1
|
Hao Q, Liu M, Daulatabad SV, Gaffari S, Song YJ, Srivastava R, Bhaskar S, Moitra A, Mangan H, Tseng E, Gilmore RB, Frier SM, Chen X, Wang C, Huang S, Chamberlain S, Jin H, Korlach J, McStay B, Sinha S, Janga SC, Prasanth SG, Prasanth KV. Monoallelically expressed noncoding RNAs form nucleolar territories on NOR-containing chromosomes and regulate rRNA expression. eLife 2024; 13:e80684. [PMID: 38240312 PMCID: PMC10852677 DOI: 10.7554/elife.80684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 01/18/2024] [Indexed: 02/07/2024] Open
Abstract
Out of the several hundred copies of rRNA genes arranged in the nucleolar organizing regions (NOR) of the five human acrocentric chromosomes, ~50% remain transcriptionally inactive. NOR-associated sequences and epigenetic modifications contribute to the differential expression of rRNAs. However, the mechanism(s) controlling the dosage of active versus inactive rRNA genes within each NOR in mammals is yet to be determined. We have discovered a family of ncRNAs, SNULs (Single NUcleolus Localized RNA), which form constrained sub-nucleolar territories on individual NORs and influence rRNA expression. Individual members of the SNULs monoallelically associate with specific NOR-containing chromosomes. SNULs share sequence similarity to pre-rRNA and localize in the sub-nucleolar compartment with pre-rRNA. Finally, SNULs control rRNA expression by influencing pre-rRNA sorting to the DFC compartment and pre-rRNA processing. Our study discovered a novel class of ncRNAs influencing rRNA expression by forming constrained nucleolar territories on individual NORs.
Collapse
Affiliation(s)
- Qinyu Hao
- Department of Cell and Developmental Biology, University of Illinois at Urbana-ChampaignUrbanaUnited States
| | - Minxue Liu
- Department of Cell and Developmental Biology, University of Illinois at Urbana-ChampaignUrbanaUnited States
| | - Swapna Vidhur Daulatabad
- Department of BioHealth Informatics, School of Informatics and Computing, IUPUIIndianapolisUnited States
| | - Saba Gaffari
- Department of Computer Science, University of Illinois at Urbana-ChampaignUrbanaUnited States
| | - You Jin Song
- Department of Cell and Developmental Biology, University of Illinois at Urbana-ChampaignUrbanaUnited States
| | - Rajneesh Srivastava
- Department of BioHealth Informatics, School of Informatics and Computing, IUPUIIndianapolisUnited States
| | - Shivang Bhaskar
- Department of Cell and Developmental Biology, University of Illinois at Urbana-ChampaignUrbanaUnited States
| | - Anurupa Moitra
- Department of Cell and Developmental Biology, University of Illinois at Urbana-ChampaignUrbanaUnited States
| | - Hazel Mangan
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland GalwayGalwayIreland
| | | | - Rachel B Gilmore
- Department of Genetics and Genome Sciences, University of Connecticut School of MedicineFarmingtonUnited States
| | | | - Xin Chen
- Department of Biophysics and Quantitative Biology, University of Illinois at Urbana-ChampaignUrbanaUnited States
| | - Chengliang Wang
- Department of Biochemistry, University of Illinois at Urbana-ChampaignUrbanaUnited States
| | - Sui Huang
- Department of Cell and Molecular Biology, Northwestern UniversityChicagoUnited States
| | - Stormy Chamberlain
- Department of Genetics and Genome Sciences, University of Connecticut School of MedicineFarmingtonUnited States
| | - Hong Jin
- Department of Biophysics and Quantitative Biology, University of Illinois at Urbana-ChampaignUrbanaUnited States
- Department of Biochemistry, University of Illinois at Urbana-ChampaignUrbanaUnited States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-ChampaignUrbanaUnited States
| | | | - Brian McStay
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland GalwayGalwayIreland
| | - Saurabh Sinha
- Department of Computer Science, University of Illinois at Urbana-ChampaignUrbanaUnited States
- Department of Biomedical Engineering, Georgia TechAtlantaUnited States
| | - Sarath Chandra Janga
- Department of BioHealth Informatics, School of Informatics and Computing, IUPUIIndianapolisUnited States
| | - Supriya G Prasanth
- Department of Cell and Developmental Biology, University of Illinois at Urbana-ChampaignUrbanaUnited States
- Cancer Center at Illinois, University of Illinois at Urbana-ChampaignUrbanaUnited States
| | - Kannanganattu V Prasanth
- Department of Cell and Developmental Biology, University of Illinois at Urbana-ChampaignUrbanaUnited States
- Cancer Center at Illinois, University of Illinois at Urbana-ChampaignUrbanaUnited States
| |
Collapse
|
2
|
Regulatory roles of nucleolus organizer region-derived long non-coding RNAs. Mamm Genome 2021; 33:402-411. [PMID: 34436664 DOI: 10.1007/s00335-021-09906-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/20/2021] [Indexed: 12/13/2022]
Abstract
The nucleolus is the largest sub-nuclear domain, serving primarily as the place for ribosome biogenesis. A delicately regulated function of the nucleolus is vital to the cell not only for maintaining proper protein synthesis but is also tightly associated with responses to different types of cellular stresses. Recently, several long non-coding RNAs (lncRNAs) were found to be part of the regulatory network that modulate nucleolar functions. Several of these lncRNAs are encoded in the ribosomal DNA (rDNA) repeats or are transcribed from the genomic regions that are located near the nucleolus organizer regions (NORs). In this review, we first discuss the current understanding of the sequence of the NORs and variations between different NORs. We then focus on the NOR-derived lncRNAs in mammalian cells and their functions in rRNA transcription and the organization of nucleolar structure under different cellular conditions. The identification of these lncRNAs reveals great potential of the NORs in harboring novel genes involved in the regulation of nucleolar functions.
Collapse
|
3
|
Regulation of Nucleolar Dominance in Drosophila melanogaster. Genetics 2020; 214:991-1004. [PMID: 32122935 PMCID: PMC7153946 DOI: 10.1534/genetics.119.302471] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 02/26/2020] [Indexed: 12/18/2022] Open
Abstract
In eukaryotic genomes, ribosomal RNA (rRNA) genes exist as tandemly repeated clusters, forming ribosomal DNA (rDNA) loci. Each rDNA locus typically contains hundreds of rRNA genes to meet the high demand of ribosome biogenesis. Nucleolar dominance is a phenomenon whereby individual rDNA loci are entirely silenced or transcribed, and is believed to be a mechanism to control rRNA dosage. Nucleolar dominance was originally noted to occur in interspecies hybrids, and has been shown to occur within a species (i.e., nonhybrid context). However, studying nucleolar dominance within a species has been challenging due to the highly homogenous sequence across rDNA loci. By utilizing single nucleotide polymorphisms between X rDNA and Y rDNA loci in males, as well as sequence variations between two X rDNA loci in females, we conducted a thorough characterization of nucleolar dominance throughout development of Drosophila melanogaster. We demonstrate that nucleolar dominance is a developmentally regulated program that occurs in nonhybrid, wild-type D. melanogaster, where Y rDNA dominance is established during male embryogenesis, whereas females normally do not exhibit dominance between two X rDNA loci. By utilizing various chromosomal complements (e.g., X/Y, X/X, X/X/Y) and a chromosome rearrangement, we show that the short arm of the Y chromosome including the Y rDNA likely contains information that instructs the state of nucleolar dominance. Our study begins to reveal the mechanisms underlying the selection of rDNA loci for activation/silencing in nucleolar dominance in the context of nonhybrid D. melanogaster.
Collapse
|
4
|
The chromatin landscape of the ribosomal RNA genes in mouse and human. Chromosome Res 2019; 27:31-40. [PMID: 30617621 DOI: 10.1007/s10577-018-09603-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/21/2018] [Accepted: 12/26/2018] [Indexed: 12/21/2022]
Abstract
The rRNA genes of mouse and human encode the three major RNAs of the ribosome and as such are essential for growth and development. These genes are present in high copy numbers and arranged as direct repeats at the Nucleolar Organizer Regions on multiple chromosomes. Not all the rRNA genes are transcriptionally active, but the molecular mechanisms that determine activity are complex and still poorly understood. Recent studies applying a novel Deconvolution Chromatin Immunoprecipitation (DChIP-Seq) technique in conjunction with conditional gene inactivation provide new insights into the structure of the active rRNA genes and question previous assumptions on the role of chromatin and histone modifications. We suggest an alternative model for the active rRNA gene chromatin and discuss how this structure is determined and maintained.
Collapse
|
5
|
Mars JC, Sabourin-Felix M, Tremblay MG, Moss T. A Deconvolution Protocol for ChIP-Seq Reveals Analogous Enhancer Structures on the Mouse and Human Ribosomal RNA Genes. G3 (BETHESDA, MD.) 2018; 8:303-314. [PMID: 29158335 PMCID: PMC5765358 DOI: 10.1534/g3.117.300225] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/15/2017] [Indexed: 02/07/2023]
Abstract
The combination of Chromatin Immunoprecipitation and Massively Parallel Sequencing, or ChIP-Seq, has greatly advanced our genome-wide understanding of chromatin and enhancer structures. However, its resolution at any given genetic locus is limited by several factors. In applying ChIP-Seq to the study of the ribosomal RNA genes, we found that a major limitation to resolution was imposed by the underlying variability in sequence coverage that very often dominates the protein-DNA interaction profiles. Here, we describe a simple numerical deconvolution approach that, in large part, corrects for this variability, and significantly improves both the resolution and quantitation of protein-DNA interaction maps deduced from ChIP-Seq data. This approach has allowed us to determine the in vivo organization of the RNA polymerase I preinitiation complexes that form at the promoters and enhancers of the mouse (Mus musculus) and human (Homo sapiens) ribosomal RNA genes, and to reveal a phased binding of the HMG-box factor UBF across the rDNA. The data identify and map a "Spacer Promoter" and associated stalled polymerase in the intergenic spacer of the human ribosomal RNA genes, and reveal a very similar enhancer structure to that found in rodents and lower vertebrates.
Collapse
Affiliation(s)
- Jean-Clement Mars
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, G1R 3S3, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Québec, Canada
| | - Marianne Sabourin-Felix
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, G1R 3S3, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Québec, Canada
| | - Michel G Tremblay
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, G1R 3S3, Canada
| | - Tom Moss
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, G1R 3S3, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Québec, Canada
| |
Collapse
|
6
|
Maciak S, Michalak K, Kale SD, Michalak P. Nucleolar Dominance and Repression of 45S Ribosomal RNA Genes in Hybrids between Xenopus borealis and X. muelleri (2n = 36). Cytogenet Genome Res 2016; 149:290-296. [PMID: 27728911 DOI: 10.1159/000450665] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2016] [Indexed: 11/19/2022] Open
Abstract
Nucleolar dominance is a dramatic disruption in the formation of nucleoli and the expression of ribosomal RNA (rRNA) genes, characteristic of some plant and animal hybrids. Here, we report that F1 hybrids produced from reciprocal crosses between 2 sister species of Xenopus clawed frogs, X. muelleri and X. borealis, undergo nucleolar dominance somewhat distinct from a pattern previously reported in hybrids between phylogenetically more distant Xenopus species. Patterns of nucleolar development, 45S rRNA expression, and gene copy inheritance were investigated using a combination of immunostaining, pyrosequencing, droplet digital PCR, flow cytometry, and epigenetic inhibition. In X. muelleri × X. borealis hybrids, typically only 1 nucleolus is formed, and 45S rRNA genes are predominantly expressed from 1 progenitor's alleles, X. muelleri, regardless of the cross-direction. These changes are accompanied by an extensive (∼80%) loss of rRNA gene copies in the hybrids relative to their parents, with the transcriptionally underdominant variant (X. borealis) being preferentially lost. Chemical treatment of hybrid larvae with a histone deacetylase inhibitor resulted in a partial derepression of the underdominant variant. Together, these observations shed light on the genetic and epigenetic basis of nucleolar dominance as an underappreciated manifestation of genetic conflicts within a hybrid genome.
Collapse
|
7
|
Kakou B, Angers B, Glémet H. Extensive length variation in the ribosomal DNA intergenic spacer of yellow perch (Perca flavescens). Genome 2016; 59:149-58. [PMID: 26841134 DOI: 10.1139/gen-2015-0114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The intergenic spacer (IGS) is located between ribosomal RNA (rRNA) gene copies. Within the IGS, regulatory elements for rRNA gene transcription are found, as well as a varying number of other repetitive elements that are at the root of IGS length heterogeneity. This heterogeneity has been shown to have a functional significance through its effect on growth rate. Here, we present the structural organization of yellow perch (Perca flavescens) IGS based on its entire sequence, as well as the IGS length variation within a natural population. Yellow perch IGS structure has four discrete regions containing tandem repeat elements. For three of these regions, no specific length class was detected as allele size was seemingly normally distributed. However, for one repeat region, PCR amplification uncovered the presence of two distinctive IGS variants representing a length difference of 1116 bp. This repeat region was also devoid of any CpG sites despite a high GC content. Balanced selection may be holding the alleles in the population and would account for the high diversity of length variants observed for adjacent regions. Our study is an important precursor for further work aiming to assess the role of IGS length variation in influencing growth rate in fish.
Collapse
Affiliation(s)
- Bidénam Kakou
- a Département des sciences de l'environnement, Université du Québec à Trois-Rivières, Trois-Rivières, QC G9A 5H7, Canada
| | - Bernard Angers
- b Department of Biological Sciences, Université de Montréal, Montréal, QC H3C 3J7, Canada.,c GRIL - Groupe de recherche interuniversitaire en limnologie et en environnement aquatique
| | - Hélène Glémet
- a Département des sciences de l'environnement, Université du Québec à Trois-Rivières, Trois-Rivières, QC G9A 5H7, Canada.,c GRIL - Groupe de recherche interuniversitaire en limnologie et en environnement aquatique
| |
Collapse
|
8
|
Inácio V, Rocheta M, Morais-Cecílio L. Molecular organization of the 25S-18S rDNA IGS of Fagus sylvatica and Quercus suber: a comparative analysis. PLoS One 2014; 9:e98678. [PMID: 24893289 PMCID: PMC4043768 DOI: 10.1371/journal.pone.0098678] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 05/05/2014] [Indexed: 01/28/2023] Open
Abstract
The 35S ribosomal DNA (rDNA) units, repeated in tandem at one or more chromosomal loci, are separated by an intergenic spacer (IGS) containing functional elements involved in the regulation of transcription of downstream rRNA genes. In the present work, we have compared the IGS molecular organizations in two divergent species of Fagaceae, Fagus sylvatica and Quercus suber, aiming to comprehend the evolution of the IGS sequences within the family. Self- and cross-hybridization FISH was done on representative species of the Fagaceae. The IGS length variability and the methylation level of 18 and 25S rRNA genes were assessed in representatives of three genera of this family: Fagus, Quercus and Castanea. The intergenic spacers in Beech and Cork Oak showed similar overall organizations comprising putative functional elements needed for rRNA gene activity and containing a non-transcribed spacer (NTS), a promoter region, and a 5′-external transcribed spacer. In the NTS: the sub-repeats structure in Beech is more organized than in Cork Oak, sharing some short motifs which results in the lowest sequence similarity of the entire IGS; the AT-rich region differed in both spacers by a GC-rich block inserted in Cork Oak. The 5′-ETS is the region with the higher similarity, having nonetheless different lengths. FISH with the NTS-5′-ETS revealed fainter signals in cross-hybridization in agreement with the divergence between genera. The diversity of IGS lengths revealed variants from ∼2 kb in Fagus, and Quercus up to 5.3 kb in Castanea, and a lack of correlation between the number of variants and the number of rDNA loci in several species. Methylation of 25S Bam HI site was confirmed in all species and detected for the first time in the 18S of Q. suber and Q. faginea. These results provide important clues for the evolutionary trends of the rDNA 25S-18S IGS in the Fagaceae family.
Collapse
Affiliation(s)
- Vera Inácio
- Centre for Botany Applied to Agriculture (CBAA), Instituto Superior de Agronomia, University of Lisbon, Lisbon, Portugal
| | - Margarida Rocheta
- Centre for Botany Applied to Agriculture (CBAA), Instituto Superior de Agronomia, University of Lisbon, Lisbon, Portugal
| | - Leonor Morais-Cecílio
- Centre for Botany Applied to Agriculture (CBAA), Instituto Superior de Agronomia, University of Lisbon, Lisbon, Portugal
- * E-mail:
| |
Collapse
|
9
|
Grob A, McStay B. Construction of synthetic nucleoli and what it tells us about propagation of sub-nuclear domains through cell division. Cell Cycle 2014; 13:2501-8. [PMID: 25486191 PMCID: PMC4614152 DOI: 10.4161/15384101.2014.949124] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 07/16/2014] [Accepted: 07/16/2014] [Indexed: 11/19/2022] Open
Abstract
The cell nucleus is functionally compartmentalized into numerous membraneless and dynamic, yet defined, bodies. The cell cycle inheritance of these nuclear bodies (NBs) is poorly understood at the molecular level. In higher eukaryotes, their propagation is challenged by cell division through an "open" mitosis, where the nuclear envelope disassembles along with most NBs. A deeper understanding of the mechanisms involved can be achieved using the engineering principles of synthetic biology to construct artificial NBs. Successful biogenesis of such synthetic NBs demonstrates knowledge of the basic mechanisms involved. Application of this approach to the nucleolus, a paradigm of nuclear organization, has highlighted a key role for mitotic bookmarking in the cell cycle propagation of NBs.
Collapse
Key Words
- 1°, primary
- 2°, secondary
- CBs, Cajal bodies
- CDK, cyclin-dependent kinase
- DFC, dense fibrillar component
- DJ, distal junction
- FCs, fibrillar centers
- GC, granular component
- HLBs, histone locus bodies
- HMG, high mobility group
- IGS, intergenic spacers
- NBs, nuclear bodies
- NORs, nucleolar organizer regions
- Nucleolar Organizer Region (NOR)
- PJ, proximal junction
- PML, promyelocytic leukemia
- PNBs, pre-nucleolar bodies
- TFs, transcription factors
- UBF
- UBF, Upstream binding factor
- XEn, Xenopus enhancer
- cell cycle
- mitotic bookmarking
- neo-NOR
- neonucleoli
- nuclear bodies
- nucleolus
- pol, RNA polymerase
- pre-rRNA, precursor rRNA
- pseudo-NOR
- rDNA, ribosomal genes
- rRNA, ribosomal RNA; RNP, ribonucleoprotein
- synthetic biology
- t-UTPs, transcription U 3 proteins
Collapse
Affiliation(s)
- Alice Grob
- Center for Chromosome Biology; School of Natural Sciences; National University of Ireland; Galway, Ireland
| | - Brian McStay
- Center for Chromosome Biology; School of Natural Sciences; National University of Ireland; Galway, Ireland
| |
Collapse
|
10
|
The ribosomal RNA transcription unit of Entamoeba invadens: Accumulation of unprocessed pre-rRNA and a long non coding RNA during encystation. Mol Biochem Parasitol 2013; 192:30-8. [DOI: 10.1016/j.molbiopara.2013.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 10/25/2013] [Accepted: 10/29/2013] [Indexed: 01/20/2023]
|
11
|
Goodfellow SJ, Zomerdijk JCBM. Basic mechanisms in RNA polymerase I transcription of the ribosomal RNA genes. Subcell Biochem 2013; 61:211-36. [PMID: 23150253 PMCID: PMC3855190 DOI: 10.1007/978-94-007-4525-4_10] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
RNA Polymerase (Pol) I produces ribosomal (r)RNA, an essential component of the cellular protein synthetic machinery that drives cell growth, underlying many fundamental cellular processes. Extensive research into the mechanisms governing transcription by Pol I has revealed an intricate set of control mechanisms impinging upon rRNA production. Pol I-specific transcription factors guide Pol I to the rDNA promoter and contribute to multiple rounds of transcription initiation, promoter escape, elongation and termination. In addition, many accessory factors are now known to assist at each stage of this transcription cycle, some of which allow the integration of transcriptional activity with metabolic demands. The organisation and accessibility of rDNA chromatin also impinge upon Pol I output, and complex mechanisms ensure the appropriate maintenance of the epigenetic state of the nucleolar genome and its effective transcription by Pol I. The following review presents our current understanding of the components of the Pol I transcription machinery, their functions and regulation by associated factors, and the mechanisms operating to ensure the proper transcription of rDNA chromatin. The importance of such stringent control is demonstrated by the fact that deregulated Pol I transcription is a feature of cancer and other disorders characterised by abnormal translational capacity.
Collapse
Affiliation(s)
- Sarah J. Goodfellow
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee , Dundee DD1 5EH , UK
| | - Joost C. B. M. Zomerdijk
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee , Dundee DD1 5EH , UK
| |
Collapse
|
12
|
Santoro R, Schmitz KM, Sandoval J, Grummt I. Intergenic transcripts originating from a subclass of ribosomal DNA repeats silence ribosomal RNA genes in trans. EMBO Rep 2009; 11:52-8. [PMID: 20010804 DOI: 10.1038/embor.2009.254] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 10/15/2009] [Accepted: 10/30/2009] [Indexed: 01/03/2023] Open
Abstract
Epigenetic silencing of a fraction of ribosomal DNA (rDNA) requires association of the nucleolar chromatin-remodelling complex NoRC to 150-250 nucleotide RNAs (pRNA) that originate from an RNA polymerase I promoter located in the intergenic spacer separating rDNA repeats. Here, we show that NoRC-associated pRNA is transcribed from a sub-fraction of hypomethylated rRNA genes during mid S phase, acting in trans to inherit DNA methylation and transcriptional repression of late-replicating silent rDNA copies. The results reveal variability between individual rDNA clusters with distinct functional consequences.
Collapse
Affiliation(s)
- Raffaella Santoro
- Division of Molecular Biology of the Cell II, German Cancer Research Center, DKFZ-ZMBH-Alliance, INF 581, 69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
13
|
Preuss SB, Costa-Nunes P, Tucker S, Pontes O, Lawrence RJ, Mosher R, Kasschau KD, Carrington JC, Baulcombe DC, Viegas W, Pikaard CS. Multimegabase silencing in nucleolar dominance involves siRNA-directed DNA methylation and specific methylcytosine-binding proteins. Mol Cell 2009; 32:673-84. [PMID: 19061642 DOI: 10.1016/j.molcel.2008.11.009] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Revised: 10/31/2008] [Accepted: 11/07/2008] [Indexed: 01/01/2023]
Abstract
In genetic hybrids, the silencing of nucleolar rRNA genes inherited from one progenitor is the epigenetic phenomenon known as nucleolar dominance. An RNAi knockdown screen identified the Arabidopsis de novo cytosine methyltransferase, DRM2, and the methylcytosine binding domain proteins, MBD6 and MBD10, as activities required for nucleolar dominance. MBD10 localizes throughout the nucleus, but MBD6 preferentially associates with silenced rRNA genes and does so in a DRM2-dependent manner. DRM2 methylation is thought to be guided by siRNAs whose biogenesis requires RNA-DEPENDENT RNA POLYMERASE 2 (RDR2) and DICER-LIKE 3 (DCL3). Consistent with this hypothesis, knockdown of DCL3 or RDR2 disrupts nucleolar dominance. Collectively, these results indicate that in addition to directing the silencing of retrotransposons and noncoding repeats, siRNAs specify de novo cytosine methylation patterns that are recognized by MBD6 and MBD10 in the large-scale silencing of rRNA gene loci.
Collapse
Affiliation(s)
- Sasha B Preuss
- Biology Department, Washington University, St. Louis, MO 63130, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Ryu S, Do Y, Fitch DHA, Kim W, Mishra B. Dropout Alignment Allows Homology Recognition and Evolutionary Analysis of rDNA Intergenic Spacers. J Mol Evol 2008; 66:368-83. [DOI: 10.1007/s00239-008-9090-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Revised: 12/14/2007] [Accepted: 02/21/2008] [Indexed: 11/28/2022]
|
15
|
Malone JH, Chrzanowski TH, Michalak P. Sterility and gene expression in hybrid males of Xenopus laevis and X. muelleri. PLoS One 2007; 2:e781. [PMID: 17712429 PMCID: PMC1940320 DOI: 10.1371/journal.pone.0000781] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Accepted: 07/18/2007] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Reproductive isolation is a defining characteristic of populations that represent unique biological species, yet we know very little about the gene expression basis for reproductive isolation. The advent of powerful molecular biology tools provides the ability to identify genes involved in reproductive isolation and focuses attention on the molecular mechanisms that separate biological species. Herein we quantify the sterility pattern of hybrid males in African Clawed Frogs (Xenopus) and apply microarray analysis of the expression pattern found in testes to identify genes that are misexpressed in hybrid males relative to their two parental species (Xenopus laevis and X. muelleri). METHODOLOGY/PRINCIPAL FINDINGS Phenotypic characteristics of spermatogenesis in sterile male hybrids (X. laevis x X. muelleri) were examined using a novel sperm assay that allowed quantification of live, dead, and undifferentiated sperm cells, the number of motile vs. immotile sperm, and sperm morphology. Hybrids exhibited a dramatically lower abundance of mature sperm relative to the parental species. Hybrid spermatozoa were larger in size and accompanied by numerous undifferentiated sperm cells. Microarray analysis of gene expression in testes was combined with a correction for sequence divergence derived from genomic hybridizations to identify candidate genes involved in the sterility phenotype. Analysis of the transcriptome revealed a striking asymmetric pattern of misexpression. There were only about 140 genes misexpressed in hybrids compared to X. laevis but nearly 4,000 genes misexpressed in hybrids compared to X. muelleri. CONCLUSIONS/SIGNIFICANCE Our results provide an important correlation between phenotypic characteristics of sperm and gene expression in sterile hybrid males. The broad pattern of gene misexpression suggests intriguing mechanisms creating the dominance pattern of the X. laevis genome in hybrids. These findings significantly contribute to growing evidence for allelic dominance in hybrids and have implications for the mechanism of species differentiation at the transcriptome level.
Collapse
Affiliation(s)
- John H. Malone
- Department of Biology, The University of Texas at Arlington, Arlington, Texas, United States of America
| | - Thomas H. Chrzanowski
- Department of Biology, The University of Texas at Arlington, Arlington, Texas, United States of America
| | - Pawel Michalak
- Department of Biology, The University of Texas at Arlington, Arlington, Texas, United States of America
| |
Collapse
|
16
|
|
17
|
Preuss S, Pikaard CS. rRNA gene silencing and nucleolar dominance: insights into a chromosome-scale epigenetic on/off switch. ACTA ACUST UNITED AC 2007; 1769:383-92. [PMID: 17439825 PMCID: PMC2000449 DOI: 10.1016/j.bbaexp.2007.02.005] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Revised: 02/25/2007] [Accepted: 02/27/2007] [Indexed: 01/25/2023]
Abstract
Ribosomal RNA (rRNA) gene transcription accounts for most of the RNA in prokaryotic and eukaryotic cells. In eukaryotes, there are hundreds (to thousands) of rRNA genes tandemly repeated head-to-tail within nucleolus organizer regions (NORs) that span millions of basepairs. These nucleolar rRNA genes are transcribed by RNA Polymerase I (Pol I) and their expression is regulated according to the physiological need for ribosomes. Regulation occurs at several levels, one of which is an epigenetic on/off switch that controls the number of active rRNA genes. Additional mechanisms then fine-tune transcription initiation and elongation rates to dictate the total amount of rRNA produced per gene. In this review, we focus on the DNA and histone modifications that comprise the epigenetic on/off switch. In both plants and animals, this system is important for controlling the dosage of active rRNA genes. The dosage control system is also responsible for the chromatin-mediated silencing of one parental set of rRNA genes in genetic hybrids, a large-scale epigenetic phenomenon known as nucleolar dominance.
Collapse
Affiliation(s)
| | - Craig S. Pikaard
- *Author to whom correspondence should be addressed: , phone: 314-935-7569, FAX: 314-935-4432
| |
Collapse
|
18
|
Brelsfoard CL, Fritz GN, Rodriguez R. Sequence analysis of the rDNA internal transcribed spacer 2 and polymerase chain reaction identification of Anopheles fluminensis (Diptera: Culicidae: Anopheles) in Bolivia. JOURNAL OF MEDICAL ENTOMOLOGY 2006; 43:460-6. [PMID: 16739401 DOI: 10.1603/0022-2585(2006)43[460:saotri]2.0.co;2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Anopheles fluminensis Root is a member of the Arribalzagia Series in the subgenus Anopheles. We report the first record of this species in the department of Cochabamba, Bolivia. This species was sampled from two locations in the foothills of the eastern Andes Mountains within the Chapare Valley. Larvae were collected in fast-flowing, shaded streams at the edges of rocky pools. We provide the first sequence data for the rDNA of An. fluminensis, a partial sequence of the 5.8S and the internal transcribed spacer 2 (ITS2). The ITS2 of An. fluminensis, sequenced from two individuals at one site, was at least 596 bp, had 56.5% GC, and included three large repeats (approximately equal to 125 bp each). We describe a polymerase chain reaction protocol and species-specific primers for identifying this species in the Chapare Valley, Bolivia.
Collapse
Affiliation(s)
- Corey L Brelsfoard
- Department of Biological Sciences, Eastern Illinois University, 600 Lincoln Ave., Charleston, IL 61920, USA
| | | | | |
Collapse
|
19
|
Flowers JM, Burton RS. Ribosomal RNA gene silencing in interpopulation hybrids of Tigriopus californicus: nucleolar dominance in the absence of intergenic spacer subrepeats. Genetics 2006; 173:1479-86. [PMID: 16648582 PMCID: PMC1526681 DOI: 10.1534/genetics.106.058719] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A common feature of interspecific animal and plant hybrids is the uniparental silencing of ribosomal RNA gene transcription, or nucleolar dominance. A leading explanation for the genetic basis of nucleolar dominance in animal hybrids is the enhancer-imbalance model. The model proposes that limiting transcription factors are titrated by a greater number of enhancer-bearing subrepeat elements in the intergenic spacer (IGS) of the dominant cluster of genes. The importance of subrepeats for nucleolar dominance has repeatedly been supported in competition assays between Xenopus laevis and X. borealis minigene constructs injected into oocytes. However, a more general test of the importance of IGS subrepeats for nuclear dominance in vivo has not been conducted. In this report, rRNA gene expression was examined in interpopulation hybrids of the marine copepod Tigriopus californicus. This species offers a rare opportunity to test the role of IGS subrepeats in nucleolar dominance because the internal subrepeat structure, found in the IGS of virtually all animal and plant species, is absent in T. californicus. Our results clearly establish that nucleolar dominance occurs in F1 and F2 interpopulation hybrids of this species. In the F2 generation, nucleolar dominance appears to break down in some hybrids in a fashion that is inconsistent with a transcription factor titration model. These results are significant because they indicate that nucleolar dominance can be established and maintained without enhancer-bearing repeat elements in the IGS. This challenges the generality of the enhancer-imbalance model for nucleolar dominance and suggests that dominance of rRNA transcription in animals may be determined by epigenetic factors as has been established in plants.
Collapse
MESH Headings
- Animals
- Cell Nucleolus/genetics
- Cell Nucleolus/metabolism
- Chimera/genetics
- Chimera/metabolism
- Copepoda/genetics
- Copepoda/metabolism
- Crosses, Genetic
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/metabolism
- DNA, Ribosomal Spacer/genetics
- DNA, Ribosomal Spacer/metabolism
- Gene Silencing
- Genes, rRNA
- Genetic Variation
- Polymorphism, Single Nucleotide
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- Temperature
- Transcription, Genetic
Collapse
Affiliation(s)
- Jonathan M Flowers
- Scripps Institution of Oceanography, Marine Biology Research Division, University of California, San Diego, La Jolla, California 92037, USA.
| | | |
Collapse
|
20
|
Mais C, Wright JE, Prieto JL, Raggett SL, McStay B. UBF-binding site arrays form pseudo-NORs and sequester the RNA polymerase I transcription machinery. Genes Dev 2005; 19:50-64. [PMID: 15598984 PMCID: PMC540225 DOI: 10.1101/gad.310705] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2004] [Accepted: 10/19/2004] [Indexed: 11/25/2022]
Abstract
Human ribosomal genes (rDNA) are located in nucleolar organizer regions (NORs) on the short arms of acrocentric chromosomes. Metaphase NORs that were transcriptionally active in the previous cell cycle appear as prominent chromosomal features termed secondary constrictions that are achromatic in chromosome banding and positive in silver staining. The architectural RNA polymerase I (pol I) transcription factor UBF binds extensively across rDNA throughout the cell cycle. To determine if UBF binding underpins NOR structure, we integrated large arrays of heterologous UBF-binding sequences at ectopic sites on human chromosomes. These arrays efficiently recruit UBF even to sites outside the nucleolus and, during metaphase, form novel silver stainable secondary constrictions, termed pseudo-NORs, morphologically similar to NORs. We demonstrate for the first time that in addition to UBF the other components of the pol I machinery are found associated with sequences across the entire human rDNA repeat. Remarkably, a significant fraction of these same pol I factors are sequestered by pseudo-NORs independent of both transcription and nucleoli. Because of the heterologous nature of the sequence employed, we infer that sequestration is mediated primarily by protein-protein interactions with UBF. These results suggest that extensive binding of UBF is responsible for formation and maintenance of the secondary constriction at active NORs. Furthermore, we propose that UBF mediates recruitment of the pol I machinery to nucleoli independently of promoter elements.
Collapse
Affiliation(s)
- Christine Mais
- Biomedical Research Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY Scotland, United Kingdom
| | | | | | | | | |
Collapse
|
21
|
Komarova NY, Grabe T, Huigen DJ, Hemleben V, Volkov RA. Organization, differential expression and methylation of rDNA in artificial Solanum allopolyploids. PLANT MOLECULAR BIOLOGY 2004; 56:439-63. [PMID: 15604755 DOI: 10.1007/s11103-004-4678-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Uniparental activity of ribosomal RNA genes (rDNA) in interspecific hybrids is known as nucleolar dominance (ND). To see if difference in rDNA intergenic spacers (IGS) might be correlated with ND, we have used artificial Solanum allopolyploids and back-crossed lines. Combining fluorescence in situ hybridization and quantification of the level of the rRNA precursor by real-time PCR, we demonstrated that an expression hierarchy exists: In leaves, roots, and petals of the respective allopolyploids, rDNA of S lycopersicum (tomato) dominates over rDNA of S. tuberosum (potato), whereas rDNA of S. tuberosum dominates over that of the wild species S. bulbocastanum . Also in a monosomic addition line carrying only one NOR-bearing chromosome of tomato in a potato background the dominance effect was maintained. These results demonstrate that there is possible correlation between transcriptional dominance and number of conservative elements downstream of the transcription start in the Solanum rDNA. In anthers and callus tissues under-dominant rDNA was slightly (S. lycopersicum/S. tuberosum) or strongly (S. tuberosum/S. bulbocastanum) expressed indicating developmental modulation of ND. In leaves and petals, repression of the respective parental rDNA correlated with cytosine methylation at certain sites conserved in the IGS, whereas activation of under-dominant rDNA in anthers and callus tissues was not accompanied by considerable changes of the methylation pattern.
Collapse
MESH Headings
- Base Sequence
- Crosses, Genetic
- DNA Methylation
- DNA, Plant/chemistry
- DNA, Plant/genetics
- DNA, Plant/isolation & purification
- DNA, Ribosomal/genetics
- DNA, Ribosomal/metabolism
- DNA, Ribosomal Spacer/genetics
- Gene Expression Profiling
- Gene Expression Regulation, Plant
- In Situ Hybridization, Fluorescence
- Molecular Sequence Data
- Polyploidy
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
- Solanum/genetics
Collapse
Affiliation(s)
- Nataliya Y Komarova
- Department of General Genetics, Center of Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 28, Tübingen, 72076, Germany
| | | | | | | | | |
Collapse
|
22
|
Saez-Vasquez J, Albert AC, Earley K, Pikaard CS. Purification and transcriptional analysis of RNA polymerase I holoenzymes from broccoli (Brassica oleracea) and frog (Xenopus laevis). Methods Enzymol 2004; 370:121-38. [PMID: 14712639 DOI: 10.1016/s0076-6879(03)70011-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Affiliation(s)
- Julio Saez-Vasquez
- Biology Department, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, USA
| | | | | | | |
Collapse
|
23
|
Caudy AA, Pikaard CS. Xenopus ribosomal RNA gene intergenic spacer elements conferring transcriptional enhancement and nucleolar dominance-like competition in oocytes. J Biol Chem 2002; 277:31577-84. [PMID: 12080048 DOI: 10.1074/jbc.m202737200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Repeated within the intergenic spacers that separate adjacent ribosomal RNA (rRNA) genes in Xenopus laevis are several distinct sequence elements. These include transcription terminators, "region 0" repeats, "region 1" repeats, duplicated spacer promoters, and 42-bp enhancer elements that are embedded within 60 or 81-bp repeats. All have been reported to stimulate RNA polymerase I transcription from an adjacent gene promoter. A greater number of 42-bp enhancers/gene have been suggested to explain the preferential transcription of X. laevis rRNA genes in X. laevis x Xenopus borealis hybrids, an epigenetic phenomenon known as nucleolar dominance. However, the possible contribution of regions 0/1 and/or spacer promoters to the preferential transcription of X. laevis (over X. borealis) rRNA genes has never been tested directly. In this study, we systematically tested the various intergenic spacer elements for their contributions to promoter strength and nucleolar dominance-like competition in oocytes. In disagreement with a previous report, region 0 and region 1 repeats do not have significant enhancer activity, nor do they play a discernible role in X. laevis-X. borealis rRNA gene competition. Minigenes containing X. laevis spacer sequences are only dominant over minigenes having complete X. borealis spacers if a spacer promoter is located upstream of the 42-bp enhancers; X. laevis enhancers alone are not sufficient. These results provide additional evidence that spacer promoters together with adjacent enhancers form a functional activating unit in Xenopus oocytes.
Collapse
Affiliation(s)
- Amy A Caudy
- Department of Biology, Washington University, St. Louis, Missouri 63130, USA
| | | |
Collapse
|
24
|
Pikaard CS. Transcription and tyranny in the nucleolus: the organization, activation, dominance and repression of ribosomal RNA genes. THE ARABIDOPSIS BOOK 2002; 1:e0083. [PMID: 22303219 PMCID: PMC3243331 DOI: 10.1199/tab.0083] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Affiliation(s)
- Craig S Pikaard
- Biology Department, Washington University, Campus box 1137, 1 Brookings Drive, St. Louis, Missouri, 63130, USA ; FAX: 314-935-4432;
| |
Collapse
|
25
|
O'Sullivan AC, Sullivan GJ, McStay B. UBF binding in vivo is not restricted to regulatory sequences within the vertebrate ribosomal DNA repeat. Mol Cell Biol 2002; 22:657-68. [PMID: 11756560 PMCID: PMC139743 DOI: 10.1128/mcb.22.2.657-668.2002] [Citation(s) in RCA: 180] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The HMG box containing protein UBF binds to the promoter of vertebrate ribosomal repeats and is required for their transcription by RNA polymerase I in vitro. UBF can also bind in vitro to a variety of sequences found across the intergenic spacer in Xenopus and mammalian ribosomal DNA (rDNA) repeats. The high abundance of UBF, its colocalization with rDNA in vivo, and its DNA binding characteristics, suggest that it plays a more generalized structural role over the rDNA repeat. Until now this view has not been supported by any in vivo data. Here, we utilize chromatin immunoprecipitation from a highly enriched nucleolar chromatin fraction to show for the first time that UBF binding in vivo is not restricted to known regulatory sequences but extends across the entire intergenic spacer and transcribed region of Xenopus, human, and mouse rDNA repeats. These results are consistent with a structural role for UBF at active nucleolar organizer regions in addition to its recognized role in stable transcription complex formation at the promoter.
Collapse
Affiliation(s)
- Audrey C O'Sullivan
- Biomedical Research Centre, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, United Kingdom
| | | | | |
Collapse
|
26
|
Martínez-Calvillo S, Sunkin SM, Yan S, Fox M, Stuart K, Myler PJ. Genomic organization and functional characterization of the Leishmania major Friedlin ribosomal RNA gene locus. Mol Biochem Parasitol 2001; 116:147-57. [PMID: 11522348 DOI: 10.1016/s0166-6851(01)00310-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The sequence and gene organization of the ribosomal RNA (rRNA) genes of Leishmania major Friedlin (LmjF) were determined. Interestingly, the rDNA repeat unit contained a duplicated 526 bp fragment at the 3' end of the unit with two copies of the LSUepsilon rRNA gene. Our results suggested the presence of only approximately 24 copies of the rRNA unit per diploid genome in LmjF. Repetitive elements (IGSRE) of 63 bp occurred in the intergenic spacer (IGS) between the LSUepsilon and the SSU rRNA genes. Among the different rDNA units, the region containing the IGSRE fluctuated in length from approximately 1.3 to approximately 18 kb. The transcription initiation site (TIS) of the rRNA unit was localized by primer extension to 1043 bp upstream of the SSU gene and 184 bp downstream of the IGSRE. Sequence comparison among several species of Leishmania showed a high degree of conservation around the TIS. Moreover, the IGSRE also showed considerable similarity between Leishmania species. In transient transfection assays, a fragment containing the TIS directed a 164- to 178-fold increase in luciferase activity over the no-insert control, indicating the presence of a promoter within this 391 bp fragment. The LmjF promoter region was also functional in other species of Leishmania. Nuclear run-on analyses demonstrated that only the rRNA-coding strand is transcribed, downstream of this RNA polymerase I (pol I) promoter. These experiments also suggested that transcription terminates upstream of the IGSRE.
Collapse
Affiliation(s)
- S Martínez-Calvillo
- Seattle Biomedical Research Institute, 4 Nickerson Street, Seattle, WA 98109-1651, USA
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
Epigenetic phenomena are heritable, alternative states of gene activity that are not explained by mutation, changes in gene sequence or normal developmental regulation. Among the earliest examples was nucleolar dominance, a common phenomenon in interspecific hybrids in which only ribosomal RNA (rRNA) genes inherited from one parent are transcribed. Only active rRNA genes initiate formation of a nucleolus, hence the name for the phenomenon. As in other epigenetic phenomena, chromatin modifications enforce selective gene silencing in nucleolar dominance. However, the mechanisms that discriminate between parental sets of rRNA genes are unclear. Possibilities include sequence differences that affect transcription factor affinities. Other evidence suggests that chromosomal context is more important than rRNA gene sequences, implying control on a larger scale.
Collapse
Affiliation(s)
- C S Pikaard
- Biology Dept, Washington University, Campus Box 1137, One Brookings Drive, St Louis, MO 63130, USA
| |
Collapse
|
28
|
Yan S, Lodes MJ, Fox M, Myler PJ, Stuart K. Characterization of the Leishmania donovani ribosomal RNA promoter. Mol Biochem Parasitol 1999; 103:197-210. [PMID: 10551363 DOI: 10.1016/s0166-6851(99)00126-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The rRNA genes of Leishmania donovani are organized on chromosome 27 as tandem repeats of approximately 12.5-kb units that each contain a promoter, the subunit rRNAs, and approximately 39 copies of a 64-bp species-specific sequence. The transcription initiation site was mapped to 1020 bp upstream of the 18S rRNA gene by RNase protection and primer extension. A 349-bp sequence between the 64-bp repeats and the 18S rRNA gene appears to contain a promoter, since it directs a 60-fold increase in luciferase expression over the no-insert control in transient transfection assays. Stepwise deletion and 10-bp replacement studies identified three domains that affect promoter activity. In strain LSB-51.1, a naturally occurring gene conversion with a portion of the LD1 sequence from chromosome 35 replaced the rRNA genes within one repeat unit, from downstream of the promoter to within the 64-bp repeats. Northern blot analysis of RNA from LSB-51.1 showed large transcripts from the external spacer regions that are not normally transcribed. These results imply that the gene conversion eliminated sequences at or near the 5' terminus of the 64-bp repeats which normally function in transcription termination.
Collapse
MESH Headings
- Animals
- Base Sequence
- Kinetoplastida/genetics
- Leishmania donovani/genetics
- Molecular Sequence Data
- Promoter Regions, Genetic
- RNA, Ribosomal/genetics
- RNA, Ribosomal, 18S/genetics
- RNA, Ribosomal, 28S/genetics
- Repetitive Sequences, Nucleic Acid
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
- Terminator Regions, Genetic
- Transcription, Genetic
Collapse
Affiliation(s)
- S Yan
- Seattle Biomedical Research Institute, WA 98109-1651, USA
| | | | | | | | | |
Collapse
|
29
|
Frieman M, Chen ZJ, Saez-Vasquez J, Shen LA, Pikaard CS. RNA polymerase I transcription in a Brassica interspecific hybrid and its progenitors: Tests of transcription factor involvement in nucleolar dominance. Genetics 1999; 152:451-60. [PMID: 10224274 PMCID: PMC1460595 DOI: 10.1093/genetics/152.1.451] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In interspecific hybrids or allopolyploids, often one parental set of ribosomal RNA genes is transcribed and the other is silent, an epigenetic phenomenon known as nucleolar dominance. Silencing is enforced by cytosine methylation and histone deacetylation, but the initial discrimination mechanism is unknown. One hypothesis is that a species-specific transcription factor is inactivated, thereby silencing one set of rRNA genes. Another is that dominant rRNA genes have higher binding affinities for limiting transcription factors. A third suggests that selective methylation of underdominant rRNA genes blocks transcription factor binding. We tested these hypotheses using Brassica napus (canola), an allotetraploid derived from B. rapa and B. oleracea in which only B. rapa rRNA genes are transcribed. B. oleracea and B. rapa rRNA genes were active when transfected into protoplasts of the other species, which argues against the species-specific transcription factor model. B. oleracea and B. rapa rRNA genes also competed equally for the pol I transcription machinery in vitro and in vivo. Cytosine methylation had no effect on rRNA gene transcription in vitro, which suggests that transcription factor binding was unimpaired. These data are inconsistent with the prevailing models and point to discrimination mechanisms that are likely to act at a chromosomal level.
Collapse
Affiliation(s)
- M Frieman
- Biology Department, Washington University, St. Louis, Missouri 63130, USA
| | | | | | | | | |
Collapse
|
30
|
Grummt I. Regulation of mammalian ribosomal gene transcription by RNA polymerase I. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1999; 62:109-54. [PMID: 9932453 DOI: 10.1016/s0079-6603(08)60506-1] [Citation(s) in RCA: 190] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
All cells, from prokaryotes to vertebrates, synthesize vast amounts of ribosomal RNA to produce the several million new ribosomes per generation that are required to maintain the protein synthetic capacity of the daughter cells. Ribosomal gene (rDNA) transcription is governed by RNA polymerase I (Pol I) assisted by a dedicated set of transcription factors that mediate the specificity of transcription and are the targets of the pleiotrophic pathways the cell uses to adapt rRNA synthesis to cell growth. In the past few years we have begun to understand the specific functions of individual factors involved in rDNA transcription and to elucidate on a molecular level how transcriptional regulation is achieved. This article reviews our present knowledge of the molecular mechanism of rDNA transcriptional regulation.
Collapse
Affiliation(s)
- I Grummt
- Division of Molecular Biology of the Cell II, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
31
|
Sullivan GJ, McStay B. Dimerization and HMG box domains 1-3 present in Xenopus UBF are sufficient for its role in transcriptional enhancement. Nucleic Acids Res 1998; 26:3555-61. [PMID: 9671818 PMCID: PMC147741 DOI: 10.1093/nar/26.15.3555] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Transcription of Xenopus ribosomal genes by RNA polymerase I is directed by a stable transcription complex that forms on the gene promoter. This complex is comprised of the HMG box factor UBF and the TBP-containing complex Rib1. Repeated sequence elements found upstream of the ribosomal gene promoter act as RNA polymerase I-specific trans-criptional enhancers. These enhancers function by increasing the probability of a stable transcription complex forming on the adjacent promoter. UBF is required for enhancer function. This role in enhancement is distinct from that at the promoter and does not involve translocation of UBF from enhancer repeats to the promoter. Here we utilize an in vitro system to demonstrate that a combination of the dimerization domain of UBF and HMG boxes 1-3 are sufficient to specify its role in enhancement. We also demonstrate that the acidic C-terminus of UBF is primarilyresponsible for its observed interaction with Rib1. Thus, we have uncoupled the Rib1 interaction and enhancer functions of UBF and can conclude that direct interaction with Rib1 is not a prerequisite for the enhancer function of UBF.
Collapse
Affiliation(s)
- G J Sullivan
- Biomedical Research Centre, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | | |
Collapse
|
32
|
Krebs JE, Dunaway M. The scs and scs' insulator elements impart a cis requirement on enhancer-promoter interactions. Mol Cell 1998; 1:301-8. [PMID: 9659926 DOI: 10.1016/s1097-2765(00)80030-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The Xenopus rRNA enhancer activates its cognate promoter when the two elements are placed on opposite rings of dimeric catenanes. Here we show that when scs elements flank either the enhancer or promoter in catenanes, the enhancer cannot activate the promoter on the ring in trans. A series of catenanes containing different permutations of the insulators, enhancer, and promoters shows that when insulators are present, the enhancer is permitted to a activate the promoter only when both elements are on the same piece of DNA with no intervening insulator. These results suggest that insulators have the potential to block enhancer-promoter interactions between chromosomes and between independent topological domains within a chromosome.
Collapse
Affiliation(s)
- J E Krebs
- Department of Molecular and Cell Biology, University of California, Berkeley 94720-3202, USA
| | | |
Collapse
|
33
|
Kermekchiev M, Workman JL, Pikaard CS. Nucleosome binding by the polymerase I transactivator upstream binding factor displaces linker histone H1. Mol Cell Biol 1997; 17:5833-42. [PMID: 9315641 PMCID: PMC232431 DOI: 10.1128/mcb.17.10.5833] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Upstream binding factor (UBF) is a vertebrate RNA polymerase I transcription factor that can bend and wrap DNA. To investigate UBF's likely role as an architectural protein of rRNA genes organized in chromatin, we tested UBF's ability to bind rRNA gene enhancers assembled into nucleosome cores (DNA plus core histones) and nucleosomes (DNA plus core histones plus histone H1). UBF bound with low affinity to nucleosome cores formed with enhancer DNA probes of 162 bp. However, on nucleosome cores which contained approximately 60 bp of additional linker DNA, UBF bound with high affinity similar to its binding to naked DNA, forming a ternary DNA-core histone-UBF complex. UBF could be stripped from ternary complexes with competitor DNA to liberate nucleosome cores, rather than free DNA, suggesting that UBF binding to nucleosome cores does not displace the core histones H2A, H2B, H3, and H4. DNase I, micrococcal nuclease, and exonuclease III footprinting suggests that UBF and histone H1 interact with DNA on both sides flanking the histone octamer. Footprinting shows that UBF outcompetes histone H1 for binding to a nucleosome core and will displace, if not dissociate, H1 from its binding site on a preassembled nucleosome. These data suggest that UBF may act to prevent or reverse the assembly of transcriptionally inactive chromatin structures catalyzed by linker histone binding.
Collapse
Affiliation(s)
- M Kermekchiev
- Biology Department, Washington University, St. Louis, Missouri 63130, USA
| | | | | |
Collapse
|
34
|
Chen ZJ, Pikaard CS. Epigenetic silencing of RNA polymerase I transcription: a role for DNA methylation and histone modification in nucleolar dominance. Genes Dev 1997; 11:2124-36. [PMID: 9284051 PMCID: PMC316451 DOI: 10.1101/gad.11.16.2124] [Citation(s) in RCA: 258] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Nucleolar dominance is an epigenetic phenomenon that describes nucleolus formation around rRNA genes inherited from only one progenitor of an interspecific hybrid or allopolyploid. The phenomenon is widespread, occurring in plants, insects, amphibians, and mammals, yet its molecular basis remains unclear. We have demonstrated nucleolar dominance in three allotetraploids of the plant genus Brassica. In Brassica napus, accurately initiated pre-rRNA transcripts from one progenitor, Brassica rapa are detected readily, whereas transcripts from the approximately 3000 rRNA genes inherited from the other progenitor, Brassica oleracea, are undetectable. Nuclear run-on confirmed that dominance is controlled at the level of transcription. Growth of B. napus seedlings on 5-aza-2'-deoxycytidine to inhibit cytosine methylation caused the normally silent, under-dominant B. oleracea rRNA genes to become expressed to high levels. The histone deacetylase inhibitors sodium butyrate and trichostatin A also derepressed silent rRNA genes. These results reveal an enforcement mechanism for nucleolar dominance in which DNA methylation and histone modifications combine to regulate rRNA gene loci spanning tens of megabase pairs of DNA.
Collapse
Affiliation(s)
- Z J Chen
- Biology Department, Washington University, St. Louis, Missouri 63130, USA
| | | |
Collapse
|
35
|
Robinett CC, O'Connor A, Dunaway M. The repeat organizer, a specialized insulator element within the intergenic spacer of the Xenopus rRNA genes. Mol Cell Biol 1997; 17:2866-75. [PMID: 9111359 PMCID: PMC232139 DOI: 10.1128/mcb.17.5.2866] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We have identified a novel activity for the region of the intergenic spacer of the Xenopus laevis rRNA genes that contains the 35- and 100-bp repeats. We devised a new assay for this region by constructing DNA plasmids containing a tandem repeat of rRNA reporter genes that were separated by the 35- and 100-bp repeat region and a rRNA gene enhancer. When the 35- and 100-bp repeat region is present in its normal position and orientation at the 3' end of the rRNA reporter genes, the enhancer activates the adjacent downstream promoter but not the upstream rRNA promoter on the same plasmid. Because this element can restrict the range of an enhancer's activity in the context of tandem genes, we have named it the repeat organizer (RO). The ability to restrict enhancer action is a feature of insulator elements, but unlike previously described insulator elements the RO does not block enhancer action in a simple enhancer-blocking assay. Instead, the activity of the RO requires that it be in its normal position and orientation with respect to the other sequence elements of the rRNA genes. The enhancer-binding transcription factor xUBF also binds to the repetitive sequences of the RO in vitro, but these sequences do not activate transcription in vivo. We propose that the RO is a specialized insulator element that organizes the tandem array of rRNA genes into single-gene expression units by promoting activation of a promoter by its proximal enhancers.
Collapse
Affiliation(s)
- C C Robinett
- Department of Molecular and Cell Biology, University of California, Berkeley 94720-3202, USA
| | | | | |
Collapse
|
36
|
Chen ZJ, Pikaard CS. Transcriptional analysis of nucleolar dominance in polyploid plants: biased expression/silencing of progenitor rRNA genes is developmentally regulated in Brassica. Proc Natl Acad Sci U S A 1997; 94:3442-7. [PMID: 9096413 PMCID: PMC20389 DOI: 10.1073/pnas.94.7.3442] [Citation(s) in RCA: 201] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/1996] [Accepted: 12/31/1996] [Indexed: 02/04/2023] Open
Abstract
Nucleolar dominance is an epigenetic phenomenon that describes the formation of nucleoli around rRNA genes inherited from only one parent in the progeny of an interspecific hybrid. Despite numerous cytogenetic studies, little is known about nucleolar dominance at the level of rRNA gene expression in plants. We used S1 nuclease protection and primer extension assays to define nucleolar dominance at a molecular level in the plant genus Brassica. rRNA transcription start sites were mapped in three diploids and in three allotetraploids (amphidiploids) and one allohexaploid species derived from these diploid progenitors. rRNA transcripts of only one progenitor were detected in vegetative tissues of each polyploid. Dominance was independent of maternal effect, ploidy, or rRNA gene dosage. Natural and newly synthesized amphidiploids yielded the same results, arguing against substantial evolutionary effects. The hypothesis that nucleolar dominance in plants is correlated with physical characteristics of rRNA gene intergenic spacers is not supported in Brassica. Furthermore, in Brassica napus, rRNA genes silenced in vegetative tissues were found to be expressed in all floral organs, including sepals and petals, arguing against the hypothesis that passage through meiosis is needed to reactivate suppressed genes. Instead, the transition of inflorescence to floral meristem appears to be a developmental stage when silenced genes can be derepressed.
Collapse
Affiliation(s)
- Z J Chen
- Biology Department, Washington University, St. Louis, MO 63130, USA
| | | |
Collapse
|
37
|
Liu Z, Zhao A, Chen L, Pape L. Activated levels of rRNA synthesis in fission yeast are driven by an intergenic rDNA region positioned over 2500 nucleotides upstream of the initiation site. Nucleic Acids Res 1997; 25:659-67. [PMID: 9016610 PMCID: PMC146475 DOI: 10.1093/nar/25.3.659] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
RNA polymerase I-catalyzed synthesis of the Schizosaccharomyces pombe approximately 37S pre-rRNAs was shown to be sensitive to regulatory sequences located several kilobases upstream of the initiation site for the rRNA gene. An in vitro transcription system for RNA polymerase I-catalyzed RNA synthesis was established that supports correct and activated transcription from templates bearing a full S. pombe rRNA gene promoter. A 780 bp region starting at -2560 significantly stimulates transcription of ac is-located rDNA promoter and competes with an rDNA promoter in trans, thus displaying some of the activities of rDNA transcriptional enhancers in vitro. Deletion of a 30 bp enhancer-homologous domain in this 780 bp far upstream region blocked its cis-stimulatory effect. The sequence of the S. pombe 3.5 kb intergenic spacer was determined and its organization differs from that of vertebrate, Drosophila, Acanthamoeba and plant intergenic rDNA spacers: it does not contain multiple, imperfect copies of the rRNA gene promoter nor repetitive elements of 140 bp, as are found in vertebrate rDNA enhancers.
Collapse
Affiliation(s)
- Z Liu
- Department of Chemistry, New York University, New York, NY 10003, USA
| | | | | | | |
Collapse
|
38
|
McStay B, Sullivan GJ, Cairns C. The Xenopus RNA polymerase I transcription factor, UBF, has a role in transcriptional enhancement distinct from that at the promoter. EMBO J 1997; 16:396-405. [PMID: 9029158 PMCID: PMC1169644 DOI: 10.1093/emboj/16.2.396] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Repeated sequence elements found upstream of the ribosomal gene promoter in Xenopus function as RNA polymerase I-specific transcriptional enhancers. Here we describe an in vitro system in which these enhancers function in many respects as in vivo. The principal requirement for enhancer function in vitro is the presence of a high concentration of upstream binding factor (UBF). This system is utilized to demonstrate that enhancers function by increasing the probability of a stable transcription complex forming on the adjacent promoter. Species differences in UBF are utilized to demonstrate that enhancers do not act by recruiting UBF to the promoter, rather UBF performs its own distinct role at the enhancers. UBF function in enhancement differs from that at the promoter, as it is flexible with respect to both the species of UBF and the enhancer element employed. Additionally, we identify a potential role for the mammalian UBF splice variant, UBF2, in enhancer function. We demonstrate that the TATA box binding protein (TBP)-containing component of Xenopus RNA polymerase I transcription, Rib1, can interact with an enhancer-UBF complex. This suggests a model in which enhancers act by recruiting Rib1 to the promoter.
Collapse
Affiliation(s)
- B McStay
- Biomedical Research Centre, University of Dundee, UK
| | | | | |
Collapse
|
39
|
Dunaway M, Hwang JY, Xiong M, Yuen HL. The activity of the scs and scs' insulator elements is not dependent on chromosomal context. Mol Cell Biol 1997; 17:182-9. [PMID: 8972198 PMCID: PMC231742 DOI: 10.1128/mcb.17.1.182] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Sequence elements that protect a reporter gene from chromosomal position effects or that block enhancer-activated transcription are called insulators. Using a plasmid-based microinjection assay with Xenopus laevis oocytes, we show that the heterologous Drosophila melanogaster scs and scs' insulator elements do not require chromosomal context to block enhancer-activated transcription. A single insulator element partially blocks enhancer-activated transcription, indicating that each element operates independently rather than as part of a pair. Deletion analysis of the 1.8-kb scs element identified a 220-bp fragment from one of the DNase I-hypersensitive regions that has full blocking activity in the oocyte assay. This fragment corresponds to the critical region of the scs mapped in previous studies with Drosophila. A time course of transcription shows that the scs blocks enhancer-activated transcription as early as transcription can be detected, about 30 min after injection. Complete assembly of the DNA template into nucleosomes requires 4 h. The scs and scs' sequences do not block site-specific recombination by FLP recombinase, implying that insulators do not operate by a general mechanism that physically sequesters the DNA. These data are most consistent with a model for insulator action in which direct interaction between the insulator and either the enhancer or promoter confers directionality to enhancer-activated transcription.
Collapse
Affiliation(s)
- M Dunaway
- Department of Molecular and Cell Biology, University of California-Berkeley 94720-3202, USA.
| | | | | | | |
Collapse
|
40
|
Pulido M, Martínez-Calvillo S, Hernández R. Trypanosoma cruzi rRNA genes: a repeated element from the non-transcribed spacer is locus specific. Acta Trop 1996; 62:163-70. [PMID: 9025984 DOI: 10.1016/s0001-706x(96)00034-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
To determine the occurrence of conserved domains of presumed functional selection, a genomic restriction analysis was carried out in the region surrounding a transcription start point (tsp) from the rRNA cistron in T. cruzi. The transcribed spacer was found highly conserved among several isolates, whereas at 146 bp upstream from the tsp a highly polymorphic pattern was evidenced with a probe that contains sequences of a repetitive element (172 bp). Both genomic and chromosomal hybridizations indicated the linkage of the repetitive element to coding regions of the rRNA cistron. This represents the first example of a repetitive element not interspersed throughout the genome of T. cruzi, and strongly suggests that a functional role is being selected.
Collapse
Affiliation(s)
- M Pulido
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F., México
| | | | | |
Collapse
|
41
|
Mougey EB, Pape LK, Sollner-Webb B. Virtually the entire Xenopus laevis rDNA multikilobase intergenic spacer serves to stimulate polymerase I transcription. J Biol Chem 1996; 271:27138-45. [PMID: 8900206 DOI: 10.1074/jbc.271.43.27138] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The promoter-distal half of the spacer separating the tandem Xenopus laevis rRNA genes consists of "0" and "1" repetitive elements that have been considered unimportant in polymerase I transcriptional activation. Utilizing oocyte microinjection, we now demonstrate that the 0/1 region, as well as its component 0 and 1 repeats, substantially stimulate transcription from a ribosomal promoter in cis and inhibit transcription when located in trans. Both the cis and trans responses increase linearly with increasing numbers of 0 or 1 repeats until saturation is approached. The 0/1 block and its component elements stimulate transcription in both orientations, over distances, and when placed downstream of the initiation site, properties for which the 60/81-base pair (bp) repeats have been defined as polymerase I enhancers. In their natural promoter-distal rDNA location, the 0/1 repeats can stimulate transcription from the rRNA gene promoter, above the level afforded by the intervening 60/81-bp repeats and spacer promoter. In addition, as with the 60/81-bp repeats, the 0/1 repeats bind a factor in common with the rDNA promoter. Thus, the entire X. laevis rDNA intergenic spacer (the 0 repeats, 1 repeats, spacer promoter repeats, and 60/81-bp repeats) acts together to enhance ribosomal transcription.
Collapse
Affiliation(s)
- E B Mougey
- Department of Biological Chemistry, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
42
|
Krebs JE, Dunaway M. DNA length is a critical parameter for eukaryotic transcription in vivo. Mol Cell Biol 1996; 16:5821-9. [PMID: 8816496 PMCID: PMC231583 DOI: 10.1128/mcb.16.10.5821] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The organization of eukaryotic chromosomes into topological domains has led to the assumption that DNA topology and perhaps supercoiling are involved in eukaryotic nuclear processes. Xenopus oocytes provide a model system for studying the role of DNA topology in transcription. Linear plasmid templates for RNA polymerases (Pols) I and II are not transcribed in Xenopus oocytes, while circular templates are transcriptionally active. Here we show that circularity is not required for transcription of Pol I or Pol II promoters if the linear template is sufficiently long (> 17 to 19 kb). The Xenopus rRNA (Pol I) promoter is active in central positions on a long linear template but is not transcribed when located near an end. Because supercoils generated by transcription could be retained by viscous drag against the long template, these results are consistent with a supercoiling requirement for this promoter. Surprisingly, the herpes simplex virus thymidine kinase (Pol II) promoter is active even 100 bp from the end of the long template, indicating that template length fulfills a critical parameter for transcription that is not consistent with a supercoiling requirement. These results show that DNA length has unrecognized importance for transcription in vivo.
Collapse
Affiliation(s)
- J E Krebs
- Department of Molecular and Cell Biology, University of California, Berkeley 94720-3202, USA
| | | |
Collapse
|
43
|
Osheim YN, Mougey EB, Windle J, Anderson M, O'Reilly M, Miller OL, Beyer A, Sollner-Webb B. Metazoan rDNA enhancer acts by making more genes transcriptionally active. J Cell Biol 1996; 133:943-54. [PMID: 8655586 PMCID: PMC2120851 DOI: 10.1083/jcb.133.5.943] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Enhancers could, in principle, function by increasing the rate of reinitiation on individual adjacent active promoters or by increasing the probability that an adjacent promoter is activated for transcription. We have addressed this issue for the repetitive metazoan rDNA enhancer by microinjecting Xenopus oocytes with enhancer-less and enhancer-bearing genes and determining by EM the frequency that each gene type forms active transcription units and their transcript density. We use conditions where transcription requires the normal rDNA promoter and is stimulated 30-50-fold by the enhancer. (In contrast, at saturating template conditions as used in previous EM studies, an aberrant mode of transcription is activated that is not affected by the rDNA enhancer or by the generally recognized rDNA promoter). The active transcription units on enhancer-less genes are found to be as densely packed with nascent transcripts and polymerases as those on enhancer-bearing genes and on the endogenous rRNA genes. Significantly, the enhancer-bearing genes are approximately 30-50-fold more likely to form such active transcription units than enhancer-less genes, consistent with their amounts of transcript. Complementary studies confirm that the enhancer does not affect elongation rate, the stability of the transcription complex, or transcript half-life. These data demonstrate that the repetitive metazoan rDNA enhancer causes more genes to be actively transcribed and does not alter the reinitiation rate on individual active genes.
Collapse
Affiliation(s)
- Y N Osheim
- Department of Microbiology, University of Virginia School of Medicine, Charlottesville, 22908, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Gay LS, Wilson ME, Donelson JE. The promoter for the ribosomal RNA genes of Leishmania chagasi. Mol Biochem Parasitol 1996; 77:193-200. [PMID: 8813665 DOI: 10.1016/0166-6851(96)02594-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A promoter for the rRNA genes of Leishmania chagasi was found to be located about 1 kb upstream of the 18S rRNA coding region and immediately downstream of 64 bp tandem repeats. Its approximate boundaries and corresponding transcription start site were determined by transient transfections and primer extension assays. This promoter for RNA polymerase I has differing activities when transfected into various Leishmania species and no activity in Trypanosoma cruzi. Its sequence has no obvious similarities with other known rRNA promoters in Trypanosomatids. Depending on the species, this promoter can be used to increase expression of a protein from a plasmid in Leishmania by as much as 45-fold over that from a plasmid lacking a promoter.
Collapse
MESH Headings
- Animals
- Base Sequence
- DNA, Protozoan/genetics
- DNA, Ribosomal/genetics
- Gene Expression Regulation/genetics
- Genes, Protozoan/genetics
- Genes, Reporter
- Leishmania infantum/genetics
- Luciferases/genetics
- Luciferases/metabolism
- Molecular Sequence Data
- Promoter Regions, Genetic/genetics
- RNA Polymerase I
- RNA, Protozoan/genetics
- RNA, Ribosomal, 18S/genetics
- Sequence Analysis, DNA
- Transcription, Genetic/genetics
Collapse
Affiliation(s)
- L S Gay
- Department of Biochemistry, University of Iowa, Iowa City 52242, USA
| | | | | |
Collapse
|
45
|
Yang Q, Radebaugh CA, Kubaska W, Geiss GK, Paule MR. Acanthamoeba castellanii contains a ribosomal RNA enhancer binding protein which stimulates TIF-IB binding and transcription under stringent conditions. Nucleic Acids Res 1995; 23:4345-52. [PMID: 7501455 PMCID: PMC307389 DOI: 10.1093/nar/23.21.4345] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The intergenic spacer (IGS) of Acanthamoeba castellanii rRNA genes contains repeated elements which are weak enhancers for transcription by RNA polymerase I. A protein, EBF, was identified and partially purified which binds to the enhancers and to several other sequences within the IGS, but not to other DNA fragments, including the rRNA core promoter. No consensus binding sequence could be discerned in these fragments and bound factor is in rapid equilibrium with unbound. EBF has functional characteristics similar to vertebrate upstream binding factors (UBF). Not only does it bind to the enhancer and other IGS elements, but it also stimulates binding of TIF-IB, the fundamental transcription initiation factor, to the core promoter and stimulates transcription from the promoter. Attempts to identify polypeptides with epitopes similar to rat or Xenopus laevis UBF suggest that structurally the protein from A.castellanii is not closely related to vertebrate UBF.
Collapse
Affiliation(s)
- Q Yang
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins 80523, USA
| | | | | | | | | |
Collapse
|
46
|
Paalman MH, Henderson SL, Sollner-Webb B. Stimulation of the mouse rRNA gene promoter by a distal spacer promoter. Mol Cell Biol 1995; 15:4648-56. [PMID: 7623857 PMCID: PMC230706 DOI: 10.1128/mcb.15.8.4648] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We show that the mouse ribosomal DNA (rDNA) spacer promoter acts in vivo to stimulate transcription from a downstream rRNA gene promoter. This augmentation of mammalian RNA polymerase I transcription is observed in transient-transfection experiments with three different rodent cell lines, under noncompetitive as well as competitive transcription conditions, over a wide range of template concentrations, whether or not the enhancer repeats alone stimulate or repress expression from the downstream gene promoter. Stimulation of gene promoter transcription by the spacer promoter requires the rDNA enhancer sequences to be present between the spacer promoter and gene promoter and to be oriented as in native rDNA. Stimulation also requires that the spacer promoter be oriented toward the enhancer and gene promoter. However, stimulation does not correlate with transcription from the spacer promoter because the level of stimulation is not altered by either insertion of a functional mouse RNA polymerase I transcriptional terminator between the spacer promoter and enhancer or replacement with a much more active heterologous polymerase I promoter. Further analysis with a series of mutated spacer promoters indicates that the stimulatory activity does not reside in the major promoter domains but requires the central region of the promoter that has been correlated with enhancer responsiveness in vivo.
Collapse
Affiliation(s)
- M H Paalman
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
47
|
Tyler-Cross RE, Short SL, Floeter-Winter LM, Buck GA. Transient expression mediated by the Trypanosoma cruzi rRNA promoter. Mol Biochem Parasitol 1995; 72:23-31. [PMID: 8538693 DOI: 10.1016/0166-6851(95)00061-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Plasmid constructs containing a putative Trypanosoma cruzi rRNA promoter and transcription start point upstream from the bacterial chloramphenicol acetyltransferase (CAT) reporter gene were transfected into cultured T. cruzi epimastigotes to verify the presence of a promoter activity. Constructs bearing the putative promoter and a 3' trans-splicing acceptor site in the proper orientation yielded approx. two orders of magnitude greater CAT expression than that previously observed with the T. cruzi spliced leader (SL) gene promoter. In contrast, similar constructs lacking the known 3' splice site yielded reduced but readily measurable expression suggesting that sequences near the promoter may function as cryptic 3' splice sites. A repeated sequence upstream from the putative basal rRNA promoter in a position analogous to rRNA gene enhancer elements in other eukaryotes did not enhance expression from the T. cruzi rRNA promoter. Finally, these constructs were functional in some but not all T. cruzi isolates, and were inactive in other kinetoplastid species, suggesting that the T. cruzi rRNA promoter may have a limited host range.
Collapse
Affiliation(s)
- R E Tyler-Cross
- Department of Microbiology and Immunology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond 23298, USA
| | | | | | | |
Collapse
|
48
|
Moss T, Stefanovsky VY. Promotion and regulation of ribosomal transcription in eukaryotes by RNA polymerase I. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1995; 50:25-66. [PMID: 7754036 DOI: 10.1016/s0079-6603(08)60810-7] [Citation(s) in RCA: 154] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- T Moss
- Cancer Research Centre, Laval University, Hôtel-Dieu de Québec, Canada
| | | |
Collapse
|
49
|
Labhart P. Negative and positive effects of CpG-methylation on Xenopus ribosomal gene transcription in vitro. FEBS Lett 1994; 356:302-6. [PMID: 7805860 DOI: 10.1016/0014-5793(94)01291-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Methylation of cytosine-residues in the sequence CpG affects the expression of many genes and generally correlates with reduced transcription. The ribosomal genes of Xenopus laevis were among the first genes to be studied with respect to their DNA methylation, and a loss of methylation during embryonic development correlated with the onset of transcription. Nevertheless, highly methylated ribosomal genes were transcribed at normal levels when injected into oocyte nuclei, and thus transcription of these genes was generally assumed to be insensitive to CpG-methylation. Here I show that Xenopus ribosomal gene transcription can be repressed by cellular factors binding to meCpG, similarly as it has been described for transcription by RNA polymerase II. In the absence of these repressors, however, CpG-methylation has a direct positive effect on RNA polymerase I-promoter activity.
Collapse
Affiliation(s)
- P Labhart
- Scripps Research Institute, Department of Molecular and Experimental Medicine, La Jolla, CA 92037
| |
Collapse
|
50
|
Yang Q, Zwick MG, Paule MR. Sequence organization of the Acanthamoeba rRNA intergenic spacer: identification of transcriptional enhancers. Nucleic Acids Res 1994; 22:4798-805. [PMID: 7984432 PMCID: PMC308533 DOI: 10.1093/nar/22.22.4798] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The primary sequence of the entire 2330 bp intergenic spacer of the A.castellanii ribosomal RNA gene was determined. Repeated sequence elements averaging 140 bp were identified and found to bind a protein required for optimum initiation at the core promoter. These repeated elements were shown to stimulate rRNA transcription by RNA polymerase I in vitro. The repeats inhibited transcription when placed in trans, and stimulated transcription when in cis, in either orientation, but only when upstream of the core promoter. Thus, these repeated elements have characteristics similar to polymerase I enhancers found in higher eukaryotes. The number of rRNA repeats in Acanthamoeba cells was determined to be 24 per haploid genome, the lowest number so far identified in any eukaryote. However, because Acanthamoeba is polyploid, each cell contains approximately 600 rRNA genes.
Collapse
MESH Headings
- Acanthamoeba/genetics
- Animals
- Base Composition
- Base Sequence
- Cloning, Molecular
- DNA, Protozoan/genetics
- DNA, Protozoan/metabolism
- DNA, Ribosomal/genetics
- DNA, Ribosomal/metabolism
- Enhancer Elements, Genetic/genetics
- Gene Dosage
- Genes, Protozoan/genetics
- Molecular Sequence Data
- Promoter Regions, Genetic
- RNA, Protozoan/genetics
- RNA, Ribosomal/genetics
- Repetitive Sequences, Nucleic Acid/genetics
- Sequence Alignment
- Sequence Analysis, DNA
- Transcription Factors/metabolism
- Transcription, Genetic/genetics
Collapse
Affiliation(s)
- Q Yang
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins 80523
| | | | | |
Collapse
|