, SINEs and retrogenes complemented by endogenous retroviral transfer between cells.
Collapse
Affiliation(s)
- C C King
- Department of Mathematics and Statistics, University of Auckland, New Zealand
| |
Collapse
|
22
|
Maniak M, Nellen W. Two separable promoters control different aspects of expression of a Dictyostelium gene. Nucleic Acids Res 1990; 18:3211-7. [PMID: 2356118 PMCID: PMC330925 DOI: 10.1093/nar/18.11.3211] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A single copy Dictyostelium gene was dissected and elements responsible for its complex pattern of regulation were defined by transcript analysis of gene fusions. Two overlapping promoters responsible for the transcription of an 'L' and an 'S' mRNA could be defined. Further dissection of the P8A7 L promoter resulted in the identification of a sequence necessary for stress induction and an element required for vegetative expression. The P8A7 S promoter could be reduced to 449 bp which were sufficient for expression in developing cells. The sequence element required for this transcriptional activity was shown to reside in a 51 bp fragment. Our results show that differential expression of the P8A7 gene is mediated by two independently functioning promoters which, however, share some regulatory elements. A third nuclear RNA species 'P' was due to the stress-sensitivity of the 3' processing signal.
Collapse
Affiliation(s)
- M Maniak
- Max-Planck-Institut für Biochemie, Abt. Zellbiologie, Martinsried, FRG
| | | |
Collapse
|
23
|
Shaw DR, Richter H, Giorda R, Ohmachi T, Ennis HL. Nucleotide sequences of Dictyostelium discoideum developmentally regulated cDNAs rich in (AAC) imply proteins that contain clusters of asparagine, glutamine, or threonine. MOLECULAR & GENERAL GENETICS : MGG 1989; 218:453-9. [PMID: 2511421 DOI: 10.1007/bf00332409] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A Dictyostelium discoideum repetitive element composed of long repeats of the codon (AAC) is found in developmentally regulated transcripts. The concentration of (AAC) sequences is low in mRNA from dormant spores and growing cells and increases markedly during spore germination and multicellular development. The sequence hybridizes to many different sized Dictyostelium DNA restriction fragments indicating that it is scattered throughout the genome. Four cDNA clones isolated contain (AAC) sequences in the deduced coding region. Interestingly, the (AAC)-rich sequences are present in all three reading frames in the deduced proteins, i.e., AAC (asparagine), ACA (threonine) and CAA (glutamine). Three of the clones contain only one of these in-frame so that the individual proteins carry either asparagine, threonine, or glutamine clusters, not mixtures. However, one clone is both glutamine- and asparagine-rich. The (AAC) portion of the transcripts are reiterated 300 times in the haploid genome while the other portions of the cDNAs represent single copy genes, whose sequences show no similarity other than the (AAC) repeats. The repeated sequence is similar to the opa or M sequence found in Drosophila melanogaster notch and homeo box genes and in fly developmentally regulated transcripts. The transcripts are present on polysomes suggesting that they are translated. Although the function of these repeats is unknown, long amino acid repeats are a characteristic feature of extracellular proteins of lower eukaryotes.
Collapse
Affiliation(s)
- D R Shaw
- Roche Institute of Molecular Biology, Roche Research Center, Nutley, NJ 07110
| | | | | | | | | |
Collapse
|
24
|
Abstract
A high-frequency switching system is demonstrated to exist in Dictyostelium discoideum. Switch phenotypes are distinguished by colony morphology and include changes in developmental timing as well as blocks in morphogenesis. The switching system exhibits the following characteristics: (1) a "low" spontaneous frequency of switching (approximately 10(-2] in the parent strain; (2) stimulation of the basal level of switching roughly fivefold with low doses of ultraviolet light; (3) "high" spontaneous frequencies of switching (as high as 10(-1] in particular variant strains; (4) high spontaneous frequencies of interconvertibility between variant phenotypes; (5) high spontaneous frequencies of reversion to the wild-type phenotype; (6) a set of reproducible switch phenotypes; (7) heritability of switch phenotypes; and (8) a rough correlation between switch phenotype and switching frequency. The extraordinary similarity between the switching systems in D. discoideum and Candida albicans is discussed.
Collapse
Affiliation(s)
- B Kraft
- Department of Biology, University of Iowa, Iowa City 52242
| | | | | | | |
Collapse
|
25
|
Banks JA, Masson P, Fedoroff N. Molecular mechanisms in the developmental regulation of the maize Suppressor-mutator transposable element. Genes Dev 1988; 2:1364-80. [PMID: 2463208 DOI: 10.1101/gad.2.11.1364] [Citation(s) in RCA: 168] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The maize Suppressor-mutator (Spm) element can exist in one of three heritable forms: (1) a stably active form, (2) a stably inactive form, termed cryptic, and (3) a labile form, here termed programmable, in which the element exhibits one of a variety of heritable developmental programs of expression. Active elements are transcribed and are hypomethylated at sites upstream of the transcription start site, whereas inactive elements are transcriptionally silent and largely methylated at the upstream sites. Active (both stable and programmable), inactive programmable, and cryptic elements are unmethylated, partially methylated, and fully methylated, respectively, at sites within an 0.35-kb 80% G + C region just downstream from the transcription start site. An active Spm element in a genome with a cryptic element promotes its partial demethylation but not its transcriptional activation. In contrast, a trans-acting Spm promotes extensive demethylation and transcriptional activation of an inactive programmable element, as well as its heritable reactivation. These observations define the molecular components of the Spm element's developmental regulatory mechanism. We discuss their general relevance to the developmental regulation of gene expression.
Collapse
Affiliation(s)
- J A Banks
- Department of Embryology, Carnegie Institution of Washington, Baltimore, Maryland 21210
| | | | | |
Collapse
|
26
|
|
27
|
A developmentally regulated membrane protein gene in Dictyostelium discoideum is also induced by heat shock and cold shock. Mol Cell Biol 1988. [PMID: 3336356 DOI: 10.1128/mcb.8.1.153] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have analyzed the expression of the Dictyostelium gene P8A7 which had been isolated as a cDNA clone from an early developmentally regulated gene. The single genomic copy generated two mRNAs which were subject to different control mechanisms: while one mRNA (P8A7S) was regulated like the cell-type-nonspecific late genes, the other one (P8A7L) was induced during development, when cells were allowed to attach to a substrate, and when cells were subjected to stress, such as heat shock and cadmium. Interestingly the same induction was also observed with cold shock. RNA processing was inhibited by heat and cold shock, leading to nuclear accumulation of a precursor. The translated region of the cDNA was common to both mRNAs and encoded an unusually hydrophobic peptide with the characteristics of a membrane protein.
Collapse
|
28
|
Maniak M, Nellen W. A developmentally regulated membrane protein gene in Dictyostelium discoideum is also induced by heat shock and cold shock. Mol Cell Biol 1988; 8:153-9. [PMID: 3336356 PMCID: PMC443571 DOI: 10.1128/mcb.8.1.153-159.1988] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We have analyzed the expression of the Dictyostelium gene P8A7 which had been isolated as a cDNA clone from an early developmentally regulated gene. The single genomic copy generated two mRNAs which were subject to different control mechanisms: while one mRNA (P8A7S) was regulated like the cell-type-nonspecific late genes, the other one (P8A7L) was induced during development, when cells were allowed to attach to a substrate, and when cells were subjected to stress, such as heat shock and cadmium. Interestingly the same induction was also observed with cold shock. RNA processing was inhibited by heat and cold shock, leading to nuclear accumulation of a precursor. The translated region of the cDNA was common to both mRNAs and encoded an unusually hydrophobic peptide with the characteristics of a membrane protein.
Collapse
Affiliation(s)
- M Maniak
- Max-Planck-Institut fuer Biochemie, Abteilung Zellbiologie, Martinsried, Federal Republic of Germany
| | | |
Collapse
|
29
|
Soll DR, Mitchell L, Kraft B, Alexander S, Finney R, Varnum-Finney B. Characterization of a timing mutant of Dictyostelium discoideum which exhibits "high frequency switching". Dev Biol 1987; 120:25-37. [PMID: 3102295 DOI: 10.1016/0012-1606(87)90100-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The preaggregative period of Dictyostelium discoideum is composed of two sequential rate-limiting components. The timing mutant FM-1 exhibits a decrease in the length of the preaggregative period and the interval between the maxifinger and early culminate II stage. In contrast, it is normal in all aspects of growth, in the sequence of morphogenetic stages, in spore formation, in the capacity to rapidly recapitulate morphogenesis, and in the erasure event and subsequent program of dedifferentiation. By the reciprocal shift experiment, it is demonstrated that FM-1 is completely missing the first of the two rate-limiting components comprising the preaggregative period. The FM-1 mutation is heritable and behaves as a single mutation mapping to linkage group II. However, the FM-1 variant switches at relatively high frequency to several other timing phenotypes with longer preaggregative periods which in turn switch at high frequency. The FM-1 phenotype is considered in terms of timing regulation, and the process of high frequency switching between timing phenotypes is compared to other newly discovered switching systems.
Collapse
|
30
|
Nellen W, Datta S, Reymond C, Sivertsen A, Mann S, Crowley T, Firtel RA. Molecular biology in Dictyostelium: tools and applications. Methods Cell Biol 1987; 28:67-100. [PMID: 3600419 DOI: 10.1016/s0091-679x(08)61637-4] [Citation(s) in RCA: 195] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
31
|
McClellan JA, Palecek E, Lilley DM. (A-T)n tracts embedded in random sequence DNA--formation of a structure which is chemically reactive and torsionally deformable. Nucleic Acids Res 1986; 14:9291-309. [PMID: 3797241 PMCID: PMC311959 DOI: 10.1093/nar/14.23.9291] [Citation(s) in RCA: 97] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Alternating d(A-T)n sequences which are contiguous with DNA of effectively random sequence have an abnormal conformation in linear DNA molecules. These regions are strongly reactive towards chemical modification by osmium tetroxide, and are preferentially cleaved by micrococcal nuclease. Both the chemical modification and the enzymic cutting occur uniformly through the alternating tract, and there is no evidence for enzyme or chemical sensitivity in the interfaces between the tract and DNA of normal conformation. These reactivities have a requirement for an alternating sequence. In addition to chemical reactivity, alternating (A-T)n sequences exhibit anomalously small twist changes on cruciform formation, suggesting that the pre-extruded DNA is underwound. We propose that the alternating sequences adopt an altered conformation which is subject to easy torsional deformation.
Collapse
|
32
|
Structure and unusual characteristics of a new family of transposable elements in the sea urchin Strongylocentrotus purpuratus. Mol Cell Biol 1986. [PMID: 3016515 DOI: 10.1128/mcb.5.10.2804] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transposable element family TU of the sea urchin Strongylocentrotus purpuratus, a higher eucaryote, has recently been described (D. Liebermann, B. Hoffman-Liebermann, J. Weinthal, G. Childs, R. Maxson, A. Mauron, S.N. Cohen, and L. Kedes, Nature [London] 306:342-347, 1983). A member of this family, TU4, has an insertion, called ISTU4, of non-TU DNA. ISTU4 is a member of a family of repetitive sequences, which are present in some 1,000 copies per haploid S. purpuratus genome (B. Hoffman-Liebermann, D. Liebermann, L.H. Kedes, and S.N. Cohen, Mol. Cell. Biol. 5:991-1001, 1985). We analyzed this insertion to determine whether it is itself a transposable element. The nucleotide sequence of ISTU4 was determined and showed an unusual structure. There are four, approximately 150 nucleotides long, imperfect direct repeats followed by a single truncated version of these repeats. This region is bounded at either side by approximately 100-nucleotide-long sequences that are not related to each other or to the repeats. Nucleotide sequences at the boundaries of ISTU4-homologous and flanking regions in five genomic clones show that ISTU4 represents a family of sequences with discrete ends, which we call Tsp elements. We showed that the genomic locus that carries a Tsp element in one individual was empty in other individuals and conclude that Tsp elements are a new and different type of transposable element. Tsp elements lack two features common to most other transposable elements: Tsp integration does not result in the duplication of host DNA, and there are no inverted repeats at their termini, although short inverted repeats are present at a distance from the termini.
Collapse
|
33
|
Ueda H, Mizuno S, Shimura K. Transposable genetic element found in the 5'-flanking region of the fibroin H-chain gene in a genomic clone from the silkworm Bombyx mori. J Mol Biol 1986; 190:319-27. [PMID: 3023638 DOI: 10.1016/0022-2836(86)90004-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A transposable genetic element was found in the 5'-flanking region of the fibroin H-chain gene in one of the genomic clones from the silkworm Bombyx mori. This element, named K-1.4, is about 1 X 4 X 10(3) base-pairs long, contains an open reading frame of only 225 base-pairs and has inverted repeats of 12 base-pairs at both ends. Duplication of three base-pairs seems to have occurred when this element was integrated into the silkworm genome. About 15 copies of K-1.4 are present per haploid genome of various silkworm strains. Genomic loci of some of these elements are different among different strains or even among individual offspring of the same parents. K-1.4 is present also in the genome of Bombyx mandarina. The K-1.4-related sequences are present in some species belonging to the family Saturniidae.
Collapse
|
34
|
Shaw DR, Khandekar P, Siddiqui MA, Ennis HL. The 3'-noncoding region of the chick myosin light-chain gene hybridizes to a family of repetitive sequences in the slime mold Dictyostelium discoideum. Arch Biochem Biophys 1986; 246:829-37. [PMID: 3010871 DOI: 10.1016/0003-9861(86)90339-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
During studies aimed at isolating myosin-specific genomic clones in Dictyostelium, we probed a lambda genomic library with a chicken myosin light-chain sequence (pML10). Many lambda recombinant Dictyostelium clones hybridized to the pML10 cDNA insert, indicating that this sequence was reiterated in the Dictyostelium genome. It was found that the 3'-noncoding region (pML10-NC) alone was responsible for these results. Dictyostelium DNA contained approximately 65 copies of a sequence(s) similar but not identical to that of pML10-NC. Southern blot analysis showed that pML10-NC hybridized to many Dictyostelium genomic DNA fragments of varying sizes generated by digestion with EcoRI, HindIII, or AluI. In addition, each of the Dictyostelium clones was different in its size, restriction map, and flanking sequences. It seems likely, therefore, that the sequences which hybridized to pML10-NC are scattered throughout the Dictyostelium genome and similar but not identical to each other or to pML10-NC. Thus, probing with pML10-NC has allowed us to select a family of closely related but not identical sequences. These D. discoideum sequences are not found in other slime mold species. No RNA complementary to pML10-NC was found in vegetative cells, 18 h culmination stage, spores, or 1- and 2-h germinating spores. pML10-NC-related sequences were present in two other Dictyostelium species but were absent in the related genus Polysphondylium.
Collapse
|
35
|
Cohen JB, Hoffman-Liebermann B, Kedes L. Structure and unusual characteristics of a new family of transposable elements in the sea urchin Strongylocentrotus purpuratus. Mol Cell Biol 1985; 5:2804-13. [PMID: 3016515 PMCID: PMC367019 DOI: 10.1128/mcb.5.10.2804-2813.1985] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The transposable element family TU of the sea urchin Strongylocentrotus purpuratus, a higher eucaryote, has recently been described (D. Liebermann, B. Hoffman-Liebermann, J. Weinthal, G. Childs, R. Maxson, A. Mauron, S.N. Cohen, and L. Kedes, Nature [London] 306:342-347, 1983). A member of this family, TU4, has an insertion, called ISTU4, of non-TU DNA. ISTU4 is a member of a family of repetitive sequences, which are present in some 1,000 copies per haploid S. purpuratus genome (B. Hoffman-Liebermann, D. Liebermann, L.H. Kedes, and S.N. Cohen, Mol. Cell. Biol. 5:991-1001, 1985). We analyzed this insertion to determine whether it is itself a transposable element. The nucleotide sequence of ISTU4 was determined and showed an unusual structure. There are four, approximately 150 nucleotides long, imperfect direct repeats followed by a single truncated version of these repeats. This region is bounded at either side by approximately 100-nucleotide-long sequences that are not related to each other or to the repeats. Nucleotide sequences at the boundaries of ISTU4-homologous and flanking regions in five genomic clones show that ISTU4 represents a family of sequences with discrete ends, which we call Tsp elements. We showed that the genomic locus that carries a Tsp element in one individual was empty in other individuals and conclude that Tsp elements are a new and different type of transposable element. Tsp elements lack two features common to most other transposable elements: Tsp integration does not result in the duplication of host DNA, and there are no inverted repeats at their termini, although short inverted repeats are present at a distance from the termini.
Collapse
|
36
|
Richter H, Ennis HL. Characterization of a new repetitive sequence in the Dictyostelium discoideum genome. Arch Biochem Biophys 1985; 242:16-22. [PMID: 2996428 DOI: 10.1016/0003-9861(85)90474-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A repetitive DNA sequence was isolated from a Dictyostelium discoideum genomic plasmid library of BglII-digested DNA ligated to the BamHI site in pBR322. This clone, called pBS582, hybridized to a large number of phage lambda Dictyostelium genomic clones. Southern blot analysis indicated that pBS582 DNA hybridized to many differently sized genomic DNA fragments generated by digestion with Eco RI, AvaI, or HindIII. Restriction maps of pBS582 and five genomic clones showed that the flanking regions of each of the genomic clones were different. These findings indicate that the sequence specific to pBS582 is scattered throughout the Dictyostelium genome and is reiterated approximately 100 times in the haploid genome. Northern blot analysis revealed that RNA which hybridized to pBS582 DNA was present during all stages of growth and development and did not seem to be developmentally regulated. Southern blot analysis of DNAs from other slime molds (D. giganteum, D. purpureum, and Polysphondylium violaceum) were performed to determine whether the pBS582 sequence was present in other species of slime molds. Hybridization of pBS582 was observed to DNA from the two Dictyostelium species but not to Polysphondylium. It may thus be possible to use hybridization of specific sequences as a biochemical tool to study the relatedness of different slime mold species and their molecular taxonomy.
Collapse
|
37
|
Abstract
This paper presents a compact model of the role of transposable elements in eucaryote evolution which, although forward looking, is consistent with both experimental results and theories of gene regulation. The model postulates that a principal factor in the emergence of the eucaryotes was the development of a symbiotic relationship between reverse transcribing transposable elements and RNA based gene regulation, which we will call structural symbiosis. Thus, although transposable elements follow their own evolutionary protocol, structural homologies between "cellular" and "viral" genomes result in selective mutagenesis, a situation where transposon mutations are permitted because they can result in phenotypic mutations of the regulatory process with reduced probability of deleterious mutation of structural genes. The incorporation of this scheme into the life cycle of higher organisms results in two forms of integral evolution. Exogenous, in which differing species in an ecosystem share genetic information through viral transfer, and endogenous in which somatically induced regulatory mutations can be mapped back into the germ line.
Collapse
|
38
|
Abstract
A dispersed repetitive DNA sequence has been identified within the genome of the fungus Mucor racemosus. Recombinant phage clones, as well as a plasmid harboring the sequence, have been isolated. Examination of cloned fragments comprising part of the repetitive sequence has led to a partial characterization of the element. The sequence has been detected in other Mucor species, and although the apparent number and chromosomal position of the repetitive sequence vary from strain to strain, it is clear that at least portions of the element have been conserved.
Collapse
|
39
|
Abstract
DIRS-1 is a Dictyostelium discoideum transposable element that contains heat shock promoter sequences in the inverted terminal repeats. We showed that transcription of a 4.5-kilobase polyadenylated RNA initiates at a discrete site within the left-terminal repeat of DIRS-1, downstream from heat shock promoter and TATA box sequences. This RNA represents a full-length transcript of DIRS-1. We describe a cDNA clone that contains the 4.1 kilobases of internal sequence of DIRS-1, a cDNA clone that spans the junction between the internal sequences and the right-terminal repeat, and a cDNA clone that appears to have been transcribed from a rearranged genomic copy of DIRS-1. A second DIRS-1 RNA, named E1, is transcribed on the opposite strand of DIRS-1 from the 4.5-kilobase RNA and is under control of the heat shock promoter in the right-terminal repeat. E1 transcription initiates at multiple positions both within and downstream from the right-terminal repeat. The same transcriptional initiation sites are used during normal development and during heat shock, suggesting that in all cases DIRS-1 transcription is regulated by the heat shock promoters contained within the two terminal repeats.
Collapse
|
40
|
Sheshberadaran H, Norrby E. Three monoclonal antibodies against measles virus F protein cross-react with cellular stress proteins. J Virol 1984; 52:995-9. [PMID: 6548528 PMCID: PMC254628 DOI: 10.1128/jvi.52.3.995-999.1984] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In a group of 11 monoclonal antibodies specifically reacting with the measles virus fusion protein, three antibodies also immunoprecipitated other proteins, in particular a 79,000-molecular-weight protein from virus-infected cells. The cross-reacting 79,000-molecular-weight protein was shown to be a virus-induced host stress protein. This protein could be induced by (i) different paramyxoviruses, (ii) heat shock of uninfected HeLa cells, and (iii) 2-deoxyglucose, tunicamycin, or L-canavanine treatment of different mammalian cell lines. Immunofluorescence of stressed HeLa cells localized the cross-reacting host protein(s) mainly in the cytoplasm. The significance of these results in relation to autoimmunity is discussed.
Collapse
|
41
|
Cohen SM, Cappello J, Lodish HF. Transcription of Dictyostelium discoideum transposable element DIRS-1. Mol Cell Biol 1984; 4:2332-40. [PMID: 6096693 PMCID: PMC369062 DOI: 10.1128/mcb.4.11.2332-2340.1984] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
DIRS-1 is a Dictyostelium discoideum transposable element that contains heat shock promoter sequences in the inverted terminal repeats. We showed that transcription of a 4.5-kilobase polyadenylated RNA initiates at a discrete site within the left-terminal repeat of DIRS-1, downstream from heat shock promoter and TATA box sequences. This RNA represents a full-length transcript of DIRS-1. We describe a cDNA clone that contains the 4.1 kilobases of internal sequence of DIRS-1, a cDNA clone that spans the junction between the internal sequences and the right-terminal repeat, and a cDNA clone that appears to have been transcribed from a rearranged genomic copy of DIRS-1. A second DIRS-1 RNA, named E1, is transcribed on the opposite strand of DIRS-1 from the 4.5-kilobase RNA and is under control of the heat shock promoter in the right-terminal repeat. E1 transcription initiates at multiple positions both within and downstream from the right-terminal repeat. The same transcriptional initiation sites are used during normal development and during heat shock, suggesting that in all cases DIRS-1 transcription is regulated by the heat shock promoters contained within the two terminal repeats.
Collapse
|
42
|
Genomic instability and mobile genetic elements in regions surrounding two discoidin I genes of Dictyostelium discoideum. Mol Cell Biol 1984. [PMID: 6325889 DOI: 10.1128/mcb.4.4.671] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have found that the genomic regions surrounding the linked discoidin I genes of various Dictyostelium discoideum strains have undergone rapid changes. Wild-type strain NC-4 has three complete discoidin I genes; its axenic derivative strain Ax-3L has duplicated a region starting approximately 1 kilobase upstream from the two linked genes and extending for at least 8 kilobases past the genes. A separately maintained stock, strain Ax-3K, does not have this duplication but has undergone a different rearrangement approximately 3 kilobases farther upstream. We show that there are repeat elements in these rapidly changing regions. At least two of these elements, Tdd-2 and Tdd-3, have characteristics associated with mobile genetic elements. The Tdd-3 element is found in different locations in related strains and causes a 9- to 10-base-pair duplication of the target site DNA. The Tdd-2 and Tdd-3 elements do not cross-hybridize, but they share a 22-base-pair homology near one end. At two separate sites, the Tdd-3 element has transposed into the Tdd-2 element, directly adjacent to the 22-base-pair homology. The Tdd-3 element may use this 22-base-pair region as a preferential site of insertion.
Collapse
|
43
|
Fornace AJ, Cummings DE, Comeau CM, Kant JA, Crabtree GR. Single-copy inverted repeats associated with regional genetic duplications in gamma fibrinogen and immunoglobulin genes. Science 1984; 224:161-4. [PMID: 6322310 DOI: 10.1126/science.6322310] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We have found that a portion (150 base pairs) of the seventh exon of the human gamma fibrinogen gene is duplicated in the preceding intron. This duplicated sequence, termed a "pseudoexon," is flanked on each side by a single-copy inverted repeat sequence consisting of 102 base pairs. Frequencies of point substitutions indicate that both the pseudoexon and the inverted repeat sequence arose approximately 10 to 20 million years ago. The generality of this type of duplication is suggested by the occurrence of a similar duplication in the mouse immunoglobulin mu-delta region. As in the fibrinogen pseudoexon, the portion of the immunoglobulin mu-delta region containing the duplication and the inverted repeat was reported to be single-copy in the mouse genome. Since both of the first two single-copy inverted repeats to be sequenced are associated with regional duplications, it is likely that many of the single-copy inverted repeat sequences, which make up 1 to 2 percent of the genome, are also associated with regional duplications.
Collapse
|
44
|
Poole SJ, Firtel RA. Genomic instability and mobile genetic elements in regions surrounding two discoidin I genes of Dictyostelium discoideum. Mol Cell Biol 1984; 4:671-80. [PMID: 6325889 PMCID: PMC368779 DOI: 10.1128/mcb.4.4.671-680.1984] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We have found that the genomic regions surrounding the linked discoidin I genes of various Dictyostelium discoideum strains have undergone rapid changes. Wild-type strain NC-4 has three complete discoidin I genes; its axenic derivative strain Ax-3L has duplicated a region starting approximately 1 kilobase upstream from the two linked genes and extending for at least 8 kilobases past the genes. A separately maintained stock, strain Ax-3K, does not have this duplication but has undergone a different rearrangement approximately 3 kilobases farther upstream. We show that there are repeat elements in these rapidly changing regions. At least two of these elements, Tdd-2 and Tdd-3, have characteristics associated with mobile genetic elements. The Tdd-3 element is found in different locations in related strains and causes a 9- to 10-base-pair duplication of the target site DNA. The Tdd-2 and Tdd-3 elements do not cross-hybridize, but they share a 22-base-pair homology near one end. At two separate sites, the Tdd-3 element has transposed into the Tdd-2 element, directly adjacent to the 22-base-pair homology. The Tdd-3 element may use this 22-base-pair region as a preferential site of insertion.
Collapse
|